

Wang Yi

Department of Engineering Physics, Tsinghua University

Outline:

- Introduction MRPC-TOF and SoLID
- Development of high rate and high precision MRPC
- Next to do
- Conclusions

Introduction of MRPC

Standard parameters:

- Resistivity of glass: $\sim 10^{12} \Omega.cm$
- Time resolution <100ps
- Efficiency >95%
- Dark current: a few nA
- Noise <1Hz/cm²

wang n, isingnua oniversity

- MRPC is made of thin glass, large area and cheap
- The inner glasses are floating, take and keep correct voltage by electrostatics. it is transparent to fast signals
- Thin gap->good timing
- Multi-gap-> high efficiency
- 1. Application in nuclear physics experiments
- 2. Application in industry (Muon tomography)
- 3. Application in medicine (TOF-PET)

Three generation MRPC-TOF

With the increase of accelerator energy and luminosity, the requirement is also rigorous

12 GeV Upgrade

• JLab 6 GeV: precision measurements

high luminosity (10³⁹) but small acceptance (HRS/HMS: < 10 msr)

or large acceptance but low luminosity (CLAS6: 10³⁴)

- JLab 12 GeV upgrade opens up a window of opportunities (DIS, SIDIS, Deep Exclusive Processes) to study valence quark (3-d) structure of the nucleon and other high impact physics (PVDIS, J/ψ, ...)
- High precision in multi-dimension or rare processes requires very high statistics → large acceptance and high luminosity
- CLAS12: luminosity upgrade (one order of magnitude) to 10³⁵
- To fully exploit the potential of 12 GeV, taking advantage of the latest technical (detectors, DAQ, simulations, ...) development
- →SoLID: large acceptance detector can handle 10^{37} luminosity (no baffles) 10^{39} with baffles

Overview of SoLID

Solenoidal Large Intensity Device

• Full exploitation of JLab 12 GeV Upgrade

 \rightarrow A Large Acceptance Detector AND Can Handle High Luminosity (10³⁷-10³⁹) Take advantage of latest development in detectors, data acquisitions and simulations

Reach ultimate precision for SIDIS (TMDs), PVDIS in high-x region and threshold J/ψ

•5 highly rated experiments approved (+3)

Three SIDIS experiments, one PVDIS, one J/ ψ production (+ three run group experiments)

•Strong collaboration (250+ collaborators from 70+ institutes, 13 countries) Significant international contributions (Chinese collaboration)

Particle rate entering MRPC

Particle rate in front of MRPC

- Dominant by photon in MeV
- $\gamma : 250 \text{kHz/cm}^2$
- e: $5kHz/cm^2$
- n: $3kHz/cm^2$

- $\gamma : 10^{-5} 10 \text{GeV}$
- e: $10^{-6} 10 \text{GeV}$
- n: $10^{-6} 1$ GeV

Energy of Photon, electron and neutron

Particle rate detected by MRPC

Main requirements for TOF

- The MRPC is developed for the TOF of SoLID
- Main Requirements for TOF:
 - $-\pi/k$ separation up to 7GeV/c
 - Time resolution < 20ps
 - Rate capability > 20kHz/cm²

This is big challenge of **MRPC-TOF!!**

> Increase rate: decrease the resistivity of glass

$$\overline{V}_{drop} = V_{ap} - \overline{V}_{gap} = \overline{IR} = \overline{q} \phi \rho d$$
Improve TOF resolution
$$\begin{bmatrix}
\text{Reduce the width of} & \sigma_t = \frac{1.28}{(\alpha - \eta)v} \\
\text{Improve TOF resolution}
\end{bmatrix}$$

$$\begin{bmatrix}
\text{High speed} \\
\text{pulse sampling} \\
\text{Fast} \\
\text{discriminator+high} \\
\text{precision TDC}
\end{bmatrix}$$

11

Wang Yi, Tsinghua University

9th Workshop on Hadron Physics in China, July 24-28, 2017, Nanjing

Narrower gap width -> fast charge dominant in the induced signal -> Better timing resolution
 Efficiency will be recovered by adding more gas gaps

	MRPC (C. Williams et al.)	MRPC (UIUC & BNL)
Gas Gap Width	160um (fishing line)	105um (diameter of fishing line)
# of Gas Gaps	4 stack x 6 gas gaps = 24	4 stack x 9 gas gaps = 36
# of thin glass layers	4 stacks x 5 layers = 20 (250um thick glass)	4 stack x 8 layers = 32 (210um thick glass)
Preamplifier	Differential type, NINO chip (3GHz bandwidth)	TI LMH6554 2.8-GHz Evaluation Board
TDC and DAQ	Oscilloscope (Sampling speed of 10Gs)	DRS4-V5 (5 GSPS) + PC
Time resolution	30 ps with cosmic ray / 16 ps at T10 beam test CERN	??, Cosmic ray test / Beam halo test at COMPASS

Electronics development

Current test readout chain, using off the shelf electronic components

- Currently with DRS4, only 1-2 channels at a time can be read out
- Need 2 detectors for timing, reading out both ends, so test of 1 ch needs <u>4</u> readout ch

12 GeV Ungrade

· Custom BNL fast preamp under testing, will help allow many more channels to be read

Cosmic ray test

Wang Yi, Tsinghua University

9th Workshop on Hadron Physics in China, July 24-28, 2017, Nanjing

MRPC TOF wall we designed contain 150 MRPC modules in total, with 50 gas boxes and 3 counters in each box, covering the area of $10m^2$.

