Hidden-charm meson-baryon molecules with a short-range attraction from five quark states

Yasuhiro Yamaguchi¹

in collaboration with

Alessandro Giachino², Atsushi Hosaka³, Elena Santopinto², Sachiko Takeuchi⁴, Makoto Takizawa⁵

¹RIKEN, ²INFN Genova, ³RCNP. Osaka U., ⁴Japan Coll. Social Work, ⁵Showa Pharmaceutical U.

Y.Y, A. Giachino, A. Hosaka, E. Santopinto, S. Takeuchi, M. Takizawa in preparation

9th Workshop on Hadron physics in China and Opportunities Worldwide

Outline

Hadronic molecules of meson and baryon

- Introduction
 - Exotic hadron
 - Hidden-charm pentaquark
- Odel setup
 - Heavy Quark Spin Symmetry and OPEP
 - Compact 5-quark potential
- Numerical results
- Summary

2-body system

A > 4

Hadrons in the heavy quark region

- Hadron: Composite particle of Quarks and Gluons
- Constituent quark model (Baryon(qqq) and Meson $q\bar{q}$) has been successfully applied to the hadron spectra!

Hadrons in the heavy quark region

- Hadron: Composite particle of Quarks and Gluons
- Constituent quark model (Baryon(qqq) and Meson $q\bar{q}$) has been successfully applied to the hadron spectra!

Observation of two hidden-charm pentaguarks !! Introduction

DOI: 10.1103/PhysRevLett.115.072001

PACS numbers: 14.40.Pg, 13.25.Gv

What is the structure of the pentaquarks? Introduction

• Compact pentaquark? Hadronic molecule (Hadron cluster)?

W.L.Wang et al., (2011), G. Yang, J. Ping, (2015), S.Takeuchi, M,Takizawa (2017),...

J.-J.Wu et al., (2010), C.W.Xiao et al., (2013)

Nanjing, China

What is the structure of the pentaquarks? Introduction

• Compact pentaquark? Hadronic molecule (Hadron cluster)?

W.L.Wang et al., (2011), G. Yang, J. Ping, (2015), S.Takeuchi, M, Takizawa (2017),...

```
J.-J.Wu et al., (2010), C.W.Xiao et al., (2013)
```

- Pentaquarks are close to the meson-baryon thresholds
 - ⇒ Hadronic molecules?

Compact state: 5-quark configuration

- S. Takeuchi and M. Takizawa, PLB764 (2017) 254-259.
 - P_c states by the quark cluster model
- 5-quark configuration

イロト イポト イヨト イヨト

Compact state: 5-quark configuration

- S. Takeuchi and M. Takizawa, PLB764 (2017) 254-259.
 - P_c states by the quark cluster model
- 5-quark configuration

• $[q^3 8_c 3/2]$: Color magnetic int. is attractive!

Compact state: 5-quark configuration

- S. Takeuchi and M. Takizawa, PLB764 (2017) 254-259.
 - P_c states by the quark cluster model
- 5-quark configuration

• $[q^3 8_c 3/2]$: Color magnetic int. is attractive!

⇒ Couplings to (qqc) baryon- $(q\bar{c})$ meson, e.g. $\bar{D}\Sigma_c$, are allowed!

Model setup in this study Introduction

• Hadronic molecule + Compact state

э

Model setup in this study

- Hadronic molecule + Compact state
 - = Hadronic molecule with the coupling to the Compact state

э

伺 と く ヨ と く ヨ と

Model setup in this study Introduction

- Hadronic molecule + Compact state
 - = Hadronic molecule with the coupling to the Compact state
- The coupling to the Compact state
 - \Rightarrow As **a short range** interaction between hadrons
- Long range interaction: One pion exchange potential (OPEP)

1. Long range force: One pion exchange potential

э

▲ 同 ▶ → 三 ▶

(Heavy Quark Spin Symmetry)

・ 同 ト ・ ヨ ト ・ ヨ ト

(Heavy Quark Spin Symmetry)

Charm (c), Bottom (b), Top (t)

・ 同 ト ・ ヨ ト ・ ヨ ト

(Heavy Quark Spin Symmetry)

Charm (c), Bottom (b), Top (t)

Coupled channels of MB Tensor force

伺 ト イヨト イヨト

Heavy Quark Spin Symmetry and Mass degeneracy Introduction

Heavy Quark Spin Symmetry (HQS) N.Isgur, M.B.Wise, PLB232(1989)113

- Suppression of Spin-spin force in $m_Q \to \infty$.
 - \Rightarrow Mass degeneracy of hadrons with the different J
- e.g. $Q\bar{q}$ meson

 \Rightarrow Mass degeneracy of spin-0 and spin-1 states!

