Absence of the Z_c(3900) in B decays

Zhi Yang

In collaboration with Qian Wang and Ulf-G. Meißner

The 7th Asia-Pacific Few-Body Conference on Problems in Physics, APFB 2017, 8.25-8.30, Guilin

Based on the paper: Isospin analysis of $B \rightarrow D^* \overline{D} K$ and the absence of the Zc(3900) in B decays, arXiv: 1706:00960

Heavy-quark exotic hadrons

- Many new hadrons have been observed in the last decade.
- They can not fit into the conventional hadrons (mass and properties).
- Most of the exotic hadrons were found through b hadron decays, e⁺e⁻ annihilation, or both.

Hadron structures

Conventional hadrons

Proposals for the heavy exotic hadrons

Compact multiquark

Hadro-Quarkonium

Hadronic molecule

- Discovered in $J/\psi \pi \pi$ mass distribution in *B* decay.
- Quantum number $J^{PC}=1^{++}$
- Tiny width Γ <1.2 MeV
- Extremely close to $D^0 D^{*0}$ threshold: $M_{D^0} + M_{D^{*0}} M_X = (0.00 \pm 0.18) MeV$.
- Promising candidate for a $D^*\overline{D}$ hadronic molecule.

Belle, PRL91(2003)262001

LHCb, PRL110(2013)222001

• The charged one was observed in $J/\psi \pi^{\pm}$ mass distribution by BESIII and Belle.

BESIII, PRL110(2013)252001; Belle, PRL110(2013)252002

- must contain at least 4 quarks, $c\overline{c}u\overline{d}$.
- slightly above the D^{*}D threshold.
 → Cusp effect. But in this scenario, it is not self consistent.
 - I '
- hadronic molecule, not triangle singularity

Guo, Hanhart. Wang and Zhao, PRD91(2015)051504 Gong, Pang, Wang and Zheng, arXiv:1612.08159

Absence of the Z_c(3900)

- > The Z_c(3900) is found through $e^+e^- \rightarrow J/\psi \pi \pi$ or $D^*\overline{D}\pi$.
- ► However, it was not found in the $B \to KZ_c$ with $Z_c \to J/\psi\pi$ decay. Instead, the $Z_c(4200)$ and $Z_c(4430)$ were found.

Belle performed a search for the $Z_c(3900)$. But no significant signal is found.

Belle, PRD90(2014)112009

 $2.05 \text{ GeV}^2/c^4 < M^2(K,\pi) < 3.2 \text{ GeV}^2/c^4$

WHAT CAN WE KNOWN FROM THE ABSENCE ?

- > The absence may have something to do with its internal structure.
- ➤ Under the hadronic molecular picture, both X(3872) and Z_c(3900) are $D^*\overline{D}$ bound state. The isospin of the Z_c(3900) is 1, while for the X(3872) is 0.
- > The production of the $D^*\overline{D}$ pair with isospin 1 is highly suppressed in B decays.

→ The Zc(3900) being a $D^*\overline{D}$ hadronic molecule naturally explains its absence in the B decays.

Isospin relation

• The decay $B \to D^* \overline{D} K$ occurs through isospin conserved weak transition $b \to c \overline{c} s$. The isospin violation diagram is CKM suppressed.

• Light quark pair created from the vacuum is a flavor and isospin singlet. The isospin relations:

$$\mathcal{M}[B^{0} \to D^{*0}D^{-}K^{+}] = -\frac{1}{\sqrt{2}}B_{1}, \qquad \mathcal{M}[B^{+} \to D^{*+}\bar{D}^{0}K^{0}] = \frac{1}{\sqrt{2}}B_{1}, \\ \mathcal{M}[B^{0} \to D^{*+}D^{-}K^{0}] = \frac{1}{\sqrt{2}}A_{0} + \frac{1}{2}(B_{0} + B_{1})e^{i\theta}, \qquad \mathcal{M}[B^{+} \to D^{*0}\bar{D}^{0}K^{+}] = \frac{-1}{\sqrt{2}}A_{0} + \frac{1}{2}(B_{0} - B_{1})e^{i\theta}, \\ \mathcal{M}[B^{0} \to D^{*0}\bar{D}^{0}K^{0}] = -\frac{1}{\sqrt{2}}A_{0}, \qquad \mathcal{M}[B^{+} \to D^{*+}D^{-}K^{+}] = \frac{1}{\sqrt{2}}A_{0}.$$

Production of $D^*\overline{D}$

• The amplitudes A_0 and $B_{0(1)}$ have the simple form at the $D^*\overline{D}$ threshold,

 $A_0 = a_0 P \cdot \epsilon^*$ $B_{0(1)} = b_{0(1)} P \cdot \epsilon^*$

which is required by Lorentz invariance.

