Readout Electronics Design for MRPC

Lei Zhao

1958

State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China Jul. 27, 2017

Content

- Upgrade of BESIII Endcap TOF
- High precision time measurement design based on HPTDC
- Readout electronics for T0 detector of CSR in HIRFL

Content

- Upgrade of BESIII Endcap TOF
- High precision time measurement design based on HPTDC
- Readout electronics for T0 detector of CSR in HIRFL

Upgrade of BESIII Endcap TOF

- Participate in upgrade of Endcap TOF (ETOF) in BESIII
- Replace the original PMT with MRPC to enhance system time resolution
- USTC group is in charge of time digitization electronics design & Test

Basic method

Typical time measurement method: amplification + discrimination +TDC

 T_0

- often employed -> time walk exits when signal amplitude varies
- One charge measurement method: amplification + QTC +TDC

Time digitization module in ETOF

Time digitization module in ETOF

HPTDC

HPTDC

- Three stage time interpolation:
 - > PLL with optional outputs ~ 3 ns
 - ◇ DLL with 32 outputs ~ 100 ps
 - RC delay cells based on RC
 structure ~ 25 ps
- Non-Linearity errors exist
- Correction is indispensable to obtain optimum performance

HPTDC

- Since hit is asynchronous with the clock signal, a pair of counters are employed to avoid metastability, with opposite phases of clocks.
- > This technique is also employed in our FPGA-based TDC design.

Photograph of elelctronics

Time digitization module

Clock module

Fast control module

Performance test

INL

INL:

- ONL: Differential Non-Linearity
- ◇ INL: Integral Non-Linearity

Time resolution – Leading Edge

Time resolution – Trailing Edge

Performance after installation

Experiment	Module Size	Pad Size	Pad Number	gap number	gap/um	Readout mode	Resolution(ps)
STAR TOF [1] [2]	6.3×20 cm ²	6.3×3.1cm ²	6	5	220	Single-end	~80(π)
STAR MTD [3] [4]	93×58 cm ² 90×58 cm ²	87×3.8 cm ² 87×3.8 cm ²	10 12	2×5 6	250	Double-end	~90(µ)
ALICE TOF[5][6]	13×120cm ²	3.4×2.5 cm ²	96	2×5	250	Single-end	86 (π)
BESIII ETOF	L1:13.7 cm L2:20.2 cm H:38.2 cm	L:9.1–14.1 cm W:2.4 cm	12	2×6	220	Double-End	60* (e) – 70* (π)

Content

- Upgrade of BESIII Endcap TOF
- High precision time measurement design based on HPTDC
- Readout electronics for T0 detector of CSR in HIRFL

External Target Experiment in CSR of HIRFL

External Target Experiment in CSR of HIRFL

Readout electronics for External Target Experiment

Readout system architecture

- Based on PXI 6U standard:
 - TCMM: TOF and Neutron wall
 - HDTDM: MWDC(with the Analog Front end)
 - Trigger Module
 - Clock Module

Photograph of the TCMM

- Input amplitude: 50 mV~1.5 V
- > 16 Channels
- > Time resolution: 25 ps
- > Charge resolution: 5%
- Data transfer: Master mode
 burst write transaction

- > Amplifier
- Time measurement:
 - Leading edge discrimination
- > Charge measurement:
 - TOT(Time Over Threshold)
 - SFE16 chips
- > HPTDC chips
- FPGA chips

- Time measurement:
 - differential amplification + differential discrimination to eliminate common mode noise and influence
- Charge measurement:
 - Time-Over-Threshold
 (TOT) method
 - Semploying SFE16 ASIC
 - Amplification, V/I conversion, CSA, shaping, amplification and discrimination

State Key Laboratory of Particle Detection and Electronics

- Three HPTDCs are employed.
- Two working in the very high resolution mode are responsible for time measurement
- One working in the high resolution mode is responsible for charge measurement.
- These 3 HPTDCs are chained together, and configured and read out based on a token ring method.

Data readout based on PXI Bus

- PXI is extended version of PCI, which features much higher data rate then buses such as VME.
- Star trigger bus is very good structure to fan out the trigger signal to multiple modules in physics experiments.
- External SDRAM provides extra data buffering to avoid data loss in special situation.

