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Outline

• Feynman-Hellmann (FH) approach 
to hadron structure on the lattice


• Elastic nucleon form factors


• FH with momentum transfer


• New access to large Q2


• (Deep) inelastic structure


• FH at second order


• New possibilities to study 
structure functions on the lattice

5

FIG. 3. Ratio GE/GM for the proton from application of
the Feynman–Hellmann method, from a variational analysis
of three-point functions [25], and from experiment [5–7]. Note
this is not scaled by the magnetic moment of the proton µp, as
this would require phenomenological fits to the low Q2 data,
which is not the focus of this work.

FIG. 4. Scaled pion form factor Q2F⇡ from the Feynman–
Hellmann technique and from experiment [12]. The solid lines
are the vector meson dominance at the relevant pion masses,
and the dotted lines are the asymptotic values predicted by
perturbative QCD (see [13] for a discussion of this value and
its limitations).
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Feynman-Hellmann theorem in lattice QCD



Matrix elements from “Feynman–Hellmann”
• Feynman–Hellmann in quantum mechanics: 
 

• matrix elements of the derivative of the Hamiltonian determined by derivative of 
corresponding energy eigenstates 

• Lattice QCD: evaluate energy shifts with respect to weak external fields 
• Modify action with external field: 

• Calculation of matrix element ≡ hadron spectroscopy [2-pt functions only]
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Spin content [connected]

• Modify action


• Nucleon energy shift isolates 
spin content
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Feynman–Hellman with momentum transfer



Warm up: Periodic potential, 1-D QM
• Almost free particle 

• Subject to weak external periodic potential
V

x

V (x) = 2�V0 cos(qx)

H0|pi =
p2

2m
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Warm up: Periodic potential, 1-D QM
• Geometrically:
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Degenerate perturbation theory
• Exact degeneracy: 

• Consider mixing on almost-degenerate states
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External momentum field on the lattice
• Modify Lagrangian with external field containing a spatial Fourier 

transform [constant in time] 

• Project onto “back-to-back” momentum state: 

• E.g. pion form factor  
 
 

• “Feynman-Hellmann”

L(y) ! L0(y) + �2 cos(~q.~y)q(y)�µq(y)
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“Breit frame” kinematics
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FIG. 1. E↵ective electric and magnetic form factors of the
u quark in the nucleon for di↵erent values of Q2. Results
shown are for a single value of � 6= 0 (since we are in the
linear region, results at di↵erent � are statistically identical).

B. Electromagnetic Form Factor of the Pion

Following a similar analysis as that for the nucleon,
we show the determination of the pion form factor and
comparison to experiment [12] in Fig. 4. The realised
statistical signal gives confidence that future lattice sim-
ulations will be able to provide important insight into
this transition between the perturbative and nonpertur-
bative.

V. CONCLUSION

In this work we have extended the Feynman–Hellmann
technique to access non-forward matrix elements. We
demonstrate that this provides for a dramatic improve-
ment in the ability to extract nucleon and pion form fac-
tors at much higher momentum transfers than previously
possible. Before making rigorous comparisons with phe-

FIG. 2. GE and GM for the proton from the Feynman–
Hellmann method and a variational method described in [25]
employed on the same ensemble.

nomenology, standard lattice systematics must be fur-
ther quantified, including quark mass dependence, dis-
cretisation artifacts and continuum extrapolation. There
is also further potential for increased precision by us-
ing improved operators that have better access to high-
momentum states, as proposed in [44].
The high-momentum form factors extracted in this

work demonstrate a significantly expanded scope for lat-
tice QCD to address this phenomenologically interesting
domain of hadron structure.
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Feynman–Hellman
Phenomenologically-
interesting region. 
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calculations… 
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study in lattice QCD.
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Proton form factors 
[my comments]

• One volume


• Not worried (yet)


• One quark mass


• Surprised that we see a 
similar trend as experiment


• One lattice spacing


• We should investigate further
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Deep inelastic structure of the proton



Deep-inelastic scattering Slow deviations from scaling 
described by perturbative QCD
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19. Structure functions 23

NOTE: THE FIGURES IN THIS SECTION ARE INTENDED TO SHOW THE REPRESENTATIVE DATA.

