APFB 2017 @ Guilin, 2017, Aug.

 $\overline{K}N-\pi\Sigma$ coupled-channel potential derived from Chiral SU(3) dynamics

K. Miyahara (Kyoto univ.) T. Hyodo (YITP) W. Weise (ECT* and TUM)

Contents

- Motivation
- Formulation
- * **K**N single-channel potential
 - Potential with SIDDHARTA constraint
 - Application to $\Lambda(1405)$ and \bar{K} -nuclei
- * $\bar{K}N-\pi\Sigma$ coupled-channel potential
- Summary

* $\overline{\mathbf{K}}\mathbf{N}$ interaction • strongly attractive • without repulsive core $\overline{\mathbf{K}}\mathbf{N}\mathbf{N}\mathbf{N}$ $\overline{\mathbf{K}}^{\mathrm{p}}:(\mathrm{s}\overline{\mathrm{u}})$ (uud) $\overline{\mathrm{K}}^{\mathrm{o}}\mathrm{n}:(\mathrm{s}\overline{\mathrm{d}})$ (udd)

Interesting states with **K** and N's are expected.

Akaishi, Yamazaki, Phys. Rev. C 65 (2002) 044005

* $\bar{K}NN$ state (I=1/2, J^P=0⁻)

- ▶ 3-body calculation
 - variational
 - Faddeev

- theory
 - (i) Shevchenko, Gal, Mares, PRC 76 (2007) 044004
 - (ii) Yamazaki, Akaishi, PRC 76 (2007) 045201
 - (iii) Ikeda, Sato, PRC 76 (2007) 035203
 - (iv) Dote, Hyodo, Weise, PRC 79 (2009) 014003
 - (v) Ikeda, Kamano, Sato, PTP 124 (2010) 533
 - (vi) Ohnishi et al. PRC 95 (2017) 065202

Conclusive result has not been achieved.

Conclusive result has not been achieved.

SIDDHARTA exp. has enabled quantitative discussion.

Formulationcf.) Hyodo, Weise,
PRC77 (2008) 035204exp. dataamplitude : F^{Ch.}potential
$$-\frac{1}{2\mu} \frac{d^2 u(r)}{dr^2} + V^{equiv}(r, E)u(r) = Eu(r)$$
 \bigvee $F^{equiv} = F^{Ch}$ $V^{equiv}(r, E) = g(r)N(E) \left[V^{eff}(E) + \Delta V \right]$ assume Gauusian *r*-dependence $g(r) = \frac{1}{\pi^{3/2}b^3}e^{-r^2/b^2}$ $(b : range parameter)$

(*b* : range parameter)

Formulationcf.) Hyodo, Weise,
PRC77 (2008) 035204exp. dataamplitude : F^{Ch}potential
$$-\frac{1}{2\mu}\frac{d^2u(r)}{dr^2} + V^{equiv}(r, E)u(r) = Eu(r)$$
 \bigvee $F^{equiv} = F^{Ch}$ $V^{equiv}(r, E) = g(r)N(E) \begin{bmatrix} V^{eff}(E) + \Delta V \end{bmatrix}$ $V^{equiv}(r, E) = g(r)N(E) \begin{bmatrix} V^{eff}(E) + \Delta V \end{bmatrix}$ Ch-U. \bigvee $(hannel coupling)$
Ch-U. : $\pi\Sigma$, $\bar{K}N$, $\eta\Lambda$, $K\Xi$ Schrödinger : $(\pi\Sigma)$, $\bar{K}N$ \rightarrow Feshbach projection

Formulationcf.) Hyodo, Weise,
PRC77 (2008) 035204exp. dataamplitude :
$$F^{Ch}$$
potential $-\frac{1}{2\mu} \frac{d^2 u(r)}{dr^2} + V^{equiv}(r, E)u(r) = Eu(r)$ $\bigvee F^{equiv} = F^{Ch}$ $V^{equiv}(r, E) = g(r)N(E) \left[V^{eff}(E) + \Delta V \right]$ correction for model difference
Ch-U. \longleftrightarrow Schrödinger eq.