Performance of low resistive glass

800

1000

Dimension	33 x27.6cm²
Bulk resistivity	~10 ¹⁰ Ω cm
Standard thickness	0.7, 1.1mm
Thickness uniformity	20µm
Surface roughness	<10nm
Dielectric constant	7.5 - 9.5
DC measurement	Ohmic behavior
	stable up to 1C/cm ²

400

600

Applied voltage(V)

200

1E8

Ó

Aging test of the glass

Wang Yi, Tsinghua University

This glass was applied with 1000V for about 32days, integrated charge: 1 C/cm² --roughly corresponding to the SoLID lifetime over 5 years operation at the maximum particle rate.

A 2^g MRPC prototype for SoLID-TOF

0.15mm mm 0.25mm

28.3mm

Glass

9th Workshop on

Electrode

_25mm	
171m	219m
363m	

PCB Board

Honeycomb

Wang Yi, Tsinghua University

Material	dimensions
matchai	unnensions

		Length/mm	Width/mm	Thickness/mm
hm	Gas gap	-	-	0.25×10
	Inner glass	320	130-171	0.7
	Outer glass	330	138-182	1.1
	Mylar	335	153-198	0.18
	Inner PCB	350	182-228	1.6
	Outer PCB	350	172-218	0.8
Ha	droneyovnics i	n ₃ Gḫina, July 24	2 <u>8-3209</u> 87, Nanjir	19 19

Beam test @ Hall A

Rate Performance

Wan Yi. A MRPC prototype for SOLID-TOF in Jlab. 2013_JINST_8_P03003

Design of 3^g MRPC for SoLID

dimension/mm	+HV
$90 \times 265 \times 7.5$	
$120 \times 298 \times 0.6$	
$120 \times 298 \times 1.2$	ground gr
$120 \times 328 \times 1.2$	+HV
268	
7	
$90 \times 268 \times 0.25$	+HV
$80 \times 258 \times 0.5$	Honev
72×250	comb plate
0.104	→ PCB
32	
	—
	Carbon
	electrode
	Glass
	dimension/mm $90 \times 265 \times 7.5$ $120 \times 298 \times 0.6$ $120 \times 298 \times 1.2$ $120 \times 328 \times 1.2$ 268 7 $90 \times 268 \times 0.25$ $80 \times 258 \times 0.5$ 72×250 0.104 32

Wang Yi, Tsinghua University

9th Workshop on Hadron Physics in China, July 24-28, 2017, Nanjing

Test equipment

12 GeV Upgrade Future Science at Jefferson Lab

Gas box

- DRS4-V5 chip
- 16 channels
- 12bit 5GS/s
- 5 points for leading edge of MRPC

Time resolution

$$\sigma_{MRPC} = \frac{\sigma_{\rm t}}{\sqrt{2}} = \frac{40.91}{\sqrt{2}} = 28.93 ps$$

- NSFC key project: Development of high rate and high time resolution TOF

 - Development of high rate 15ps resolution MRPC
 - > Development of 15ps jitter SCA, fast amplifier and TDC
 - Impedance math
- Study "ecological" gas mixture for high rate MRPC

ALL DE LE

The "ecological" gas issue

➤The European Community has prohibited the production and use of gas mixtures with Global Warming Power > 150 (GWP(CO₂) = 1)

This is valid mainly for industrial (refrigerator plants) applications

✓ Scientific laboratories would be excluded

✓ CERN could require to stick to these rules anyhow

>C₂H₂F₄ is the main component of the present RPC gas mixture:

 \checkmark GWP(C₂H₂F₄) = 1430, GWP(SF₆) = 23900, GWP(iC₂H₁₀) = 3.3

 $>C_2H_2F_4$ and SF_6 Crucial to ensure a stable working point in avalanche

To_test molecules similar to C₂H₂F₄ but with lower GWP

C₃H₂F₄ – tetrafluoropropene (GWP=4)

✓ Should replace C₂H₂F₄ as automotive air-conditioning refrigerant

 \checkmark other possibility could be CF₃I – Trifluoroiodomethane with GWP ~ 0 & ODP ~ 0

Tetrafluorepropene (C₃H₂F₄)

It cames in two allotropic forms

HFO-1234ze

TSING.

HFO-1234yf

Molecule	CCl ₂ F2	CF4	R134a
Ionization energy (eV)	10.24	12.81	12.40
Molecule	R152a	HFO1234ze	HFO1234yf
Ionization energy (eV)	10.78	9.34	9.37

Molecule similar to R134a (C₂H₂F₄) BUT HFO-1234 GWP=4 R134a GWP = 1430

HFO-1234yf HMIS code =2 (moderate flammability)

In this talk we concentrate on HFO-1234ze (HFO in the labels will mean HFO-1234ze)

Trifluoroiodomethane (CF₃I)

GWP and ODP close to 0

High quenching power

Very expansive ! We were able to buy just a small bottle of 0.5 kg for very few preliminary tests

□ Eco-gas candidate is 4-component mixture:

CO₂ / HFOze / Isobutane / SF₆

- 3^g MRPC-TOF is high rate (20kHz/cm²) and high time resolution (20ps).
 - The time resolution of MRPC: <15ps
 - **Time jitter of electronics: <15ps**
 - This technology is a big challenge
- Search ecological gas mixture is meaningful and urgent

Thanks for your attention !