THEY ARE NOT MEANT TO BE COMPLETE COMPILATIONS OF ALL THE WORLD’S RELIABLE DATA.
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Figure 19.8: The proton structure function F p
2 measured in electromagnetic scattering of electrons and

positrons on protons (collider experiments H1 and ZEUS for Q2 ≥ 2 GeV2), in the kinematic domain
of the HERA data (see Fig. 19.10 for data at smaller x and Q2), and for electrons (SLAC) and muons
(BCDMS, E665, NMC) on a fixed target. Statistical and systematic errors added in quadrature are shown.
The H1+ZEUS combined values are obtained from the measured reduced cross section and converted to F p

2

with a HERAPDF NLO fit, for all measured points where the predicted ratio of F p
2

to reduced cross-section
was within 10% of unity. The data are plotted as a function of Q2 in bins of fixed x. Some points have
been slightly offset in Q2 for clarity. The H1+ZEUS combined binning in x is used in this plot; all other
data are rebinned to the x values of these data. For the purpose of plotting, F p

2
has been multiplied by 2ix ,

where ix is the number of the x bin, ranging from ix = 1 (x = 0.85) to ix = 24 (x = 0.00005). References:
H1 and ZEUS—H. Abramowicz et al., Eur. Phys. J. C75, 580 (2015) (for both data and HERAPDF
parameterization); BCDMS—A.C. Benvenuti et al., Phys. Lett. B223, 485 (1989) (as given in [86]) ;
E665—M.R. Adams et al., Phys. Rev. D54, 3006 (1996); NMC—M. Arneodo et al., Nucl. Phys. B483, 3
(1997); SLAC—L.W. Whitlow et al., Phys. Lett. B282, 475 (1992).
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Parton distributions
In principle, these could be 
determined from QCD

Challenging so far!
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Figure 37. The shift in NNPDF3.0 PDFs with αs(MZ) = 0.118 at Q2 = 104 GeV2 when going
from LO to NLO, normalized to the NLO central value, compared to the LO and NLO PDF
uncertainties. From top to bottom and from left to right the gluon, singlet, isospin triplet and total
valence are shown.

the large-x gluon, relevant for example for top quark pair production, or the medium-x

quark singlet PDF, which is relevant for LHC electroweak boson production. Note that

for the gluon at x ∼ 10−2, relevant for Higgs production in gluon-fusion, the perturbative

convergence is very good, as already highlighted in ref. [161].

The results of figures 37 and 38 suggest that as PDF uncertainties decrease, either by

the addition of new experimental constraints or by refinements in the fitting methodology,

a careful estimate of theory uncertainties will become mandatory. In the case of NNPDF3.0

this is especially true now given that, thanks to the closure test validation, methodological

uncertainties are under full control.

5.1.4 Model uncertainties

While uncertainties related to higher order corrections are perhaps the largest source of

uncertainty which is not determined systematically and thus not included in the standard

PDF uncertainty, there are a few more sources of uncertainty which are also not part of

the current PDF uncertainty and which might become relevant as the precision of the data

increases. These have to do with further approximations which are made in the theoretical

description of the data, and we generically refer to them as “model” uncertainties. We

now discuss the likely dominant sources of model uncertainties, namely, those related to

nuclear corrections and those related to the treatment of heavy quarks.

