

Deuteron Analyzing Powers for *dp* Elastic Scattering at Intermediate Energies and Three-Nucleon Forces

Kimiko Sekiguchi Department of Physics, Tohoku University Sendai, JAPAN

Three-Nucleon Forces in Nucleus

Three-Nucleon Force (3NF)

key element to fully understand properties of nucleus.

(Sn)

(magic number)

• First evidence of 3NF : Binding Energies of Triton (3H)

- Nucleon-Deuteron Elastic Scattering at Intermediate Energies
 - Biding Energies / Levels of Light Mass Nuclei
 - Equation of State of Nuclear Matter etc ...

Existence of 3NF was predicted in 1930's (after Yukawa's meson theory).

To find Evidence of 3NF is very hard.

- 3NF < 2NF
- One needs,
 - 1. Reliable 2NF
 - 2. Ab initio calculations based on 2NF
 - 3. Precise experimental data^(Ni)²⁸

1957 Fujita-Miyazawa 3NF Prog. Theor. Phys. 17, 360 (1957)

<u>]</u> 2π-exchange 3NF :

Main Ingredients :
 Δ-isobar excitations in the intermediate

N

N

N

1957 Fujita-Miyazawa 3NF Prog. Theor. Phys. 17, 360 (1957)

<u>]</u> 2π-exchange 3NF :

Main Ingredients :
 Δ-isobar excitations in the intermediate

N

 Δ : excited state of nucleon

 $M_{\Delta} = 1232 \text{ MeV}$ $\left(J^{\pi}, T\right) = \left(\frac{3}{2}^{+}, \frac{3}{2}\right)$

1957 Fujita-Miyazawa 3NF Prog. Theor. Phys. 17, 360 (1957)

Where can we find 3NF effects ? - I -

3NFs in Finite Nuclei

Ab Initio Calculations for Light Nuclei

- Green's Function Monte Carlo
- **No-Core Shell Model** etc..

Where can we find 3NF effects ? - I -

3NFs in Finite Nuclei

Ab Initio Calculations for Light Nuclei

- Green's Function Monte Carlo
- **No-Core Shell Model** etc..

Where can we find 3NF effects ? - I -

3NFs in Finite Nuclei

Ab Initio Calculations for Light Nuclei

- Green's Function Monte Carlo
- No-Core Shell Model etc..
 - 2NF provide less binding energies
 - 3NF : well reproduce the data

IL2 3NF (Illinois-II 3NF) : 2π -exchange 3NF $+ 3\pi$ -ring with Δ -isobar

3NF effects in B.E.

- 10-25%
- Attractive

Note :

T=3/2 3NFs play important roles to explain B.E. in neutron rich nuclei.

Where can we find 3NF effects ? - II -

3NFs in Infinite Nuclei

A. Akmal et al., PRC 58, 1804('98)

•All NN potentials (AV18, Nijmegen I,II, CD Bonn) provide larger saturation point of Nuclear Matter.

•3NF

- shift to the empirical saturation point
- significant at higher density

 Short range repulsive terms of 3NFs (3-Baryon Fs) are taken as key elements to understand 2 M(sun) neutron star.

Nucleon-Deuteron Scattering

a good probe to study the dynamical aspects of 3NFs.

✓ Momentum & Spin dependence
 ✓ Iso-spin dependence : only T=1/2

Direct Comparison between Theory and Experiment

- Theory : Faddeev Calculations Rigorous Numerical Calculations of 3N System
 - 2NF InputCDBonn

3NF Input

- CDBonn
 Argonne V18 (AV18)
 Urbana IX
- 2NF & 3NF Input
 - Chiral Effective Field Theory

• Experiment : Precise Data

• Nijmegen I, II, 93 etc..

• $d\sigma/d\Omega$, Spin Observables $(A_{i'}, K_{ij'}, C_{ij})$

Extract information of Three Nucleon Forces.

Where is the Hot Spot for 3NF Effects in Three Nucleon Scattering?

Predictions by H. Witala et al. (1998)

Cross Section minimum for Nd Scattering at 100-200 MeV/A

How to attack 3NF – 1st Step – d-p Elastic Scattering at 135 MeV/nucleon @ RIKEN Accelerator Research Facility (RARF)

- **Cross Section**
- : Good description by 2π-3NF First Clear Signature of 3NFs in 3N Continuum
- Spin Observables
- : Insufficient descriptions by 2π-3NF Defects of 3NF in Spin parts ??

