The COMET Experiment: Search for Muon to electron conversion at J-PARC

ONE

Chen WU, NJU/IHEP/OU

On behalf of the COMET collaboration 2017/07/26, 9th Workshop on Hadron physics in China and Opportunities Worldwide

Outline

➢ Motivation

≻ The COMET Experiment

➤ The Staged Approach

≻Status and Plan

➢ Summary

Outline

➢ Motivation

> The COMET Experiment

≻The Staged Approach

Status and Plan

≻Summary

Muon to Electron Conversion

1s state in a muonic atom

nuclear muon capture

$$\mu^- + (A,Z) \rightarrow \nu_{\mu} + (A,Z-1)$$

We are searching for: Neutrino-less muon nuclear capture

$$\mu^- + (A,Z) \rightarrow e^- + (A,Z)$$

Charged lepton flavor violation (CLFV)

- Event Signature:
 - a single mono-energetic electron of 105 MeV
 - Free of accidental background. No limit on beam intensity!

• Backgrounds:

- Intrinsic backgrounds, ex. muon decay in orbit (DIO), radiative muon capture (RMC) Detector Resolution!
- Beam-related backgrounds, ex. radiative pion capture, muon decay in flight, large angle scattering.

Can be suppressed by pulsed beam!

- Cosmic rays, false tracking

Why CLFV

- Flavor is one of the most puzzling aspects of the SM.
 Why 3 generations? Mass? Mixing?
- We have observed quark mixing and neutrino oscillation, but no charged flavor violation so far.
 - Will tell us more about the nature of flavor BSM!

- > Quark flavor violation:
 - Characterized by CKM matrix
- Neutral lepton flavor violation:
 - Characterized by PMNS matrix
- Charged lepton flavor violation?
 - Will help to solve flavor puzzle!

CLFV as a Probe to New Physics

- Is CLFV allowed in SM? •
 - Through loop diagram with neutrino oscillation, yes. But...

 $\mathcal{B}(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i=2,3} U_{\mu i}^* U_{ei} \frac{\Delta m_{i1}^2}{M_W^2} \right|^2 \sim 10^{-54}$ * Historically we define \mathbb{P} Practically negligible. Clean probe to NP!

- How about with New Physics?
 - Assuming TeV scale new physics, naturally large coupling constant like SUSY, it may happen just around the corner!

 $\mathcal{N}^{\gamma} \qquad Br(\mu \to e\gamma) = 10^{-11} \times \left(\frac{2TeV}{\Lambda}\right)^4 \left(\frac{\theta_{\mu e}}{10^{-2}}\right)^2$ $\underline{e} \qquad 10^{-11} \sim 10^{-15} \text{ level.}$ Reachable with current technics!

CLFV candidates

- CLFV in τ sector:
 - Studied in B factories: LHCb, BaBar, Belle
 - Will see improvement in Belle II and LHCb
- CLFV in μ sector:
 - Studied at PSI. $\mu \rightarrow e\gamma$ is the best result.
 - Will see great improvement in µN → eN at J-PARC and FermiLab
- τ intensity:
 - Current: 2/sec
 - Future: 100/sec
- µ intensity:
 - Current 10⁸/sec
 - Future: $10^{11} \sim 10^{12}$ /sec

Reaction	Current Limit	Future Limit	Location
$\tau \to \mu \gamma$	4.4×10^{-8}	< 10 ⁻⁹	Flavor factory
$ au ightarrow e\gamma$	3.3×10^{-8}	< 10 ⁻⁹	Flavor factory
$\tau \to \mu \mu \mu$	2.1×10^{-8}	$< 10^{-9} \sim 10^{-10}$	Flavor factory
$\tau \rightarrow eee$	2.7×10^{-8}	$< 10^{-9} \sim 10^{-10}$	Flavor factory
$\tau \rightarrow \mu e e$	1.5×10^{-8}	$< 10^{-9} \sim 10^{-10}$	Flavor factory
$\mu ightarrow e \gamma$	4.3×10^{-13}	4×10^{-14}	MEG II
$\mu \rightarrow eee$	1×10^{-12}	$10^{-15} \sim 10^{-16}$	mu3e/MuSIC
$\mu N \rightarrow e N (Au)$	7×10^{-13}	< 10 ⁻¹⁸	PRISM/Mu2e II
$\mu N \rightarrow e N (Al)$		$10^{-15}/10^{-17}$	COMET/Mu2e
$\mu N \rightarrow e N (Ti)$	4.3×10^{-12}	< 10 ⁻¹⁸	PRISM/Mu2e II
$\mu^- N \rightarrow e^+ N (Al)$	4.3×10^{-12}	?	COMET
$\mu^+ e^- \rightarrow \mu^- e^+$	8.3×10^{-11}	?	COMET

