

**Ayut Limphirat** 

Suranaree University of Technology (SUT), Thailand

#### In collaboration with

SERANAREE UNIVERSITY OF

P. Sittikatkorn, K. Tomuang & P. Srisawad (Naresuan U.)

C. Kobdaj (SUT), Y. Yan (SUT), Y. L. Yan (CIAE), G. Chen: (CUG),

D. M. Zhou (CCNU)



The 7th Asia-Pacific Conference on Few-Body Problems in Physics (APFB 2017)

25-30 August 2017 @ Guilin, China



#### Introduction

- Charged particle production in PACIAE model
- $K^-p$  and  $K^+\bar{p}$  productions in pp collisions
- Conclusion

Introduction

3

 $\overline{K}N$  interaction supports the  $\Lambda(1405)$  as a bound state of  $K^{-}p$ 



[Yamazaki, Akaishi et al, Phys. Lett. B 587, 167 (2004) ; Phys. Rev. C 65, 044005 (2002); Phys. Lett. B 535, 70 (2002)], Phys. Rev. C 76, 045201 (2007)]

Interpretation of  $\Lambda(1405)$  as lower l = 1 exited state has been problematic because of its low mass and the large mass difference from the higher l = 1 exited state,  $\Lambda(1520)$ 

> Predicted by Loering et al., in relativistic quark model, the two  $\Lambda$  states of  $J^P = \frac{1}{2}^-$  and  $\frac{3}{2}^-$  with roughly degenerated mass around 1520 MeV

> > [Loering et al, Eur. Phys. J. A10, 395 (2001); Eur. Phys. J. A10, 447 (2001)]

| $J^{P} = \frac{1}{2}^{-}$ | $J^{P} = \frac{3}{2}^{-}$ | Δm       | prediction |
|---------------------------|---------------------------|----------|------------|
| Λ <sub>c</sub> (2595)     | Λ <sub>c</sub> (2625)     | ≈30 MeV  | 33±1       |
| Λ(1405)                   | Λ(1520)                   | ≈110 MeV | 112±5      |

[N. Isgur, Phys.Rev. D 62, 014025 (2000)]

The udQ I = 1 excited baryons are treated as mesonlike states in which the ud quark pair is compact and Q is far from the center-of-mass of the ud cluster.

The physical nature of the  $\Lambda(1405)$  is still not clear

### In this work

- the PACIAE model (a parton and hadron cascade model) is used to simulate the production of charged particles, K<sup>+</sup>, K<sup>-</sup>, p and p
   in pp collisions at 0.9 TeV
- The simulated yield of charged particles from PACIAE is compared with the ALICE experimental data in order to fix the model parameters
- The DCPC model is employed to study the production of  $K^-p$  and  $K^+\bar{p}$  clusters

### **Brief introduction for PACIAE model**

PACIAE, parton and hadron cascade model, is based on PYTHIA model for both p+p and A+A collisions. The model is updated based on PYTHIA 6.4.

[B. H. Sa et al., Computer Physics Communications 183, 333 (2012)]

#### DYNAMIC SIMULATION (PYTHIA, PACIAE)

#### Sketch for pp dynamic simulation



#### Charged particles production in PACIAE model

Yield of kaons and proton and antiproton in pp collisions at 0.9 TeV with |y| < 0.5

8

| Particle type | ALICE data        | PACIAE |
|---------------|-------------------|--------|
| $K^+$         | $0.183 \pm 0.004$ | 0.176  |
| $K^{-}$       | $0.182 \pm 0.004$ | 0.171  |
| p             | $0.083 \pm 0.002$ | 0.078  |
| $\bar{p}$     | $0.079 \pm 0.002$ | 0.076  |
|               |                   |        |

ALICE data are taken from Eur. Phys. J. C71, 1655 (2011) & Eur. Phys. J. C75, 226 (2015)

## Yield of Kp cluster in DCPC model

Dynamically constrained phase space coalescence model (DCPC)

[Chen, Yan et al., Phys. Rev. C85, 024907 (2012); Phys. Rev. C86, 054910 (2012); J. Phys. G41, 115102 (2014)]

$$Y_{K^-p} = \int \dots \int \delta_{12} \frac{d \vec{q}_1 d \vec{p}_1 d \vec{q}_2 d \vec{p}_2}{h^6},$$

with

 $m_{\Lambda}$ 

 $\Delta m$ 

 $D_0$ 

$$_{12} = \begin{cases} 1 & if \ 1 \equiv K^{-}, 2 \equiv p, \\ & m_{\Lambda} - \Delta m \leq m_{inv} \leq m_{\Lambda} + \Delta m, \\ & q_{12} \leq D_{0} \\ 0 & \text{otherwise} \end{cases}$$

$$m_{inv} = \left[ \left( E_{K^-} + E_p \right)^2 - \left( \vec{p}_{K^-} + \vec{p}_p \right)^2 \right]^{1/2}$$