Braaten, Kusunoki and Nussinov, PRL93(2004)162001

• Production of $D^*\overline{D}$ pair

= Short-distance direct production + rescattering of the charmed mesons

• In addition, the relative momentum between kaon and charmed mesons is very large near $D^*\overline{D}$ threshold. The rescattering between kaon and one charmed meson can be neglected.

• The rescattering amplitude for the two channels $D^{*0}\overline{D}^{0}$ and $D^{*+}D^{-}$. Use the renormalizable effective field theory that describes two scattering channels with S-wave contact interactions.

Cohen, Gelman and Kolck, PLB588(2004)57

• The inverse of the two-body scattering amplitude:

$$\frac{1}{\mathcal{T}(E)} = \frac{1}{2\pi} \begin{pmatrix} \mu_1(-1/a_{11} - ip_0) & \sqrt{\mu_1\mu_2}/a_{12} \\ \sqrt{\mu_1\mu_2}/a_{12} & \mu_2(-1/a_{22} - ip_c) \end{pmatrix}$$
 1 for channel $D^{*0}\overline{D}^0$;
2 for channel $D^{*+}D^-$.

 a_{11} , a_{12} , a_{22} are the unknown parameter.

$D^*\overline{D}$ distributions

Fit the differential distributions of $D^{*0}\overline{D}^{0}$ and the ratio of X(3872) production:

Fit results

$$\mathcal{M}[B^{0} \to D^{*0}D^{-}K^{+}] = -\frac{1}{\sqrt{2}}B_{1}, \qquad \mathcal{M}[B^{+} \to D^{*+}\bar{D}^{0}K^{0}] = \frac{1}{\sqrt{2}}B_{1}, \\ \mathcal{M}[B^{0} \to D^{*+}D^{-}K^{0}] = \frac{1}{\sqrt{2}}A_{0} + \frac{1}{2}(B_{0} + B_{1})e^{i\theta}, \qquad \mathcal{M}[B^{+} \to D^{*0}\bar{D}^{0}K^{+}] = \frac{-1}{\sqrt{2}}A_{0} + \frac{1}{2}(B_{0} - B_{1})e^{i\theta}, \\ \mathcal{M}[B^{0} \to D^{*0}\bar{D}^{0}K^{0}] = -\frac{1}{\sqrt{2}}A_{0}, \qquad \mathcal{M}[B^{+} \to D^{*+}D^{-}K^{+}] = \frac{1}{\sqrt{2}}A_{0}.$$

$$A_0 = a_0 P \cdot \epsilon^* \qquad B_{0(1)} = b_{0(1)} P \cdot \epsilon^*$$

- □ a_0 and b_0 (b_1) are direct production strengths of diagram (A) and (B) with I=0 (I=1).
- The fit value for $|b_1|$ is quite small compared to $|a_0|$.
- For each individual channel, the ratios of the I = 1 and I = 0 components are:

$$\begin{array}{rcl}
B^{0} \rightarrow D^{*+}D^{-}K^{0}: \\
|B_{1}/2|^{2} &= (3.30 \times 10^{-6})^{+0.30}_{-3.30 \times 10^{-6}}, \\
B^{+} \rightarrow D^{*0}\bar{D}^{0}K^{+}: \\
|B_{1}/2|^{2} &= (3.11 \times 10^{-5})^{+1235.56}_{-3.11 \times 10^{-5}}.
\end{array}$$

Parameter	value
$ a_0 $	$(2.23 \pm 1.02)N \text{ GeV}^{-1}$
θ	0.46 ± 0.43 rad
$ b_0 $	$(5.00 \pm 1.10)N \text{ GeV}^{-1}$
$ b_1 $	$0.014^{+3.84}_{-0.014}N \ { m GeV^{-1}}$
<i>a</i> ₁₁	$-1.56 \times 10^{11} \pm 0.28 \text{ fm}$
a_{12}	$3.37\pm0.27~\mathrm{fm}$
a_{22}	$0.94\pm0.04~{\rm fm}$
$\chi^2/n_{d.o.f.}$	7.44/14

- ✓ The internal structure of the $Z_c(3900)$ being a $D^*\overline{D}$ hadronic molecule naturally explains its absence in the B decays.
- Since the large uncertainty of the current experimental data, further high statistics data are necessary.
- Expect the explanation from other models, for example tetraquark. The explanation would be useful to understand the internal structure of the $Z_c(3900)$.

Thank you for your attention !