Model Independent Approach for CLFV

ĸ

2017/7/26

Abundant New Physics Models for Mu-e Conversion

Photonic Processes

Four-Fermi Processes

History of $\mu \to e\gamma$, $\mu N \to eN$, and $\mu \to 3e$

Outline

> Motivation

≻ The COMET Experiment

≻The Staged Approach

Status and Plan

≻Summary

COherent Muon Electron Transition (COMET)

Neutrino beam to Kamioka

Material and Life Science Facility

Chi

Rapid Cycle Synchrotron Energy : 3 GeV Repetition : 25 Hz Design Power : 1 MW

400 Me\

Nuclear and Particle Physics Exp. Hall (Hadron Hall) Main Ring Max Energy : 30 GeV Design Power for FX : 0.75 MW Expected Power for SX : > 0.1 MW

LINAC

181 MeV \rightarrow

2017/7/26

The COMET Collaboration

176 collaborators33 institutes, 15 countries

The COMET Collaboration

R. Abramishvili¹¹, G. Adamov¹¹, R. Akhmetshin^{6,31}, V. Anishchik⁴, M. Aoki³² Y. Arimoto¹⁶, I. Bagaturia¹¹, Y. Ban³, D. Bauer¹⁴, A. Bondar^{6,31}, Y. Calas⁷, S. Canfer³³, Y. Cardenas⁷, S. Chen²³, Y. E. Cheung²⁸, B. Chiladze³⁵, D. Clarke³³ M. Danilov^{15,26}, W. Da Silva²³, P. D. Dauncey¹⁴, C. Densham³³, G. Devidze³⁵ P. Dornan¹⁴, A. Drutskoy^{15, 26}, V. Duginov¹⁶, L. Epshteyn^{6, 30, 31}, P. Evtoukhovich¹⁶ S. Fayer¹⁴, G. Fedotovich^{5,31}, M. Finger⁸, M. Finger Jr⁵, Y. Fujii¹⁸, Y. Fukao¹⁸ E. Gillies¹⁴, D. Grigoriev^{6,30,31}, K. Gritsav¹⁶, E. Hamada¹⁶, R. Han¹, K. Hasegawa¹⁸, I. H. Hasim³², O. Hayashi³², Z. A. Ibrahim²⁴, Y. Igarashi¹⁶, F. Ignatov^{6, 81}, M. Iio¹⁸, M. Ikeno¹³. K. Ishibashi²², S. Ishimoto¹⁵. T. Itahashi³², S. Ito³², T. Iwami³² X. S. Jiang², P. Jonsson¹⁴, T. Kachelhoffer⁷, V. Kalinnikov¹⁶, F. Kapusta²³, H. Katayama³², K. Kawagoe²², N. Kazak⁵, V. Kazanin^{6,31}, B. Khazin^{6,31}, A. Khvedelidze^{16,11}, T. K. Ki¹⁸, M. Koike³⁹, G. A. Kozlov¹⁶, B. Krikler¹⁴, A. Kulikov¹⁶ E. Kulish¹⁶, Y. Kuno³², Y. Kuriyama²¹, Y. Kurochkin⁵, A. Kurup¹⁴, B. Lagrange^{14,21}, M. Lancaster³⁸, M. J. Lee¹², H. B. Li², W. G. Li², R. P. Litchfield^{14,38}, T. Loan²⁹. D. Lomidze¹¹, I. Lomidze¹¹, P. Loveridge³³, C. Macharashvili³⁵. Y. Makida¹⁸, Y. Mao³, O. Markin¹⁵, Y. Matsumoto³², A. Melnik⁵, T. Mibe¹⁸, S. Mihara¹⁸, F. Mohamad Idris²⁴, K. A. Mohamed Kamal