High Density Time Measurement Module

Circuits for high-density time measurement

> AFE

Charge-to-time conversion

HDTDM

- Fully differential
- 128 channels
- Time resolution: 100 ps
- Master mode burst write transaction

High Density Time Measurement Module

System test

Time measurement:

Time measurement:

Charge measurement:

High Density Time Measurement Module

High Density Time Measurement Module

State Key Laboratory of Particle Detection and Electronics

Content

- Upgrade of BESIII Endcap TOF
- High precision time measurement design based on HPTDC
- Readout electronics for T0 detector of CSR in HIRFL

Readout Electronics for T0 Detector

- Readout of MRPC
- Channel Number:
 - O Phase I:
 - Internal x 2 = 16 x 2 = 32 chl
 - External x 2 = 24 x 2 = 48 chl
 - total: 80 chl
 - ◇ Phase II:
 - Internal x 6 = 16 x 4 = 64 chl
 - External x 6 = 24 x 4 = 96 chl
 - total: 160 chl
 - ◇ Phase …

- Achieve time and charge measurement simultaneously
- Time resolution: ~ 25 ps
- TDC design based on FPGA
- Based on PXI 6U standard

Readout Electronics for T0 Detector

- Time measurement: Leading edge discriminator + TDC (Time-to-Digital Converter)
- Charge measurement: Time-Over-Threshold (TOT) +TDC
- All integrated in PXI crates flexible for system extension

Readout Electronics for T0 Detector

- Full differential signal transmission from MPRC to FEE to time digitization modules
- Using FPGA based TDC for high precision time measurement
- Trigger match and data interface are also integrated in the FPGA device (Xilinx Artix 7 Series)

Front end ASIC: NINO

- Implemented in a 0.25 µm CMOS technology
- > Integrated Circuit is $2 \times 4 \text{ mm}^2$
- 8 channels
 - Differential Inputs (can be operated in single-ended mode)
 - > Differential design throughout the channel: differential outputs
- Fast low-power amplifier-discriminator

Parameter	Value		
Peaking time	lns		
Signal range	100fC-2pC		
Noise (with detector)	< 5000 e- rms		
Front edge time jitter	< 25ps rms		
Power consumption	30 mW/ch		
Discriminator threshold	10fC to 100fC		
Differential Input impedance	$40\Omega < Zin < 75\Omega$		
Output interface	LVDS		

中国科学技术大学 近代物理系 赵雷

Front End Electronics (FEE)

FEE Performance

- Time resolution for all FEEs is better than 20 ps RMS
- The output pulse width vs input charge concord with the expected.

Time digitization and data readout

System structure

- Using star bus in PXI crates to fan out trigger signals.
- Trigger match function is integrated in FPGA-based TDCs.

FPGA based TDC design

Propose to design high precision TDC using carry chain in FPGA for first time.

IEEE Transactions on Nuclear Science, vol. 53, no. 1, Feb. 2006, pp. 236-241.

FPGA based TDC design

- ▶ In Year 2006, propose to use carry chain for time interpolation, precision ~ 100 ps
- ▶ In Year 2009, through calibration and INL correction, precision is enhanced to <25 ps
- In Year 2011, based on combination of wave union method and real-time correction, precision is enhanced to 8 ps, without modification of hardware
- In Year 2015, based on parallel measurement and averaging method, precession is further enhanced to .2 ps (bin size~1.7 ps)

Time digitization module

- Structure:
 - Clock circuits
 - ◇ FPGA
 - Time digitization
 - Trigger match
 - ◇ CPLD
 - PXI interface
 - FPGA on-line configuration
 - ◊ USB Interface

TDC (Time-to-Digital Converter)

- Based on combination of Coarse time and fine time measurement
 - Coarse time: counter
 - Sine time: time interpolation using carry lines inside FPGA devices

Implementation and test of FPGA TDC Module

Non-linearity test

Time resolution test

Hit2

Binn+1

Τo

Binn

5

 Cable delay test method, to eliminate the influence of the signal source noise

Hit1

a

Binn-1

2

3

precision(To)

0.5

0.4

0.3

0.2

0.1

0

- Time resolution (RMS) varies when ΔT changes
- In ideal situation, the relationship can be well predicted

Time resolution test

Time resolution test

Leading edge time measurement resolution is better than 20 ps RMS for all 24 channels

Trailing edge time measurement resolution is better than 36 ps RMS for all 24 channels

Test of the T0 readout electronics

Test with MRPC detector

Thanks