TOF readout for high resolution timing for SoLID

Alexandre Camsonne Jefferson Laboratory Hadron China 2017 TOF miniworkshop July 28 2017

Outline

- SoLID SIDIS
- SoLID requirements for TOF
- Readout options : discriminator TDC vs sampling
- A/D chips
- TDC options
- Sampling chips
- DRS5 option from PSI
- Kansas University Amplifier
- SoLID SIDIS background studies
- SoLID TOF chip specs wish list
- Conclusion

SoLID SIDIS setup

Pion Kaon Separation by TOF

SoLID requirements

- TOF for SIDIS experiment for Kaon ID
- Baseline 80 ps , ideally 20 ps
- Trigger rate 100 KHz min, ideal 200 KHz
- FADC based trigger with up 8 us latency
- GEM readout 4 us latency
- Need 4 us latency for TOF ideally 8 us

Two options

- Depends on detector performance : Usual method : discriminator + TDC
 - Amplifier discriminator
 - TDC : ASIC or new FPGA technique
 - Waveform sampling
 - No discriminator
 - Full bandwidth
 - Better timing resolution up to 1 ps
 - Need algorithm to extract time on board
 - Or readout full waveform (very large amount of data)

Readout options

- Amplifier Discriminators front end
 - NINO (CERN) (8 channels 32 channels version)
 - GSI Padiwa (16 channels) 150 \$ for 16 channels
 - MAROC (Omega IN2P3)
 - VMM3 (BNL)

Need to check timing performance of discrimination and amplification, bandwidth, timewalk corrections

TDCs

- HPTDC 25 ps
 - V1290 (32 channels about 10 K\$)
 - CAEN planning to develop better TDC
- FPGA TDCs
 - TRB3 11 ps (192 channels / 2300 euros)
 - VETROC JLAB 20 ps (need development) 128 channels about 6 K\$ (5 board ordered for Compton, can test TDC)

Sampling chip

Chip	Sampling Frequency (GHz)	Bandwidth GHz	Number of samples	Number of channels	Readout frequency (MHz)	Resolution (ps)
PSEC4	4 to 15	1.5	256	6	40 to 60	9
SAMPIC	3 to 8.2	1.6	64	16 – 8 (at 10 GHz)	80	5
DRS4	0.7 to 5 GHZ	0.950	1024	9	33	1
DRS5	10	3	4096	32	300?	5?
PSEC5	5 to 15	1.5 to 2	32768	4	500	5?

Latest generation with multilevel analog buffer : dead time less up to a few MHz and allow for L2 (DRS5)

Plans for DRS5

- Increase analog bandwidth ~5 GHz
 - Smaller input capacitance
- Increase sampling speed ~10 GS/s
 - Switch to 110 nm technology
- Deeper sampling depth
 - 8 x 4096 / chip
- Minimize readout time ("dead time free") for muSR & ToF-PET
 - (minor) reduction in analog

J. Milnes, J. Howoth, Photek

→ low resistance bus, low
resistance analog switches
→ high bandwidth

 Faster sampling speed for a given trigger latency

Cascaded Switched Capacitor Arrays

- 32 fast sampling cells (10 GSPS/110nm CMOS)
- 100 ps sample time,
 3.1 ns hold time
- Hold time long enough to transfer voltage to secondary sampling stage with moderately fast buffer (300 MHz)
- Shift register gets clocked by inverter chain from fast sampling stage

How noise affects timing

TDC vs. Waveform Digitizing

- CFD and TDC on same board \rightarrow crosstalk
- CFD depends on noise on single point, while waveform digitizing can average over several points
- Inverter chain is same both in TDCs and SCAs
- Can we replace TDCs by SCAs?
 → yes if the readout rate is sufficient

Typical Waveform

Only short segments of waveform need high speed readout

Dead-time free acquisition

PAUL SCHERRER INSTITU

Page 17/43

PSI WaveDAQ

- WaveDAQ system has been designed to fulfill needs of MEG II experiment
- System has huge potential for many others (costs: ~150 US\$ / channel incl. crate, power, HV)
- Status: Crate fully working, trigger board and WaveDREAM board successfully tested, beam test 2015, DCB under design
- 4 crate system end of 2016, full system (35 crates) in 2017
- DRS5 chip (no dead-time) planned for 2018+