Several fixed-target data included in the NNPDF3.0 PDF determination are taken on

nuclear targets. These include all of the neutrino deep-inelastic scattering data, namely
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Isovector quark distributions

Relative uncertainties diverge beyond x~0.6:

Opportunity for lattice to contribute



First: Hadron tensor and PDFs



Inelastic scattering
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(Virtual) Compton amplitude
• Compton amplitude 

• Looking ahead to lattice results shown at end, consider simple case
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Moments of structure functions
• Re-express integral over familiar Bjorken x: 

• Moments of structure functions
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02)
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1� (!x)2

x = 1/!0Subtraction term: 
Cottingham sum rule; Muonic hydrogen. 
Recently, see also: 
Agadjanov, Meißner & Rusetsky, PRD(2017), 
Hill & Paz, PRD(2017), …
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Lattice QCD: Traditional way

• Matrix elements of local twist-2 operators:
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Operator mixing on the lattice prohibits the 
study of operators with increasing numbers 

of derivatives: 
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(e.g. quark momentum fractions)



Feynman–Hellmann (2nd order): 
Study Compton amplitude directly
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Feynman–Hellman (2nd order)
• Field theory version of 2nd order perturbation theory: 

• Final result. We study second-order perturbation on the lattice
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see backup slides, or  
RDY, presentation @Lattice 2017; 
Somfleth et al. … soon

E = E0 + �hN |V |Ni+ �2
X

X 6=N

hN |V |XihX|V |Ni
E0 � EX
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Only get a linear term 
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Test case: 
Compton amplitude → PDFs



Taylor expansion
• Consider moments of structure function 

• Series expansion of Compton amplitude
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Compton amplitude in 
unphysical region



“Inversion”
• Discrete approximation to parton distribution F1(x) 

• Consider discretised integral 

• Use singular value decomposition to invert N×M matrix 

• Pseudoinverse
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4!2
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1� (!nxn)2

K = U [diag(w1, . . . , wN 0 , wN 0+1 . . . , wN )]V >

K�1 = V [diag(1/!1, . . . , 1/!N 0 , 0, . . . , 0)]U>

wN 0+1 . . . , wN ' 0, N 0  N

N < M

N×M “diag”

T33(!n) =
MX

m=1

KnmF1(xm), xm =
m

M
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Numerical investigation



Lattice kinematics Broad coverage of ! from single 

calculation (computationally “cheap”)
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Numerical test: Lattice results

that the structure function Fu−d
1 can be well reproduced from a relatively small set of data, except

perhaps for x ! 0.05. Similar results are obtained for the singlet structure function Fu+d+ū+d̄+s̄
1 .

We have not made any attempts to optimize the SVD. It can be improved in several respects.
A Bayesian approach [14] to alleviate overfitting, for example, might lead to particularly robust

results.
There are other possibilities as well to compute the structure function from the Compton am-

plitude. A particularly promising approach is to fit the moments, for example in the interpolating
polynomial (15), by an appropriate function µ(s) with µ(n) = µn and employ an inverse Mellin
transform on µ(s) to obtain F1(x). It turns out that the moments can be fitted surprisingly well by

the simple expression
µ(s) = A (s + α)−β , (22)

for which the inverse Mellin transform is known analytically [15]. Starting from the moments

6 µn =
∫ 1

0
dxxn [u(x) − d(x)], the result of the Mellin transform is shown in Fig. 5.

The analysis so far has been limited to ω ∈ [0, 1]. The SVD method can be extended to larger
values ω > 1 without problem. This will allow us to probe the small-x region of F1(x), which is

not accessible through moments of the structure function. Indeed, by extending the calculation to
ω = 2, we were able to retrieve the singlet structure function Fu+d+ū+d̄+s̄

1 (x) [13] down to fractional
momenta x ! 0.005, which was not possible before. Odd moments of the structure functions can

be obtained by also including the local axial vector current ψ̄ f (x)γ3γ5ψ f (x) to (11) and studying
the interference with the vector current. This is achievable through a simple extension of the

procedure described above. The method can be generalized to nonforward Compton scattering
as well. That will allow us to derive generalized parton distribution functions (GPDs).