 $E_{K^{-}} = \sqrt{\overrightarrow{p}_{K^{-}}^{2} + m_{K^{-}}^{2}}$  $E_{p} = \sqrt{\overrightarrow{p}_{p}^{2} + m_{p}^{2}},$ 

: Kp rms distance of 1.36 fm

: the mass uncertainty

: mass of  $\Lambda(1405)$ 

[Yamazaki, & Akaishi, Phys. Rev. C76, 045201 (2007)] m<sub>K</sub>, m<sub>p</sub>: effective mass

#### Effective mass of K<sup>+</sup>, K<sup>-</sup>, p and $\overline{p}$

| Particle type | $m_0 ~({\rm GeV})$ | $m \; (\text{GeV})$ |
|---------------|--------------------|---------------------|
| $K^+$         | 0.493              | 0.513               |
| $K^-$         | 0.493              | 0.393               |
| p             | 0.983              | 0.750               |
| $\bar{p}$     | 0.983              | 0.850               |

- $m_{K}^{-} = m_{0} + 0.02$
- $m_{\kappa}^{+} = m_0 0.01$
- $m_p = 0.8m_0$  $m_{-} = 0.9m_0$

Ma et al., Phys. Lett. B 604, 170 (2004)

Gaitanos & Kaskulov, Nucl. Phys. A 940, 181 (2015)

#### $K^-p$ and $K^+\overline{p}$ yields as a function of number of events in pp collision at 0.9 TeV.



## $K^-p$ and $K^+\overline{p}$ productions in pp collisions at 0.9 TeV

| $\Delta m$ | $K^{-}p \ (10^{-3})$ | $K^+ \bar{p} \ (10^{-3})$ |
|------------|----------------------|---------------------------|
| 0.005      | $0.409 \pm 0.005$    | $0.464 \pm 0.013$         |
| 0.010      | $0.830 \pm 0.008$    | $0.887 \pm 0.016$         |
| 0.015      | $1.242 \pm 0.013$    | $1.312 \pm 0.022$         |
| 0.020      | $1.656 \pm 0.018$    | $1.727 \pm 0.030$         |
| 0.025      | $2.088 \pm 0.013$    | $2.147 \pm 0.060$         |
| 0.030      | $2.476 \pm 0.016$    | $2.530 \pm 0.071$         |
| 0.035      | $2.892 \pm 0.022$    | $2.911 \pm 0.088$         |
| 0.040      | $3.295 \pm 0.030$    | $3.236 \pm 0.083$         |
| 0.045      | $3.701 \pm 0.024$    | $3.519 \pm 0.083$         |
| 0.050      | $4.084 \pm 0.029$    | $3.784 \pm 0.091$         |

To see the relation between the yield per event and  $\Delta m$ , the data in this Table are plotted as shown in next slide



13

the yields of  $K^-p$  and  $K^+\bar{p}$  increase linearly with increasing  $\Delta m$ 

- ▶ with the same  $\Delta m$ , the yields of  $K^-p$  and  $K^+\bar{p}$  are almost the same
- → with  $\Delta m$ =0.02 GeV, the yields of  $K^-p$  and  $K^+\bar{p}$  are predicted to be (1.656 ± 0.018) x 10<sup>-3</sup> and (1.727 ± 0.030) x 10<sup>-3</sup>, respectively. Note that  $\Delta m = \frac{\Gamma}{2}$  and decay width of Kp is 40 MeV [Dalitz & Tuan, Phys. Rev. Lett. 2, 425 (1959)]

## Conclusions

- The PACIAE is used to simulate the charged particles  $(K^+, K^-, p \text{ and } \bar{p})$  in pp collision at 0.9 TeV
- These charged particles are then used as inputs to the DCPC model to construct the  $K^-p$  and  $K^+\bar{p}$  clusters
  - With the invariant mass in the rang of 1.405±0.02 GeV, the yields of  $K^-p$  and  $K^+\bar{p}$  are predicted to be (1.656 ± 0.018) x 10<sup>-3</sup> and (1.727 ± 0.030) x 10<sup>-3</sup>, respectively
- The work indicates that the Λ(1405) and its antiparticle may be produced at almost the same rate in the pp collision at 0.9 TeV if the Λ(1405) is a K<sup>-</sup>p bound state formed during the hadron rescattering period

# **Acknowledgement**

Suranaree University of Technology (SUT)
Naresuan University

- Center of Excellence in High Energy Physics & Astrophysics, SUT
- SUT-HPCC

15

- National e-Science Infrastructure Consortium of Thailand
- APFB2017 Organizing committee