K. S. et al., Phys. Rev. C 65, 034003 (2002). K. S. et al., Phys. Rev. Lett. 95, 162301 (2005).

How to attack 3NF - Next Step -Few Nucleon Scattering with pol.d beams @ RIKEN RI Beam Factory (RIBF)

- **RARF** : AVF+RRC
 - Incident energy of deuteron :
 - 65 135 MeV/nucleon
- **RIBF** : AVF+RRC + SRC
 - Incident energy of deuteron :
 190 400MeV/nucleon

Experiment at RIBF

dp Elastic Scattering

250 MeV/nucleon : in 2009 294 MeV/nucleon : in 2012 190 MeV/nucleon : in 2015

•All deuteron analyzing powers $A_y^d, A_{yy}, A_{xx}, A_{xz}(iT_{11}, T_{20}, T_{21}, T_{22})$ • Wide Angular Range

$$\theta_{\rm c.m.} = 35^\circ - 160^\circ$$

- High accuracy
- Go to higher energies
 - Effects of 3NFs are relatively enhanced.
 - Theory : harder

Polarized Deuterons

- rich set of spin observables

RIKEN RI Beam Factory (RIBF)

- Polarized *d* beam was accelerated by the AVF+RRC+ SRC.
- Spin axis of deuteron beam was rotated prior to acceleration.
- Single turn extraction of beam was successfully obtained for all the cyclotrons.

Nd Elastic Scattering Data at Intermediate Energies

~2016

pd and nd Elastic Scattering at 65-400 MeV/nucleon

Nd Elastic Scattering Data at Intermediate Energies

pd and nd Elastic Scattering at 65-400 MeV/nucleon

~2016

- High precision data of *d*σ/*d*Ω & Spin Observables from RIKEN, RCNP, KVI, IUCF
- Energy dependent data

 ✓ do/dΩ
 ✓ Proton Analyzing Power
 ✓ Deuteron Analyzing Powers

Data are compared with

- CD Bonn, AV18, Nijmegen I, II
- CD Bonn, AV18, Nijmegen I, II + TM'99 3NF
- AVI8 + Urbana IX 3NF
- Chiral EFT N4LO NN

Differential Cross Section

K.Hatanaka et al., Phys. Rev. C 66,044002 (2002)K.S. et al., Phys. Rev. Lett. 95,162301 (2005)Y. Maeda et al., Phys. Rev. C 76,014004 (2007)

Differential Cross Section at 70 - 400 MeV/nucleon

 NN only
 Large discrepancy in the backward region
 3NF :
 improve the agreement

- 🗞 not enough at very backward
 - angles at higher energies

Differential Cross Section at 70 - 400 MeV/nucleon

Urbana IX 3NF+AV18

Relativistic Faddeev Calculations with TM'99 3NF

H. Witala et al, private communications

Deuteron Analyzing Powers

K.S. et al., Phys. Rev. C 89,064007 (2014) etc.

Deuteron Analyzing Powers at 135, 190, 250MeV/nucleon

NN only

+ 2π 3NF at 190, 250 MeV

Results of deuteron analyzing

NN (CDBonn, AV1 TM'(99) 3NF + NN(CD Bonn, AV1 Urbana IX 3NF+A

Analyzing Powers at 70 - 190 MeV/nucleon

Chiral EFT N3LO & N4LO NN pot. by Cracow Gr.

Vector analyzing power : good agreements to NN forces

Large discrepancies in Tensor analyzing powers → Rooms for 3NFs ?

Summary

Nucleon-Deuteron Scattering

is a good probe to investigate the dynamics of 3NFs.

- Momentum & Spin dependence - . For iso-spin, T=1/2 only.

Precise data of $d\sigma/d\Omega$ and deuteron analyzing powers at 70 - 300 MeV/nucleon

Cross Sections : 3NFs are clearly needed in Elastic Scattering.

Spin Observables : Defects of spin dependent parts of 3NFs

Serious discrepancy at backward angles at higher energies : short-range terms of 3NFs ?

It is interesting to see how χEFT NN+NNN potentials describe the data.

Summary

Nucleon-Deuteron Scattering

is a good probe to investigate the dynamics of 3NFs.

- Momentum & Spin dependence - . For iso-spin, T=1/2 only.

Precise data of $d\sigma/d\Omega$ and deuteron analyzing powers at 70 - 300 MeV/nucleon

Cross Sections : 3NFs are clearly needed in Elastic Scattering.

Spin Observables : Defects of spin dependent parts of 3NFs

Serious discrepancy at backward angles at higher energies : short-range terms of 3NFs ?

It is interesting to see how χEFT NN+NNN potentials describe the data.

Next Step

Nd Breakup Experiments : Rich kinematical configurations

Four Nucleon Scattering : from Few to Many & Iso-spin dependence

Study of T=3/2 three-nucleon systems (3p, 3n-states)

$p+{}^{3}\text{He scattering}$

Measurement of *p*+³He scattering at 70 MeV with pol. ³He target at Tohoku University

³He Analyzing power at 70 MeV

RIBF pol.d beam experiment Gr.

Tohoku University

K. Sekiguchi, K. Miki, Y. Wada, A. Watanabe, D. Eto, T. Akieda, H. Kon,

J. Miyazaki, T. Taguchi, U. Gebauer, K. Takahashi, T. Mashiko

RIKEN Nishina Center

N. Sakamoto, H. Sakai, T. Uesaka, M. Sasano, Y. Shimizu

Kyushu University

T. Wakasa, S. Sakaguchi, J. Yasuda, A. Ohkura, S. Shindo, U. Tabata

Miyazaki University

H. Okamura

Kyungpook National Universi

S. Chebotaryov, E. Milman