- 4 同 6 4 日 6 4 日 6

Coupled channels of the hidden-charm pentaquark

• Coupled channels of $\overline{D}\Sigma_{c}$, $\overline{D}\Sigma_{c}^{*}$, $\overline{D}^{*}\Sigma_{c}$ and $\overline{D}^{*}\Sigma_{c}^{*}$!

イロト イポト イヨト イヨト

Coupled channels of the hidden-charm pentaquark

• $\bar{D}-\bar{D}^{*}$ and $\Sigma_{\rm c}-\Sigma_{\rm c}^{*}$ mixings due to the HQS

- Coupled channels of $\bar{D}\Sigma_c$, $\bar{D}\Sigma_c^*$, $\bar{D}^*\Sigma_c$ and $\bar{D}^*\Sigma_c^*$!
- In addition, Λ_c (*cqq*): $\bar{D}\Lambda_c$ and $\bar{D}^*\Lambda_c$ channels

• Absence of $\bar{D}\bar{D}\pi$ vertex due to the parity conservation

A > 4

• Absence of $\bar{D}\bar{D}\pi$ vertex due to the parity conservation

• $\overline{D} - \overline{D}^*$ mixing introduces the π exchange (OPEP)

▲ □ ▶ → □ ▶

• Absence of $\bar{D}\bar{D}\pi$ vertex due to the parity conservation

• $\overline{D} - \overline{D}^*$ mixing introduces the π exchange (OPEP)

Importance in NN: Driving force to bind Nuclei

 \rightarrow **Tensor force** mixing *S* and *D*-waves

K. Ikeda, T. Myo, K. Kato and H. Toki, Lect. Notes Phys. 818, 165 (2010).

• Absence of $\bar{D}\bar{D}\pi$ vertex due to the parity conservation

• $\overline{D} - \overline{D}^*$ mixing introduces the π exchange (OPEP)

• Importance in NN: Driving force to bind Nuclei

 \rightarrow **Tensor force** mixing *S* and *D*-waves

K. Ikeda, T. Myo, K. Kato and H. Toki, Lect. Notes Phys. 818, 165 (2010).

• Strong Attraction in $\overline{D}N$ and $D\overline{D}^*$

S.Yasui and K.Sudoh PRD80(2009)034008, S. Ohkoda, et.al., PRD86(2012)014004

• Absence of $\bar{D}\bar{D}\pi$ vertex due to the parity conservation

• $\bar{D} - \bar{D}^*$ mixing introduces the π exchange (OPEP)

• Importance in NN: Driving force to bind Nuclei

 \rightarrow **Tensor force** mixing *S* and *D*-waves

K. Ikeda, T. Myo, K. Kato and H. Toki, Lect. Notes Phys. 818, 165 (2010).

• Strong Attraction in $\overline{D}N$ and $D\overline{D}^*$

S.Yasui and K.Sudoh PRD80(2009)034008, S. Ohkoda, et.al., PRD86(2012)014004

[Important role in
$$ar{D}^{(*)} \Lambda_{
m c} - ar{D}^{(*)} \Sigma_{
m c}^{(*)}$$
?

▲ 同 ▶ → 三 ▶

$\bar{D}^{(*)}Y_c$ Interaction: Long range force

One pion exchange potential

R. Casalbuoni et al., Phys.Rept.281 (1997)145, Y.-R.Liu and M.Oka, PRD85(2012)014015

イロン 不同 とくほう イロン

$\bar{D}^{(*)}Y_c$ Interaction: Long range force

• One pion exchange potential

R. Casalbuoni et al., Phys.Rept.281 (1997)145, Y.-R.Liu and M.Oka, PRD85(2012)014015

Comments

- Couplings to the $\ell \neq 0$ state due to Tensor operator $S_{\mathcal{O}_1 \mathcal{O}_2}$
- Strong attraction from Tensor function T(r)

