Status of CEPC Detector Magnet

Zian Zhu/Feipeng Ning (IHEP) For the CEPC Detector Magnet Team

CEPC Physics and Detector Group Meeting December 5, 2016

Outline

- Plans for the CDR
- Concerns/Resources
- Timescale(including R&D)

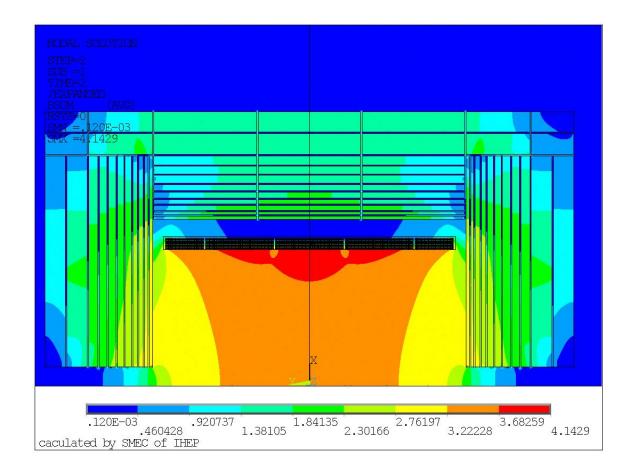
Plans for the CDR

From Pre-CDR to CDR, we plan to add:

- Design of the specific superconductor
- Quench simulation and protection design
- Magnetic field homogeneity of the tracking area with the MDI magnet
- Cryogenics process design
- Optimization according to the physics

Concerns

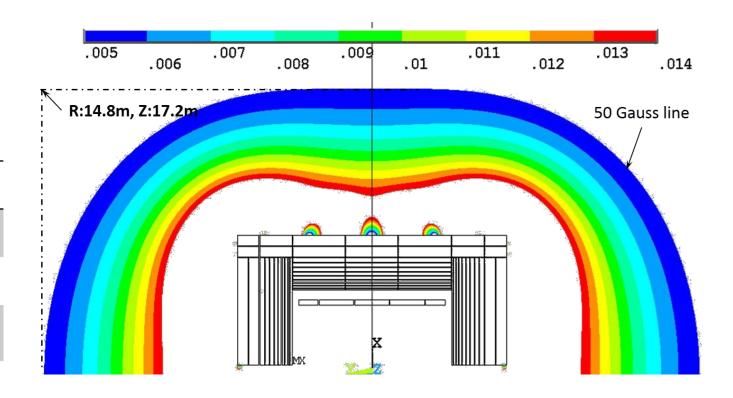
1. Magnetic field: 3.5T or others?


2. Stray field3. Non Uniformity of TV

Need Discussion 1: Magnetic field

The central magnetic field of CEPC is 3.5 T in pre-CDR

	Central field (T)
CEPC	3.5
CMS	4
ILD	4
BESIII	1
Super KEKB	1.5

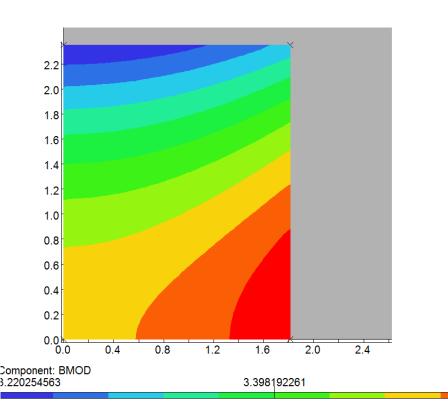


Need Discussion 2: stray field

It is related to the weight of yoke.

	Weig	ht
End yoke	6425	t
Barrel yoke	5775	t
Total weight	12200) t
	CMS	CEPC-pre CDR
Axial 100Gs	25m	13m
Axial 100Gs Axial 50Gs	25m 30m	
		17m

Require the definition of the leak field



Discussion 3: Non uniformity of TV magnetic field

• Magnetic field distribution: central filed 3.5 T, the Peak-peak field percent deviation of TV (diameter 3.62m,length 4.7m) is 10.1%

$$B_p = \frac{B_{max} - B_{min}}{B_{center}} = 10.1\%$$

 It will be influenced by accelerator magnets, need to analyze the influence from accelerator magnets

Resources

- CDR work: IHEP, USTB
- R&D work: IHEP, TOLY Wuxi, Dalian Jiaotong University
- Potential cooperator: IRFU, France, need to find fund

Aluminum cladding process study and improvement discussion: Zhu Zian, Yuan Ye, Hou Zhilong ,Mu Zhihui Oct. 2016

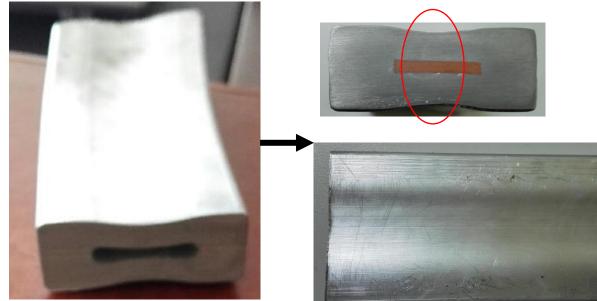
<image>

Continuous extrusion and continuous cladding technology

Engineering Research Center of the Ministry of education for continuous extrusion

Dalian Conform Ltd. (Dalian Jiaotong University)

Insert progress


• Completed two rounds of insert process:

Hollow aluminum alloy, Aluminum alloy + copper cable

• Result: Depression in the middle and the tooling needs to be improved.(2016.4)

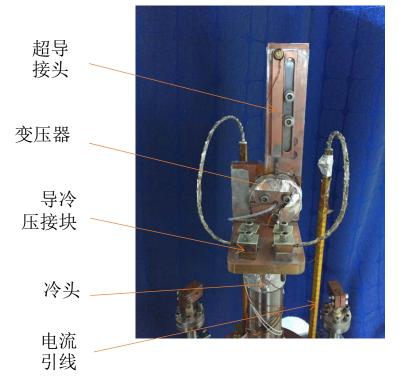
The strands of the cable are separate after the tooling improvement.

 There is a great improvement from the latest result, but the shear strength 8MPa not enough to reach 20MPa.

2016.8: Aluminum alloy + copper cable

2016.1 Hollow aluminum alloy

2016.2 Aluminum alloy + copper cable


2016.5~6: Aluminum alloy + copper cable

Ic test of strand joint

Measure the cable Ic without using liquid helium, need good superconducting joint with each strand

Based on the cold press joint of MRI superconducting magnet, the consistency is not good, need to explore the new joint technology

- Currently measured the joint Ic in zero field is 270A, the goal is 600A
- Improvement with cold pressure welding and diffusion welding

Joint Ic measurement setup

Mu Zhihui, Zhao Ling

- After the definition of detector field and leak field for CDR, the update of physical design of the detector magnet will be finished in 2 months.
- Finished the 10kA NbTi/Aluminum superconductor and in field measurement by end of June 2017.

Thank you for your attention!

Zian Zhu Email: zhuza@ihep.ac.cn