Waveform Sampling ASICs and Front-End Electronics for HEP/NP

ISAR MOSTAFANEZHAD, PH.D.

PRINCIPAL AT NALU SCIENTIFIC, LLC IN COLLABORATION WITH UNIVERSITY OF HAWAII

HONOLULU, HI, USA

JULY 28, 2017

Nalu Scientific

Mission statement:

Design house for DOE electronics needs with commercial grade support

Personnel:

- 5 engineers and experimental physicists
- 30+ years combined experience

Tools:

Commercial grade ASIC and electronic design tools

Funding:

DOE SBIRs and contracts

Collaborations:

U. of Hawaii Department of Physics- Professor Gary Varner

Incubated at the Manoa Innovation Center Near University of Hawaii

2800 Woodlawn Dr. Ste #298 Honolulu, HI 96822

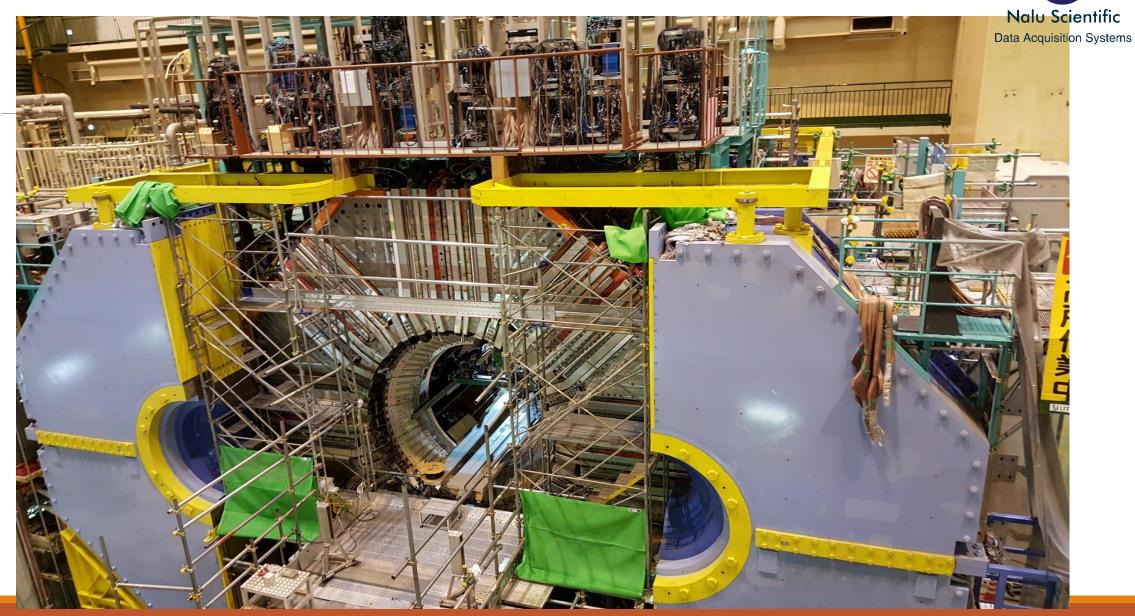
info@naluscientific.com

+1 (888) 717-6484

Expertise, Tools and Experience

ASIC Design

- Mixed signal SoC
- Power optimization
- Full suite commercial grade Cadence license and server + design kits


Hardware Design

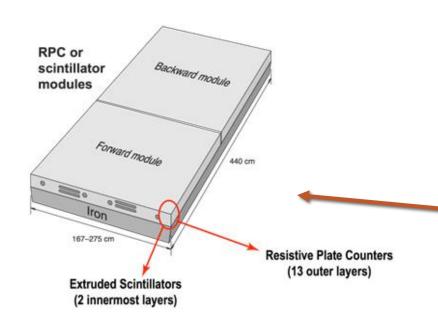
- FPGA, VHDL development
- Implementation
- Bring up and debugging
- Complex multi-layer boards

Expertise in:

- Radiation detection , fast timing, time of flight measurements
- Readout electronics for HEP/NP: large scale or benchtop

Belle II detector, KEK Japan- Two subdetector electronics developed and commissioned by Hawaii (KLM: 20k channels, iTOP: 8k channels)

Belle II: KLM Scintillator Upgrade 20k+ channels at 1 GSa/s ea.