Azmi²⁴, A. Moiseenko¹⁶, Y. Mori²¹, M. Moritsu³², E. Motuk³⁵, Y. Nakai²², T. Nakamoto¹⁸, Y. Nakazawa³² J. Nash¹⁴, J. -Y. Nief⁷, M. Nioradze³⁵, H. Nishiguchi¹⁸, T. Numao³⁶, J. O'Dell³³. T. Ogitsu¹⁸, K. Oishi²², K. Okamoto³², T. Okamura¹⁸, C. Omori¹⁸, T. Ota³⁴, J. Pasternak¹⁴, C. Plostinar³³, V. Ponariadov⁴⁵, A. Popov^{6,31}, V. Rusinov^{15,26} B. Sabirov¹⁶, N. Saito¹⁸, H. Sakamoto³², P. Sarin¹³, K. Sasaki¹⁸, A. Sato³², J. Sato³⁴ Y. K. Semertzidis^{12,17}, N. Shigyo²², D. Shoukavy⁵, M. Slunecka⁸, D. Stöckinger³⁷ A. Straessner³⁷, M. Sugano¹⁸, Y. Takubo¹⁶, M. Tanaka¹³, S. Tanaka²², C. V. Tao²⁹ E. Tarkovsky^{15,26}, Y. Tevzadze³⁵, T. Thanh²⁹, N. D. Thong³², J. Tojo²² M. Tomasek¹⁰, M. Tomizawa¹³, N. H. Tran³², H. Trang²⁹, I. Trekov³⁵, N. M. Truong³², Z. Tsamalaidze^{16,11}, N. Tsverava^{16,35}, T. Uchida¹³, Y. Uchida^{14,32}, K. Ueno¹⁸ E. Velicheva¹⁶, A. Volkov¹⁶, V. Vrba¹⁰, W. A. T. Wan Abdullah²⁴, M. Warren³⁸ M. Wing³³, M. L. Wong³², T. S. Wong³², C. Wu^{2,28}, H. Yamaguchi²², A. Yamamoto¹⁸, T. Yamane³², Y. Yang²², W. Yao², B. K. Yeo¹², H. Yoshida³², M. Yoshida^{1*} Y. Yoshii¹⁸, T. Yoshioka²², Y. Yuan², Yu. Yudin^{6,31}, J. Zhang², Y. Zhang², K. Zuber³⁷

¹North China Electric Power University, Beijing, People's Republic of China ²Institute of High Energy Physics (HIEP). Beijing, People's Republic of China ³ Peking University, Beijing, People's Republic of China ⁴Belarusion State University (BSU), Minsk, Belarus ⁵B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus ⁶Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia ⁷Computing Center of the National Institute of Nuclear Physics and Particle Physics (CC-IN2P3), Villeurbane, France ⁸ Charles University, Prague, Czech Republic ⁹The Cockcroft Institute, Daresbury Laboratory, Warrington, UK ¹⁰Czech Technical University, Prague, Czech Republic ¹¹Georgian Technical University (GTU), Tbilisi, Georgia ¹²Insitute for Basic Science, Daeieon, Korea ¹³Indian Institute of Technology, Bombay, India ¹⁴Imperial College London, London, UK ¹⁵Institute for Theoretical and Experimental Physics (ITEP), Russia

The COMET Experiment

- Single event sensitivity (S.E.S) = 2.6×10^{-17} .
 - 8 GeV, 56 kW pulsed proton beam.
 - One year running time: 8.5×10^{20} POT, 2 × 10¹⁸ muon stopped in the target. 10¹¹ muon/sec needed! (10⁸ @ PSI)
- Most challenging aspects:
 - Produce & capture enough muon.
 - Target, SC solenoid, cooling, ..
 - Get clean muon beam and stop them.
 - Transportation beam line
 - Find the signal from 10^{20} POT
 - Background rejection, signal acceptance, radiation tolerance.