26 July 2017

イロト イポト イヨト イヨト

э

2. Short range force: 5-quark potential

< /□> < □>

3. 3

• 5-quark potential \Rightarrow s-channel diagram...But

A 10

э

● 5-quark potential ⇒ Local Gaussian potential is employed

• 5-quark potential \Rightarrow Local Gaussian potential is employed

Free Parameters

Strength **f** and Gaussian para. α (*f*-dependence of *E* will be shown. $\alpha = 1 \text{ fm}^{-2}$)

● 5-quark potential ⇒ Local Gaussian potential is employed

Free Parameters

Strength **f** and Gaussian para. α (*f*-dependence of *E* will be shown. $\alpha = 1 \text{ fm}^{-2}$)

Relative strength S_i

Spectroscopic factors \Rightarrow determined by the spin structure of 5q

26 July 2017

Spectroscopic factors S_i

- S-factor is determined by the spin structure of the 5q state
- Several 5*q* states with S_{3q} and $S_{c\bar{c}}$ configuration e.g. for $J^P = 1/2^-$, (i), (ii), (iii)

Image: A = A

Spectroscopic factors S_i

- S-factor is determined by the spin structure of the 5q state
- Several 5*q* states with S_{3q} and $S_{c\bar{c}}$ configuration e.g. for $J^P = 1/2^-$, (i), (ii), (iii)

• **Overlap** of the spin wavefunctions of 5-quark state and $\bar{D}Y_{c}$

$$S_i = \left\langle (\bar{D}Y_{\mathrm{c}})_i \, \big| \, 5q \right\rangle$$

 \Rightarrow Relative strength of couplings to $\bar{D}Y_{\rm c}$ channel

Spectroscopic factor S_i

• 5q-configuration: $8_c qqq$ and $8_c c\bar{c}$ with S-wave $V_{ij}^{5q}(r) = -f \mathbf{S_i S_j} e^{-\alpha r^2}$

Table: Spectroscopic factors S_i for each meson-baryon channel.

J		$S_{c\bar{c}}$	S_{3q}	$ar{D}\Lambda_{ m c}$	$ar{D}^* \Lambda_{ m c}$	$ar{D}\Sigma_{ m c}$	$ar{D}\Sigma_{ m c}^*$	$ar{D}^*\Sigma_{ m c}$	$ar{D}^*\Sigma^*_{ m c}$
1/2	(i)	0	1/2	0.4	0.6	-0.4	_	0.2	-0.6
	(ii)	1	1/2	0.6	-0.4	0.2		-0.6	-0.3
	(iii)	1	3/2	0.0	0.0	-0.8	—	-0.5	0.3
3/2	(i)	0	3/2		0.0		-0.5	0.6	-0.7
	(ii)	1	1/2		0.7		0.4	-0.2	-0.5
	(iii)	1	3/2		0.0	_	-0.7	-0.8	-0.2
5/2	(i)	1	3/2						-1.0

Spectroscopic factor S_i

• 5q-configuration: $8_c qqq$ and $8_c c\bar{c}$ with S-wave $V_{ij}^{5q}(r) = -f \mathbf{S_i S_j} e^{-\alpha r^2}$

Table: Spectroscopic factors S_i for each meson-baryon channel.

J		$S_{c\bar{c}}$	S_{3q}	$ar{D}\Lambda_{ m c}$	$ar{D}^* \Lambda_{ m c}$	$ar{D}\Sigma_{ m c}$	$ar{D}\Sigma_{ m c}^*$	$ar{D}^*\Sigma_{ m c}$	$ar{D}^*\Sigma^*_{ m c}$
1/2	(i)	0	1/2	0.4	0.6	-0.4	—	0.2	-0.6
	(ii)	1	1/2	0.6	-0.4	0.2	—	-0.6	-0.3
	(iii)	1	3/2	0.0	0.0	-0.8	—	-0.5	0.3
3/2	(i)	0	3/2		0.0	_	-0.5	0.6	-0.7
	(ii)	1	1/2		0.7	—	0.4	-0.2	-0.5
	(iii)	1	3/2		0.0	—	-0.7	-0.8	-0.2
5/2	(i)	1	3/2						-1.0

• Large S_i will play an important role.

