

Exotic Baryon Systems from Photoproduction and Beam Commissioning of the LEPS2 Solenoid Spectrometer

S.Y.Ryu (RCNP/Osaka) for the LEPS2 Collaboration

APFB 2017, Aug 26 – 30, 2017, Guilin

Outline

- Linearly polarized Compton-backscattered photons come to the LEPS2 solenoid spectrometer at SPring-8.
- High-intensity photon beam in the range of 1.3-2.9 GeV and a large angular acceptance will open new opportunities to explore exotic baryon systems from photo-production, such as Θ+, K-pp, and Λ(1405).
- A new data acquisition system has been built for the LEPS2 experiment, based on the network-based DAQ-middleware framework.
- Second beam commissioning of the LEPS spectrometer system was performed last July, 2017.

LEPS2 Experiment at SPring-8

RCNP

亥物理研究センタ

Divergence of Compton backscattered Beam

S. Y. Ryu (RCNP/Osaka) for the LEPS2 Collaboration (APFB 2017)

大阪大学

核物理研究センタ・

LEPS2 Solenoid Spectrometer

- Time Projection Chamber (TPC)
- Forward Drift Chambers (DCs)
- Resistive Plate Chamber (RPC) for the time-of-flight measurement
- Aerogel Cherenkov Counters

Forward

Barrel Lead/Scintillator Calorimeter (14.3 X0)

LEPS2 Solenoid Spectrometer

Tracking System

Drift Chamber

 $\sigma \sim 150 \ \mu m$ wires \rightarrow x, x', u, u', v, v'

Time Projection Chamber(TPC) $\sigma \sim 400 \ \mu m$, ~20 layers

DSSD

σ ~ 35 μm

PID System **RPC** Δt ~ 50 ps AC n = 1.03 (30°~ 40°) n = 1.05 (40° ~50°)

 $S.\,Y.\,Ryu~(RCNP/Osaka) for the \,LEPS2~Collaboration~(APFB~2017)$

Search for Θ^+ at LEPS2

- $\gamma n \rightarrow K^- \Theta^+ \ (\Theta^+ \rightarrow K^0_S p; \ K^0_S \rightarrow \pi^- \pi^+)$
- $\gamma p \rightarrow \overline{K}^{*0} \Theta^+$ ($\overline{K}^{*0} \rightarrow \overline{K}^- \pi^+$)
- No Fermi-motion correction is needed in both modes.
- Detection of K⁻ ensures a production of S=+1 baryon

Unveiling the Two-Pole Structure of $\Lambda(1405)$

Photoproduction of $\Lambda(1405)$ with $K(892)^+$

- K decay plane ⊥(||)
 the photon beam
 polarization (ε̂) for
 unnatural-parity
 exchange (natural-parity exchange).
- I=0 channel $\Lambda(1405) \rightarrow \Sigma^0 \pi^0$ detection.

 $S.\,Y.\,Ryu\,\,(RCNP/Osaka) for the\,LEPS2\,\,Collaboration\,\,(APFB\,\,2017)$

Search for *K⁻pp* nuclei at LEPS2

- K^-pp search in $\gamma d \rightarrow K^+\pi^-X$, K_S^0X , and $K^{*0}X$ reactions at LEPS2.
- Complete kinematics with a detection of K/K* and decay products from K⁻pp.

Overview of the LEPS2 Facility

LEPS2 Detectors

Trigger System for Beam Commissioning

DAQ Components with DAQ-middleware

Example of component configuration

- User can create new DAQ components base on implemented core logics such as readout logic and histogramming logic.
- DAQ-Middleware provides data transfer beween DAQ components.

TPC Track Reconstruction

核物理研究センタ

Summary

- A new linearly-polarized photon beam facility is about to start physics runs with the LEPS2 solenoid spectrometer at SPring-8.
- DAQ performance will also be tested in coming physics runs.
- High-intensity photon beam in the range of 1.3-2.9 GeV and a large angular acceptance will open new opportunities to explore exotic baryon systems from photo-production, such as Θ+, K-pp, and Λ(1405).