Pion Production & Capture

- To get 1000 times more muons per second:
 - High E proton: 2~8 GeV preferred
 - A long target instead with
 - $L = 1 \sim 2 \times L_{Radi}$
 - High T! Tungsten (graphite).
 - 5 T capture solenoid
 - Superconducting: cooling!
 - Adiabatically decreasing: larger acceptance.

Muon Transport

Detector System

DIO Blocker

Background

Signal and DIO (BR= 3×10^{-15})

- physics backgrounds
 - muon decay in orbit (DIO) Detector Resolution should be very good @ 100 MeV.
 - Light, precise, large acceptance:
 - Straw tube tracker or drift chamber
- beam-related backgrounds
 - High energy particles in the beam Very good pulse structure: separation ~muon lifetime and much larger than prompt peak delay ~100 ns; proton leakage $< 10^{-9}$.
 - All available on proton synchrotron !
- cosmic rays, false tracking
 - Cosmic ray veto counter.

Prospects of COMET

- If mu-e conversion signal is found:
 - Try with different target to scan the property of NP!
- If mu-e conversion signal is not found:
 - Exclude a large area of NP!
 - Move towards PRISM!
- Besides the signal:
 - Beam measurements:
 - better understanding of hadron physics of backward pion yield.
 - muon capture measurements: DIO, Radiative pion/muon capture
 - Better understanding of nuclear structure with Q~100MeV.
 - Any interesting topics?
 - Background measurements:
 - Other CLFV channels: $\mu^- N \rightarrow$

2017/7/26 $e^+N, \mu^+e^- \to \mu^-e^+, \text{ etc.}$

PRISM/PRIME Experiment

Cooperation With Others

- It's challenging to achieve the ambitious sensitivity of CLFV search. But the requirements are common thus the experience can be shared among a large variety of experiments.
 - Intensive & stable proton beam with specified structure.
 - Handling thick target with high beam power.
 - Obtain intensive and pure muon beam.
 - Operation of magnet in high radiation level.
 - High precision measurement in high radiation level.

Muon Sources Worldwide

suitable for "coincidence" experiments

suitable for " μ -e conversion" experiments

Pulsed Muon Beam

Outline

> Motivation

> The COMET Experiment

➤ The Staged Approach

Status and Plan

≻Summary

Staged Plan of COMET

COMET Phase-II Start from 2022

Start from 2019

COMET Phase-I

COMET Phase-I

The COMET Phase-I is designed to conduct the following tasks:

- Background study for COMET Phase-II:
 - A direct measurement of potential background sources for the full COMET experiment by using the actual COMET beamline is important before we finalize the COMET Phase-II design. Will use Phase-II detectors.
- Search for mu-e conversion:
 - With an intermediate sensitivity 3×10^{-15} , which is still 100 times better than current limit. Will use new detector dedicated for Phase-I: Cylindrical Detector.

Cylindrical Detector (CyDet) for COMET Phase-I

Signal Sensitivity and Background in **COMET** Phase-I

The fact of COMET beam witin about $1.26 \times 10^7 sec$ (146 days).

Expected background events are about 0.032

		Type	Background	Estimated events
		Physics	Muon decay in orbit	0.01
	10		Radiative muon capture	0.0019
total protons	3.2×10^{19}		Neutron emission after muon capture	< 0.001
much officiency	0 000 47		Charged particle emission after muon capture	< 0.001
muon eniciency	0.00047	Prompt Beam	* Beam electrons	
Number of stopped muons	1.5×10^{16}	•	* Muon decay in flight	
Number of stopped muons	1.5 X 10		* Pion decay in flight	
			* Other beam particles	
		All (*) Combined	≤ 0.0038	
Considering that the capture ra		Radiative pion capture	0.0028	
0.61 and the detector accente		Neutrons	$\sim 10^{-9}$	
0.01 and the detector accepta	Delayed Beam	Beam electrons	~ 0	
0.041, the fraction of $\mu - e \cos \theta$		Muon decay in flight	~ 0	
the ground state in the final st		Pion decay in flight	~ 0	
the ground state in the inial state of		Radiative pion capture	~ 0	
$f_{and} = 0.9$, we can achieve:			Anti-proton induced backgrounds	0.0012
- grid 15		Others	$Cosmic rays^{\dagger}$	< 0.01
$S.E.S. = 3.1 \times 10^{-15}$	-	Total		0.032
$B(\mu^{-} + AI \rightarrow e^{-} + AI) < 7 \times 10^{-15}(90\% C.L.)$			[†] This estimate is currently limited by computing resource	es.