Numerical Results in Hidden-charm sector

Bound state and Resonance

- Coupled-channel Schrödinger equation for $\bar{D}\Lambda_c$, $\bar{D}^*\Lambda_c$, $\bar{D}\Sigma_c$, $\bar{D}\Sigma_c^*$, $\bar{D}^*\Sigma_c$, $\bar{D}^*\Sigma_c^*$ (6 *MB* components).
- OPEP and Short range Gaussian potential
- For $J^P = 1/2^-$, $3/2^-$, $5/2^-$ (Negative parity)

Coupled-channels

Channels	$\bar{D}Y_{c}(^{2S+1}L)$	
$1/2^{-}$	$\bar{D}\Lambda_{\rm c}(^2S), \ \bar{D}^*\Lambda_{\rm c}(^2S),$	
	$\bar{D}\Sigma_{\rm c}(^2S),\ \bar{D}\Sigma_{\rm c}^*(^4D),$	
	$ar{D}^* \Sigma_{ m c}(^2S,^4D), \ ar{D}^* \Sigma_{ m c}^*(^2S,^4D,^6D)$	(10 ch)
3/2-	$\bar{D}\Lambda_{\rm c}(^2D), \ \bar{D}^*\Lambda_{\rm c}(^4S,^2D,^4D),$	
	$ar{D}\Sigma_{ m c}(^2D),\ ar{D}\Sigma_{ m c}^*(^4S),$	
	$ar{D}^* \Sigma_{ m c}({}^4S, {}^2D, {}^4D), \ ar{D}^* \Sigma_{ m c}^*({}^4S, {}^2D, {}^4D, {}^6D, {}^6G)$	(14 ch)
$5/2^{-}$	$\bar{D}\Lambda_{\rm c}(^2D),\ \bar{D}^*\Lambda_{\rm c}(^2D,^4D,^4G),$	
	$ar{D}\Sigma_{ m c}(^2D),\ ar{D}\Sigma_{ m c}^*(^4D),$	
	$\bar{D}^*\Sigma_{\rm c}(^2D, ^4D, ^4G), \ \bar{D}^*\Sigma_{\rm c}^*(^6S, ^2D, ^4D, ^6D, ^4G, ^6G)$	(15 ch)

æ

Coupled-channels

Channels	$\bar{D}Y_{\rm c}(^{2S+1}L)$	
$1/2^{-}$	$\bar{D}\Lambda_{\rm c}(^2S),\; \bar{D}^*\Lambda_{\rm c}(^2S),$	
	$\bar{D}\Sigma_{\rm c}(^2S), \ \bar{D}\Sigma_{\rm c}^*(^4D),$	
	$ar{D}^*\Sigma_{ m c}({}^2S,{}^4D),\ ar{D}^*\Sigma_{ m c}^*({}^2S,{}^4D,{}^6D)$	(10 ch)
$3/2^{-}$	$\bar{D}\Lambda_{\rm c}(^2D),\ \bar{D}^*\Lambda_{\rm c}(^4S,^2D,^4D),$	
	$ar{D}\Sigma_{ m c}(^2D),\ ar{D}\Sigma_{ m c}^*(^4S),$	
	$ar{D}^*\Sigma_{ m c}({}^4S, {}^2D, {}^4D), \ ar{D}^*\Sigma_{ m c}^*({}^4S, {}^2D, {}^4D, {}^6D, {}^6G)$	(14 ch)
$5/2^{-}$	$\bar{D}\Lambda_{\mathrm{c}}(^{2}D),\ \bar{D}^{*}\Lambda_{\mathrm{c}}(^{2}D,^{4}D,^{4}G),$	
	$ar{D}\Sigma_{ m c}(^2D),\ ar{D}\Sigma_{ m c}^*(^4D),$	
	$\bar{D}^*\Sigma_{\rm c}(^2D, ^4D, ^4G), \ \bar{D}^*\Sigma_{\rm c}^*(^6S, ^2D, ^4D, ^6D, ^4G, ^6G)$	(15 ch)

• $J/\psi N$ channel is absent... (Future Work)

• The 5q potential works in the S-wave states.

f-dependence of energies for $J^P = 1/2^-$

- OPEP + V^{5q}
- OPEP is not enough to produce states
- \Rightarrow **States** appear with V^{5q}

f-dependence of energies for $J^P = 1/2^-$

f-dependence of energies for $J^P = 1/2^-$

f-dependence of energies for $J^P = 3/2^-$

20

f-dependence of energies for $J^P = 3/2^-$

f-dependence of energies for $J^P = 3/2^-$

f-dependence of energies for $J^P = 5/2^-$

f-dependence of energies for $J^P = 5/2^-$

Summary of the hidden-charm sector

- OPEP is not strong enough to produce a state.
- The importance of the 5q potential
 - \Rightarrow States below the *MB* thresholds \leftarrow **large** *S*-factor