KLM detectors:

Endcap: scintillators

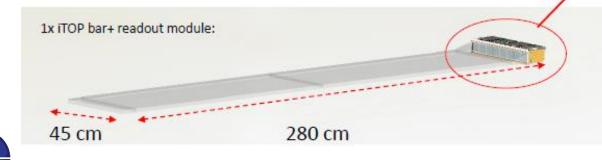
Barrel: scintillators +RPCs

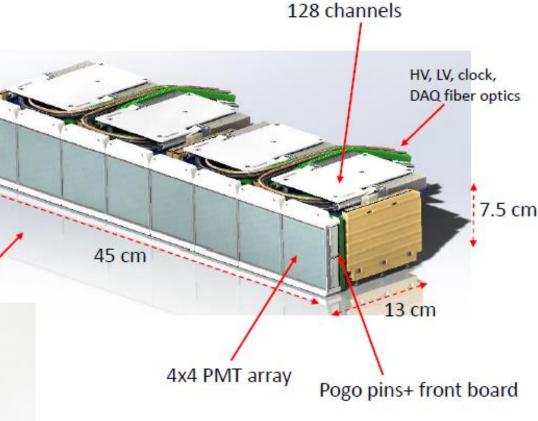
Located outside the magnet

ENDCAP
14 layers, 4 sectors
WLS fiber
scintillators
(75 x, 75 y)

BARREL 15 layers, 8 sectors

Content from Belle II collaboration


TOP and KLM Subdetectors fully commissioned



8192 channels of readout for iTOP subdetector

16 quartz bars, 1x module/bar

- 1x readout module:
 - · Photons in, DAQ data out
 - PMTs, interconnectes, amps, ASICs, FPGAs, heatsinks
 - 45 cm x 7.5 cm x 13 cm
 - 512 channels
 - · Dense and compact- operates inside magnet
- All modules installed in detector

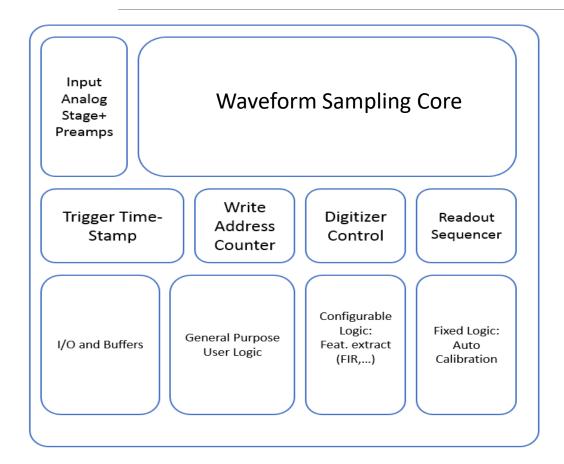
1x Boardstack:

Content from Belle II collaboration

Lessons Learned - Opportunities

- •Given new challenges:
 - Increased number of channels
 - Higher luminosity
 - Hardware cost and complexity
 - Requirements for better timing resolution
- Opportunities exist for innovation:
 - Size, power
 - Built-in signal processing
 - Built-in calibration
 - Cheaper overall design and faster deployment
- Solution: full waveform sampling + System-on-Chip
 - Allows feature extraction
 - Process pileups within FEEs
 - Immediately convert to digital and zero suppress
 - Avoid expensive/complex FPGAs

Currently Funded ASIC Projects

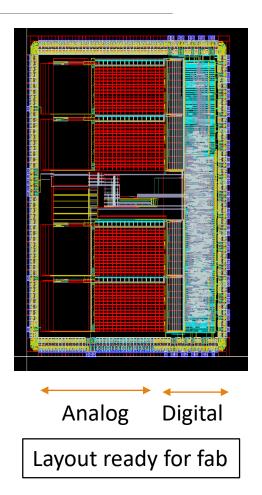

Project	Sampling Frequency (GHz)	Input BW (GHz)	Buffer Length (Samples)	Number of Channels	Timing Resolution (ps)	Integrati on	Built-in	Readout	Available Date
ASoC	3-5	0.8	8k	8	35	SoC	Pre amps	Fast serial	Feb 2018
SiREAD	1-3	0.7	4k	64	35-50	SoC	Amp, bias	Fast serial	Jan 2018
AARDVARC	6-10	2.5	4k	4-8	4-8	SoC	Pre amps	Fast serial	Mar 2018

- ASoC: Analog to digital converter System-on-Chip
 - Completed Phase I design, started Phase II
- **SiREAD**: SiPM specialized readout chip with bias and control
 - Phase I in progress
- AARDVARC: Variable rate readout chip for fast timing and low deadtime
 - Phase I about to start

All chips, are designed with commercial grade tools and licenses and can be sold once commercialized.

Feasibility study: ASoC- System on Chip

Compact, high performance waveform sampling-Finished Phase I SBIR



Spec				
Sampling rate	3-5 Gsa/s			
ABW	0.8-1.1GHz			
Depth	8k Sa			
N channels:	8-32			
Fab	250nm CMOS			

Key Contribution:

- High performance digitizer: 3+ Gsa/s
- Highly integrated
- Commercially available
- On chip:
 - Analog storage
 - Reconfigurable DSP
 - Calibration

Funded Phase II Project

Summary

New generation of waveform sampling chips

- R&D funding and commercialization
- Roll out plan

Working with first adopters

- Identify needs
- Problem areas

Next steps

- Design schematic and layout
- Perform extensive simulations
- Stick with tight tape-out schedule
- Design eval boards according to first adopters' needs