Formulationcf.) Hyodo, Weise,
PRC77 (2008) 035204exp. dataamplitude : F^{Ch}potential
$$-\frac{1}{2\mu}\frac{d^2u(r)}{dr^2} + V^{equiv}(r, E)u(r) = Eu(r)$$
 \bigvee $F^{equiv} = F^{Ch}$ $V^{equiv}(r, E) = g(r)N(E) \left[V^{eff}(E) + \Delta V\right]$ fit by polynomial
 $V^{equiv} = g(r)N(E) \left[\sum_i c_i E^i\right]$ for convenience and analytical continuation

- * Previous work : Hyodo, Weise, PRC77 (2008) 035204)
 - ΔV : real
 - fit range : 1300-1400 MeV
 - polynomial type : 3rd order in E

F^{Ch} was almost reproduced on real E axis.

Vequiv does not reproduce pole structure of F^{Ch}.

* Our work : Miyahara, Hyodo, PRC93 (2016) 015201

- polynomial type : 3rd order in E

$$V^{\text{equiv}}(r, E) = g(r)N(E)\left[V^{\text{eff}}(E) + \Delta V\right]$$
$$V^{\text{Ch}}_{ij} \in \mathbb{R} \quad \Box \searrow \quad V^{\text{eff}}_{\bar{K}N,\bar{K}N} \in \mathbb{C}$$

Feshbach projection eliminate $\pi\Sigma$ decay channel

- ΔV : \longrightarrow complex
- fit range : 1300-1400 MeV --- 1332-1450
- polynomial type : 3rd order in E

- ΔV : \longrightarrow complex
- fit range : 1300-1400 MeV --- 1332-1450
- polynomial type : 3rd order in E

- ΔV : \longrightarrow complex
- fit range : 1300-1400 MeV → 1332-1450 → 1332-1520
- polynomial type : 3rd order in E

- ΔV : \longrightarrow complex
- fit range : 1300-1400 MeV → 1332-1450 → 1332-1520
- polynomial type : 3rd order in E --- 10th order

* **Our work : Miyahara, Hy** with SIDDHARTA constraint

Ch-U. with SIDDHARTA : Ikeda, Hyodo, Weise, NPA881 (2012) 98

- * Application
- 1. spatial size of $\Lambda(1405)$

Miyahara, Hyodo, PRC93 (2016) 015201

 $\sqrt{\langle r^2 \rangle} \sim 1.44 {\rm fm}$

→ "molecular picture"

- 2. **K-nuclei** Ohnishi et al., PRC95 (2017) 065202
 - variational method $\longrightarrow \overline{K}NN, \dots, \overline{K}NNNNNN$

 $\overline{K}NN: (B, \Gamma) = (26.1-27.9, 30.9-59.3) \text{ MeV}$

cf.) with AY potential : (48.7, 61.9) MeV

Λ(1405)

 $\sim 0.55 \text{ fm}$

 $\sim 1.44 \text{ fm}$

 $\sim 0.85 \text{ fm}$

* Application

coupled-channel $\overline{K}N$ - $\pi\Sigma$ potential

* explicit treatment of $\pi\Sigma$

reliability in lower *E* region cf.) B.E. of some K-nuclei ~ 70 MeV

Ohnishi et al., PRC95 (2017) 065202

dynamically generated by πΣ
This may affect the K̄-nuclei result.

<u>We construct $\bar{K}N-\pi\Sigma$ potential.</u>

coupled-channel $\overline{K}N$ - $\pi\Sigma$ potential

- * explicit treatment of $\pi\Sigma$
 - ΔV : real
 - fit range : 1300-1500 MeV
 - polynomial type : 3rd order in *E*

$$V^{\text{equiv}}(r, E) = g(r)N(E)\left[V^{\text{eff}}(E) + \Delta V\right]$$
$$V^{\text{Ch}}_{ij} \in \mathbb{R} \quad \Box \longrightarrow \quad V^{\text{eff}}_{ij} \in \mathbb{R}$$
Eechberch environties

$$\pi \Sigma, \bar{K}N, \eta \Lambda, K\Xi$$

<u>Feshbach projection</u>

coupled-channel $\overline{K}N$ - $\pi\Sigma$ potential

- ΔV : real
- fit range : 1300-1500 MeV
- polynomial type : 3rd order in E

original pole (Ch-U.) : 1428-17i MeV, 1400-76i MeV

pole from equiv. potential : 1427-17i MeV, 1397-83i MeV

Vequiv almost reproduces F^{Ch} including poles.

coupled-channel $\bar{K}N$ - $\pi\Sigma$ potential

Summary

- * We have improved the potential construction procedure paying attention to *F* in complex *E*.
- * Realistic K̄N potential has been obtained with SIDDHARTA constraint.
 - Application $\Lambda(1405): \sqrt{\langle r^2 \rangle} = 1.44 \text{ fm}$