Numerical results in Hidden-bottom sector

Bound state and Resonance

- Coupled-channel Schrödinger equation for $B\Lambda_{\rm b}$, $B^*\Lambda_{\rm b}$, $B\Sigma_{\rm b}$, $B\Sigma_{\rm b}^*$, $B^*\Sigma_{\rm b}$, $B^*\Sigma_{\rm b}^*$ (6 *MB* components).
- For $J^P = 1/2^-$, $3/2^-$, $5/2^-$ (Negative parity)

- (1) - (1)

f-dependence of energies for $J^P = 1/2^-$ (bb)

- OPEP produces the states!
- Importance of OPEP
 - $B B^*$, $\Sigma_{\rm b} \Sigma_{\rm b}^*$ mixing
- Many states close to the thresholds

ロト ・ 同ト ・ ヨト ・ ヨト

Naniing, China

f-dependence of energies for $J^P = 3/2^-$ ($b\bar{b}$)

- OPEP produces the states!
- Importance of OPEP (mixing effect)
- Many states close to the thresholds

< /□ > < □ >

Naniing, China

f-dependence of energies for $J^P = 5/2^ (b\bar{b})$

25

50

f/fo

10.8

0

75

100

A 10

f-dependence of energies for $J^P = 5/2^ (b\bar{b})$

Summary of the hidden-bottom sector

- OPEP plays the major role. \leftarrow Mixing effect
- Many states are obtained.
- Difference between Charm and Bottom sectors

Summary

Subject: Hidden-charm meson-baryon molecules

\downarrow

- Introducing 6 meson-baryon components: Multiplet of the HQS, $\bar{D}\Sigma_{c}, \bar{D}\Sigma_{c}^{*}, \bar{D}^{*}\Sigma_{c}, \bar{D}^{*}\Sigma_{c}^{*} + \bar{D}\Lambda_{c}, \bar{D}^{*}\Lambda_{c}$
- Interaction: OPEP as a long range int., and the compact 5-quark potential as a short range int.
- By solving the coupled-channel Schrödinger equation for $\overline{D}Y_c$, the bound and resonant states are studied.
- For the hidden-charm, the OPEP is not enough to produce the states. **Importance of the 5***q* **potential.**
- For the bottom sector, **the OPEP** is enhanced because of the mixing effect. OPEP + 5*q* potential produces many states.
- Y. Yamaguchi, A. Giachino, A. Hosaka, E. Santopinto, S. Takeuchi, M. Takizawa in preparation.

Back up

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

æ

$\bar{D}^{(*)}Y_c$ Interaction: Long range force

• Effective Lagrangians: Heavy hadron and Pion

R. Casalbuoni et al., Phys.Rept.281 (1997)145, Y.-R.Liu and M.Oka, PRD85(2012)014015

$$\begin{array}{l} \triangleright \text{ Heavy meson:} \quad \bar{D}^{(*)}\bar{D}^{(*)}\pi \\ \mathcal{L}_{\pi HH} = -\frac{g_{\pi}}{2f_{\pi}} \text{Tr}\left[H\gamma_{\mu}\gamma_{5}\partial^{\mu}\hat{\pi}\bar{H}\right], \quad H = \frac{1+\not}{2}\left[D_{\mu}^{*}\gamma^{\mu} - D\gamma_{5}\right] \end{array}$$

(4月) (4日) (4日)

$\bar{D}^{(*)}Y_{c}$ Interaction: Long range force

Effective Lagrangians: Heavy hadron and Pion

R. Casalbuoni et al., Phys.Rept.281 (1997)145, Y.-R.Liu and M.Oka, PRD85(2012)014015

$\bar{D}^{(*)}Y_{c}$ Interaction: Long range force

Effective Lagrangians: Heavy hadron and Pion

R. Casalbuoni et al., Phys.Rept.281 (1997)145, Y.-R.Liu and M.Oka, PRD85(2012)014015

Form factor

• To take into account the hadron structure, the form factor is introduced.