There is the question what accuracy can be achieved with real data. It turns out that the second

derivative of the nucleon energy can be computed rather accurately. In a proof-of-principle study

Figure 6: The proton Compton amplitude T33(p, q) for momenta p⃗ = (2,−1, 0), (−1, 1, 0),
(1, 0, 0), (0, 1, 0), (2, 0, 0), (−1, 2, 0), (1, 1, 0), (0, 2, 0), (2, 1, 0), (1, 2, 0), from left to right, and

q⃗ = (3, 5, 0), in lattice units. The current has been attached to the d quark, leading to the ‘hand-
bag’ diagram in Fig. 1. ZV has been taken from [17]. The solid line shows a sixth order polyno-

mial fit (giving χ2/dof = 0.9), and the shaded area shows the error.
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Compton amplitude from quadratic energy shift 
(subtraction term removed)

Chambers et al., PRL(2017)

http://inspirehep.net/record/1516003


(Virtual) Compton amplitude 
accessible on the lattice

Nonperturbative constraint 
on hadronic structure 

functions 
→ PDFs + higher twist

New access to form factors 
at large momenta

5

FIG. 3. Ratio GE/GM for the proton from application of
the Feynman–Hellmann method, from a variational analysis
of three-point functions [25], and from experiment [5–7]. Note
this is not scaled by the magnetic moment of the proton µp, as
this would require phenomenological fits to the low Q2 data,
which is not the focus of this work.

FIG. 4. Scaled pion form factor Q2F⇡ from the Feynman–
Hellmann technique and from experiment [12]. The solid lines
are the vector meson dominance at the relevant pion masses,
and the dotted lines are the asymptotic values predicted by
perturbative QCD (see [13] for a discussion of this value and
its limitations).
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There is the question what accuracy can be achieved with real data. It turns out that the second
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Figure 37. The shift in NNPDF3.0 PDFs with αs(MZ) = 0.118 at Q2 = 104 GeV2 when going
from LO to NLO, normalized to the NLO central value, compared to the LO and NLO PDF
uncertainties. From top to bottom and from left to right the gluon, singlet, isospin triplet and total
valence are shown.

the large-x gluon, relevant for example for top quark pair production, or the medium-x

quark singlet PDF, which is relevant for LHC electroweak boson production. Note that

for the gluon at x ∼ 10−2, relevant for Higgs production in gluon-fusion, the perturbative

convergence is very good, as already highlighted in ref. [161].

The results of figures 37 and 38 suggest that as PDF uncertainties decrease, either by

the addition of new experimental constraints or by refinements in the fitting methodology,

a careful estimate of theory uncertainties will become mandatory. In the case of NNPDF3.0

this is especially true now given that, thanks to the closure test validation, methodological

uncertainties are under full control.

5.1.4 Model uncertainties

While uncertainties related to higher order corrections are perhaps the largest source of

uncertainty which is not determined systematically and thus not included in the standard

PDF uncertainty, there are a few more sources of uncertainty which are also not part of

the current PDF uncertainty and which might become relevant as the precision of the data

increases. These have to do with further approximations which are made in the theoretical

description of the data, and we generically refer to them as “model” uncertainties. We

now discuss the likely dominant sources of model uncertainties, namely, those related to

nuclear corrections and those related to the treatment of heavy quarks.

Several fixed-target data included in the NNPDF3.0 PDF determination are taken on

nuclear targets. These include all of the neutrino deep-inelastic scattering data, namely

– 84 –
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Second-order “Feynman-Hellmann” 
(with external momentum)



Feynman–Hellmann (2nd order)

• Two-point correlator
Z
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Feynman–Hellmann (2nd order)
• Differentiate spectral sum 

• And again
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Feynman–Hellmann (2nd order)
• Differentiate path integral 

• Differentiate again, take zero-field limit and note:
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Field time orderings
• Current insertion possibilities 

• Both currents “outside” (together) 

• Both currents “outside” (opposite) 

• One current “inside”
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Field time orderings
• Both currents between creation/annihilation
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Final steps
• Equate spectral sum and path integral representation 

• Asymptotically, we have
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