Miyahara, Hyodo, PRC93 (2016) 015201

 $\overline{K}NN$: (B, Γ) = (26.1-27.9, 30.9-59.3) MeV

Ohnishi et al., PRC95 (2017) 065202

* Similarly, we have constructed K̄N-πΣ coupled-channel potential. Miyahara, Hyodo, Weise, in preparation

Backup slides

* $\bar{K}NN$ state (I=1/2, J^P=0⁻)

- 3-body calculation
 - variational
 - Faddeev
- **K**N interaction
 - E-indep. (\Leftrightarrow sigle pole)
 - E-dep. (↔ double pole)
 - (i) Shevchenko, Gal, Mares, PRC 76 (2007) 044004
 - (ii) Yamazaki, Akaishi, PRC 76 (2007) 045201
 - (iii) Ikeda, Sato, PRC 76 (2007) 035203
 - (iv) Dote, Hyodo, Weise, PRC 79 (2009) 014003
 - (v) Ikeda, Kamano, Sato, PTP 124 (2010) 533
 - (vi) Ohnishi et al. PRC 95 (2017) 065202

exp. situation

	Group	Reaction	($B_{\bar{K}NN}$, $\Gamma_{\bar{K}NN}$) [MeV]
2005年	FINUDA	$K^-A \rightarrow A'(\Lambda p)$	(115, 67) Angello et al., PRL 94 (2005) 212303
2010年	DISTO	$pp \rightarrow K^+(\Lambda p)$	(103, 118) Yamazaki et al., PRL 104 (2010) 132502
2014年	LEPS	$\gamma d \rightarrow K^+ \pi^- X$	no peak Tokiyasu et al., PLB728 (2014) 616
2015年	J-PARC E27	$\pi^+ d \rightarrow K^+ X$	(95, 162) Ichikawa et al., PTEP 2015, 021D01
2015年	HADES	$pp \rightarrow K^+(\Lambda p)$	no peak Agakishiev et al., PLB742 (2015) 242
2015年	J-PARC E15	K⁻ ³He → nX	no peak Hashimoto et al., PTEP 2015, 061D01

We do not have conclusive results.

- 3-body calculation
 - variational
 - Faddeev

0

- theory
 - (i) Shevchenko, Gal, Mares, PRC 76 (2007) 044004
 - (ii) Yamazaki, Akaishi, PRC 76 (2007) 045201
 - (iii) Ikeda, Sato, PRC 76 (2007) 035203
 - (iv) Dote, Hyodo, Weise, PRC 79 (2009) 014003
 - (v) Ikeda, Kamano, Sato, PTP 124 (2010) 533
 - (vi) Ohnishi et al. PRC 95 (2017) 065202

<u>exp.</u>

- [FINUDA] Angello et al., PRL 94 (2005) 212303
- [DISTO] Yamazaki et al,. PRL 104 (2010) 132502
- [J-PARC E27] Ichikawa et al., PTEP 2015, 021D01
- [J-PARC E15] Sada et al., PTEP 2016, 051D01

Conclusive result has not been achieved.

Chiral unitary approach

* Ch-EFT

Chiral unitary approach

* chiral unitary approach

- non-perturbative treatment (bound state, resonance state)

34

Feshbach projection

$$\begin{split} T_{\bar{K}N,\bar{K}N} &= V_{\bar{K},\bar{K}N}^{\text{eff}} + V_{\bar{K},\bar{K}N}^{\text{eff}} G_{\bar{K}N} T_{\bar{K},\bar{K}N} \\ V_{\bar{K}N}^{\text{eff}} &= \sum_{m \neq \bar{K}N} V_{\bar{K}N,m} G_m V_{m,\bar{K}N} + \sum_{m,l \neq \bar{K}N} V_{\bar{K}N,m} G_m \tilde{T}_{m,l} G_l V_{l,\bar{K}N} \\ \tilde{T}_{m,l} &= V_{m,l} + \sum_{k \neq \bar{K}N} V_{m,k} G_k \tilde{T}_{k,l} \end{split}$$

Kyoto **K**N potential

nucleon distribution in **K**NN

Ohnishi et al., PRC95 (2017) 065202

$\bar{K}N-\pi\Sigma$ potential