 Form factor with the cutoffs Λ_D, Λ_{Y_c}
 → Fixed by the hadron size ratio, Λ_D = 1.35Λ_N, Λ_{Y_c} ~ Λ_N

$$F(\Lambda, \vec{q}\,) = rac{\Lambda^2 - m_\pi^2}{\Lambda^2 + |\vec{q}\,|^2}, \quad rac{r}{r_N} = rac{\Lambda_N}{\Lambda}, \Lambda_N = 837 \,\, \mathrm{MeV}.$$

S.Yasui,K.Sudoh,PRD80 (2009) 034008, Y.Yamaguchi, et al. PRD84(2011)014032

•
$$V_{ij}^{5q}(r) = -\mathbf{f_0}S_iS_je^{-\alpha r^2}$$

 \Rightarrow Parameters: $\alpha = 1 \text{ fm}^{-2}$ (Assumption),

ヘロト ヘヨト ヘヨト ヘヨト

æ

•
$$V_{ij}^{5q}(r) = -\mathbf{f_0} S_i S_j e^{-\alpha r^2}$$

 \Rightarrow Parameters: $\alpha = 1 \text{ fm}^{-2}$ (Assumption),
 $f_0 = V_{\pi}^{\bar{D}^* \Sigma_c}(r=0) \sim 6 \text{ MeV.}$ (reference value)

•
$$V_{ij}^{5q}(r) = -\mathbf{f_0} S_i S_j e^{-\alpha r^2}$$

 \Rightarrow Parameters: $\alpha = 1 \text{ fm}^{-2}$ (Assumption),
 $f_0 = V_{\pi}^{\bar{D}^* \Sigma_c}(r=0) \sim 6 \text{ MeV.}$ (reference value)

•
$$V_{ij}^{5q}(r) = -\mathbf{f_0} S_i S_j e^{-\alpha r^2}$$

 \Rightarrow Parameters: $\alpha = 1 \text{ fm}^{-2}$ (Assumption),
 $f_0 = V_{\pi}^{\bar{D}^* \Sigma_c}(r=0) \sim 6 \text{ MeV.}$ (reference value)

Volume integral $\mathcal{V}(q=0) = \int dr^3 V(r)$

$$\left|\mathcal{V}^{5q}(0)
ight|\simrac{1}{4}\left|\mathcal{V}^{ar{D}^{*}\Sigma_{ ext{c}}}_{\pi}(0)
ight|$$

A 10

•
$$V_{ij}^{5q}(r) = -\mathbf{f_0} S_i S_j e^{-\alpha r^2}$$

 \Rightarrow Parameters: $\alpha = 1 \text{ fm}^{-2}$ (Assumption),
 $f_0 = V_{\pi}^{\bar{D}^* \Sigma_c}(r=0) \sim 6 \text{ MeV.}$ (reference value)

Volume integral $\mathcal{V}(q=0) = \int dr^3 V(r)$

$$ig|\mathcal{V}^{5q}(0)ig|\sim rac{1}{4}ig|\mathcal{V}^{ar{D}^*\Sigma_{ ext{c}}}_{\pi}(0)ig|\sim rac{1}{15}ig|\mathcal{V}^{ extsf{NN}}_{\pi}(0)ig|\sim rac{1}{880}ig|\mathcal{V}^{ extsf{NN}}_{\sigma}(0)ig|$$

 $(\mathcal{V}_{\pi}^{NN}:$ Central force of OPEP in NN, $\mathcal{V}_{\sigma}^{NN}(0): \sigma$ exchange in NN)

•
$$V_{ij}^{5q}(r) = -\mathbf{f_0} S_i S_j e^{-\alpha r^2}$$

 \Rightarrow Parameters: $\alpha = 1 \text{ fm}^{-2}$ (Assumption),
 $f_0 = V_{\pi}^{\bar{D}^* \Sigma_c}(r=0) \sim 6 \text{ MeV.}$ (reference value)

Volume integral $\mathcal{V}(q=0) = \int dr^3 V(r)$

$$\left|\mathcal{V}^{5q}(0)
ight|\simrac{1}{4}\left|\mathcal{V}^{ar{D}^{*}\Sigma_{\mathrm{c}}}_{\pi}(0)
ight|\simrac{1}{15}\left|\mathcal{V}^{ extsf{NN}}_{\pi}(0)
ight|\simrac{1}{880}\left|\mathcal{V}^{ extsf{NN}}_{\sigma}(0)
ight|$$

 $(\mathcal{V}_{\pi}^{NN}:$ Central force of OPEP in NN, $\mathcal{V}_{\sigma}^{NN}(0): \sigma$ exchange in NN)

\Rightarrow Small contribution of V^{5q} ...

We will see the f dependence of the energy spectrum (f_0 : reference value)