PSEC

PSEC4 compared to **deeper buffer samplers**

Parameter	PSEC4	PSEC5	
Channels	6	4	
Sampling Rate	4-15 GSa/s	5-15 GSa/s	
Primary Samples/channel	256	256	
Total Samples/channel	256	32768	
Recording Buffer Time at 10 GSa/s	25.6 ns	$3.3 \ \mu s$	
Analog Bandwidth	$1.5~\mathrm{GHz}$	1.5 - 2 GHz	
RMS Voltage Noise	$700 \ \mu V$	$< 1 \mathrm{mV}$	
DC RMS Dynamic Range	10.5 bits	10 - 11 bits	
Signal Voltage Range	1 V	1 V	
ADC on-chip	yes	yes	
ADC Clock Speed	$1.4~\mathrm{GHz}$	1.5 - 2 GHz	
Readout Protocol	12-bit parallel	serial LVDS: one per channel	
Readout Clock Rate	$40 \mathrm{~MHz}$	500 MHz	
Average Power Consumption	100 mW	300-500 mW	
Core Voltage	1.2 V	1.2 V	

Deeper buffer (PSEC5 and related Hawai'i ASICs)

 Potential for 'dead time-less' operation depending on chip sampling rate, readout rate, and experiment trigger rate

http://annie.uchicago.edu/lib/exe/fetch.php?media=2014_3_1_annie_electronics.pdf Eric Oberla

SoLID MRPC High resolution TOF

Y. Wang, X. Fan DOI: 10.1088/1748-0221/8/03/P03003 JINST 8 (2013) P03003

Test run signals

data[7]:Iteration\$

In time signal

Effect of background

data[7]:Iteration\$

Amplifier Kansas University

- SiGe amplifier developped to TOTEM Ultra Fast silicon detector by Kansas University
- less than 10 ns width with diamond detector

Amplifier laser signal silicon

SoLID background Supermodule design

- # supermodules: 50
- # strips: 33
- Strip width: 25mm, gap: 3mm
- Model #3:
 - Start the first strip at R=1050 mm (details in the next slide)

Assume modules are overlapping to reduce blind region

Single rate

- Beam on target
- Average rate/channel:
 - total induced charge > 0.0 pC: 1.2 MHz
 - total induced charge > 0.5 pC:
 893.2 kHz

total induced charge cut (pC)	Average rate / channel (MHz)
0.0	1.20
0.1	1.11
0.2	1.06
0.3	1.00
0.5	0.95
0.6	0.84
0.7	0.80
0.8	0.76
0.9	0.72
1.0	0.69
1.1	0.65

Study by Sanghwa Park (Stony Brook)

Total incident particle rate - cut scan

Study by Sanghwa Park (Stony Brook)

Total incident particle rate - cut scan

• Charge cut scan: scan range (0.2 - 0.9) pC

Study by Sanghwa Park (Stony Brook)

SoLID background

- Single channel rate at about 1 MHz level
- Assume 30 ns timing window, about 3% probability to have a hit
- Preliminary rate show pile-up should be ok
- TDC option should work
- Sampling option still desired option for better timing resolution and pile-up events

Pile-up

Pile-up example calorimeter DVCS

http://hallaweb.jlab.org/data_reduc/AnaWork2002/camsonne-ws2002.ps

Ideal features for SoLID TOF

- 5 to 10 GHz sampling rate
- 20 ps or better timing resolution
- 1 GHz or more analog bandwidth
- Waveform readout
- On chip Zero suppression
- Discriminator for fast trigger
- External trigger (single channel trigger rate is about 1 MHz)
- can handle up to 200 KHz of trigger rates
- Data transfer capability
 - on chip suppression required
 - assume 3300 channels 10 ns at 10 GHz 12 bit at 200 KHz and occupancy 1 % : 900 MB/s (1.6 MB/s per chip 6 channel per chip : 10 Mbit/s link ok, 100 Mbit/s link desired)
- 8 us buffer latency (4 us minimum)

Conclusion

- SoLID SIDIS experiment requires 80 ps
- 20 ps timing resolution extend K/pi separation at high momentum up to 5.5 GeV
- Preliminary background studies about 1 MHz per channel but need more studies
- TDC and A/D option should work
- New generation chips available in 2018
- Sampling option desired for SoLID DRS5 or AARDVARC good candidates