100 times better than the current limit!

Outline

> Motivation

> The COMET Experiment

≻The Staged Approach

≻Status and Plan

≻Summary

Status of COMET Beamline

Proton extinction factor measured to be

- Diamond detector has been studied to measure the beam profile/extinction in front of the capture solenoid.
- Prototype of graphite target for Phase-I has been developed.

The coil winding for capture solenoid is almost done.

Muon transportation solenoid has been constructed.

14 coils of the detector solenoid has been assembled.

Status of COMET Facility

Status of COMET Phase-I Detectors

Straw assembly prototype with 20 micron straws.

- Operation in vacuum performed in success
- 3

Beam test with 105MeV/c electron was done: σ_x 150*um*

GSO and LYSO crystal test has been conducted and LYSO was chosen for higher yield and faster time response.

The front end board (ROESTI/EROS) has been developed. ROESTI V3 tests show good time resolution (<1ns).

Status of COMET Phase-I Detectors

Beam tests and cosmic ray tests with prototypes have been conducted. Good spatial resolution and efficiency (150 um, 99%) have been achieved.

CDC construction completed in June 2016. Cosmic ray test is on going.

Beam tests for CTH prototype has been conducted. 1ns time resolution obtained.

Front end boards have been produced and mass test finished last year.

- Trigger scheme using FC7-FCT with frontend trigger system has been studied.
- Software framework (ICEDUST) finished last year. Full MC study indicates that the pre-trigger rate estimated as ~ O(10)kHz, and momentum resolution is appreciated (~ 170keV/c).

Contributions from China

- The Chinese group in COMET includes IHEP, PKU and NJU. Contributions from this group includes:
 - The electronics of CyDet were produced and tested group in 2014~2015. Will be mounted this year.
 - Leading the tracking development (two independent groups).
 - Contributing to the software framework development.
 - Took charge of the muon beam optimization, stopping target optimization, and CyDet parameter optimization.
 - Contributing to the design of CRV system.
 - Contributing to the calculation of magnetic field.
 - Joining the preparation of analysis framework.
 - Joined CyDet prototype tests and lead the analysis.
 - Participated in the construction of CyDet.
 - Participating the cosmic ray test and radiation test for CyDet.

Timeline

Outline

> Motivation

> The COMET Experiment

Status and Plan

➢ Summary

Summary

- The CLFV process is a good probe to new phycis beyond the Standard Model.
- With a new generation of muon beam being available soon, the prospect of searching for muon to electron conversion is very attractive.
- COMET at J-PARC aims at a search for muon to electron conversion with signal sensitivity $S.E.S = 2.6 \times 10^{-17}$ (10,000 times better than current limit) from 2022 with 1 year beam time.
- Staged plan for COMET has been approved and COMET Phase-I is expected to take data from 2019 with ~150 days beam time. It will carry out a background study for Phase-II together with a direct search for muon to electron conversion with signal sensitivity S.E.S $= 3 \times 10^{-17}$ (100 times better than current limit).
- R&D and construction are in good shape.

Acknowledgement

 This work is supported in part by the National Natural Science Foundation of China (NSFC) under Contracts No. 11475208, and No.11335009; Joint support of the NSFC-JSPS Scientic Coorperation Program; Grant-in-Aid, Specially Promoted Research, No. 25000004, Ministry of Education, Japan.

