Highlights and Recent Developments in Short Range Correlations

Axel Schmidt

MIT

July 26, 2017

20% of the nuclear wave function

20% of the nuclear wave function

SRCs produce a high-momentum tail.

SRCs produce a high-momentum tail.

SRCs impact *NN*-Matrix Elements.

SRCs alter the eq.-of-state for neutron stars.

B.-J. Cai, B.-A. Li, arXiv:1509.09290v2 (2016), arXiv:1703.08743v1 (2017)

SRCs may play a major role in the EMC effect.

L.B. Weinstein et al., PRL 106, 052301 (2011) O. Hen et al., PRC 85, 047301 (2012)

Short Range Correlations Collaboration

Prof. Or Hen

- Dr. Shalev Gilad
- Dr. Adi Ashkenazi
- Dr. George Laskaris
- Dr. Maria Patsyuk

- Dr. Axel Schmidt
- Barak Schmookler
- Rey Cruz-Torres
- Afro Papadopoulou
- Efrain Segarra

Prof. Lawrence Weinstein

- Dr. Florian Hauenstein
- Mariana Khachatryan

- Prof. Eli Piasetzky
- Dr. Igor Korover

- Erez Cohen
- Meytal Duer

1 Important past results

2 Recent developments

1 Important past results

2 Recent developments

Inclusive cross sections scale for x > 1.5.

High-x kinematics restrict quasielastic scattering to high-momentum nucleons.

Scale factor a_2 is the per-nucleon density of SRC pairs.

K.S. Egiyan et al. PRL 96, 082501(2006)

$$\sigma_A = \mathbf{a}_2 \times \frac{A}{2} \sigma_a$$

We have learned more about SRC pairs from coincidence experiments.

All high-momentum nucleons have a correlated partner.

J.L.S. Aclander et al., Phys. Lett. B 453, 211 (1999) A. Tang et al., Phys. Rev. Lett. 90, 042301 (2003) E. Piasetzky et al., PRL 97 162504 (2006) p scattering from Carbon:

- Always a correlated partner
- Anti-parallel momenta

Between 300–600 MeV, np pairs predominate.

E. Piasetzky et al., PRL 97 162504 (2006)

- R. Shneor et al., Phys. Rev. Lett. 99, 072501 (2007)
- R. Subedi et al., Science 320, 1476 (2008)

This has been verified over many nuclei.

O. Hen et al, Science 346, 614 (2014)

1 Important past results

2 Recent developments

3 Future plans

Recoil tagging may extend a_2 scaling to lower x.

Recoil tagging may extend a_2 scaling to lower x.

Analyis of CLAS data suggests an extended scaling region.

B. Schmookler et al., in preparation

Analyis of CLAS data suggests an extended scaling region.

B. Schmookler et al., in preparation

We recently performed a recoil-tagging experiment at Mainz using the A1 spectrometers.

We recently performed a recoil-tagging experiment at Mainz using the A1 spectrometers.

A. Ashkenazi et al., analysis underway!

np dominance comes from tensor interaction.

Scalar part of the NN interaction

Distance

np dominance comes from tensor interaction.

Scalar part of the NN interaction

Distance

np dominance comes from tensor interaction.

Scalar part of the NN interaction

Distance

We expect that the pp fraction should rise with nucleon momentum.

The fraction of pp pairs increases with k.

E. Cohen, O. Hen et al., in preparation

Which species has more kinetic energy in an asymmetric nucleus?

Which species has more kinetic energy in an asymmetric nucleus?

There are two competing forces.

Which is stronger?

Analysis of (e, e'p) and (e, e'n) in CLAS

Data reconfirm np dominance.

As neutron number increases, the fraction of high-momentum neutrons decreases.

SRC Fraction
$$\equiv \frac{\sigma_{SRC}^{A}(e,e'N)}{\sigma_{MF}^{A}(e,e'N)} / \frac{\sigma_{SRC}^{C}(e,e'N)}{\sigma_{KF}^{C}(e,e'N)}$$

As neutron number increases, the fraction of high-momentum neutrons decreases.

SRC Fraction
$$\equiv \frac{\sigma_{SRC}^{A}(e,e'N)}{\sigma_{MF}^{A}(e,e'N)} / \frac{\sigma_{SRC}^{C}(e,e'N)}{\sigma_{MF}^{C}(e,e'N)}$$

M. Duer et al., in preparation

1 Important past results

2 Recent developments

3 Future plans

Some remaining questions:

- How do short-range pairs evolve with A and (N Z)?
- What role do SRCs play in the EMC effect?
- What happens to the remnant nucleus after hard knockout?
- Are there three-*N* correlations?

Two upcoming (e, e'p) experiments will look at asymmetric nuclei.

SRCs in ³H, ³He E12-14-001 (Hall A)

- Hall A tritium target
- Exploit isospin symmetry
- ³H and ³He are extremely asymmetric!

The CaFe Experiment

- Disentangle asymmetry and mass number dependence
- 40 Ca ightarrow 48 Ca ightarrow 54 Fe
- Pairing from different orbitals

Two upcoming experiments will test the EMC-SRC connection.

Deep inelastic scattering on deuterium, tagging a recoiling nucleon:

BAND and LAD will tell us about nucleon modification and virtuality.

Inverse kinematics at Dubna: detecting the nuclear remnant.

We are proposing to look at SRCs with HADES at GSI.

Neutrino oscillation experiments must reconstruct E_{ν} event by event.

We are proposing to benchmark ν A MC codes using electron scattering.

Work by M. Khatrachyan, E. Cohen, A. Papadopoulou, et al.

- CLAS12 proposal PR12-17-006
- H, He, C, O, Ar, Pb targets
- Benchmark:
 - Event rates
 - Energy recon.
- Conditionally approved, PAC45

1 Important past results

- 1 Important past results
- 2 Recent developments

- 1 Important past results
- 2 Recent developments

- 1 Important past results
- 2 Recent developments

Conclusions

- SRCs are 20% of the nuclear wave-function but they have far-reaching impacts.
- Our experimental program is diverse
 Many facilities, probes, techniques
- Results are on the way!