

Development of LArTPC for Neutrino Physics

Outline

- LArTPCs for Neutrino Physics
- Principle of LArTPC
 - LArTPC Signal Processing
 - Wire-Cell Tomographic Event Reconstruction
 - Optimization of LArTPCs
- Summary

MicroBooNE LArTPC

Big Questions in Neutrino Physics?

- Are neutrinos responsible for the large matter anti-matter asymmetry?
- What's the neutrino mass hierarchy?
- Are neutrino Dirac or Majorana particles? №
- What is the neutrino mass?
- Are there sterile neutrinos?

3

Deep Underground Neutrino Experiment (DUNE)

DUNE is designed to search for new CP violation, determine the mass hierarchy, test the unitarity of PMNS matrix through precision measurement of (anti)v_µ→(anti)v_e

Δ

Short-Baseline Neutrino Program

 Search for light sterile neutrino through search for anomalous v_µ→v_e oscillation motivated by LSND and MiniBooNE anomalies

arXiv:1503.01520v1

Principle of Single-Phase Liquid Argon Time Projection Chamber (LArTPC)

- LArTPC has mm scale position resolution with multiple 1D wire readouts
- Energy deposition and topology can be used to do PID
- Ar: the most abundant noble gas (

Anode wire planes:

Drift velocity 1.6 km/s \rightarrow several ms drift time

Unique e/γ separation in LArTPC

• Gap Identification + dE/dx for LArTPC

Early History of the Development of LArTPC

- W. Willis and V. Radeka, Liquid argon ionization chambers as total absorption detector, NIMA 120:221 (1974)
- D. R. Nygren, The Time Projection Chamber: A New 4π Detector for Charged Particles. eConf. C740805:58 (1974)
- H. H. Chen et al. A Neutrino detector sensitive to rare process. I. A study of neutrino electron reactions. FNAL-Proposal-0496 (1976)
- C. Rubbia, The liquid argon time projection chamber: a new concept for neutrino detector, CERN-EP/77-08 (1977)

V. Radeka

William Willis

H. H. Chen

D. R. Nygren

C. Rubbia

8

History of the Development of LArTPC

Outline

- LArTPCs for Neutrino Physics
- Principle of LArTPC
 - LArTPC Signal Processing
 - Wire-Cell Tomographic Event Reconstruction
 - Optimization of LArTPCs
- Summary

MicroBooNE LArTPC

Charge Particle going through LAr

Ionization signal is very small

 Ultra pure LAr (~ ppb O₂ and ppt H₂O) is needed as O(10¹²) collisions every second for an electron

Single-Phase TPC Signal Formation

• Induction plane signal strongly depends on the local charge distribution, collection plane signal is much simpler

Challenges in LArTPC Signal

- Wire/strip readout is essential!
 - Power consumption of pixel readout in LAr is 1-2 orders higher than what we can handle
 - 40 kton detector \rightarrow cost of pixel readout
 - MicroBooNE (60 tons) 8256 wires vs. 3 million pixel readout
 - Important to have induction wire planes in addition to the collection wire plane
- There is no electron amplification inside LAr
 - Signal is very small ~10s k electrons
 - Cold electronics is essential to minimize electronics noise considering large wire capacitance

Enabling Technology: Cold Electronics

- Placing the preamplifier inside LAr significantly reduced the electronics noise
 - 5-6 times comparing to past warm electronics (10:1 → 60:1 MIP peak-to-noise ratio in the collection)
 - Significantly improve the performance of induction wire plane

Cold Electronics Performance in MicroBooNE

Wire Noise Level in MicroBooNE

15

TPC Signal Processing → Recover Ionization Electrons

 $\mathbf{M}(t_0) = \left| R(t - t_0) \cdot S(t) \cdot dt \right|$ Fourier transformation $M(\omega) = \mathbf{R}(\omega) \cdot \mathbf{S}(\omega)$ Frequency domain $M(\omega)$ $|S(\omega)|$ $\cdot F(\omega)$ Anti-Fourier Back to time transformation domain **S(t)**

 Signal processing is based on deconvolution technique

- O(N³) matrix inversion is achieved through a O(N logN) fast Fourier transformation
- General good for collection plane signals
- Not good for induction plane signals due to lack of universal average response function

2-D Deconvolution

$$M_{i}(t_{0}) = \int_{t} \left(R_{0}(t-t_{0}) \cdot S_{i}(t) + R_{1}(t-t_{0}) \cdot S_{i+1}(t) + \dots \right) dt$$
$$M_{i}(\omega) = R_{0}(\omega) \cdot S_{i}(\omega) + R_{1}(\omega) \cdot S_{i+1}(\omega) + \dots$$

$$\begin{pmatrix} M_{1}(\omega) \\ M_{2}(\omega) \\ \dots \\ M_{n-1}(\omega) \\ M_{n}(\omega) \end{pmatrix} = \begin{pmatrix} R_{0}(\omega) & R_{1}(\omega) & \dots & R_{n-2}(\omega) & R_{n-1}(\omega) \\ R_{1}(\omega) & R_{0}(\omega) & \dots & R_{n-3}(\omega) & \dots & R_{n-3}(\omega) & R_{n-2}(\omega) \\ \dots & \dots & \dots & \dots & \dots \\ R_{n-2}(\omega) & R_{n-3}(\omega) & \dots & R_{0}(\omega) & R_{1}(\omega) \\ R_{n-1}(\omega) & R_{n-2}(\omega) & \dots & R_{1}(\omega) & R_{0}(\omega) \end{pmatrix} \cdot \begin{pmatrix} S_{1}(\omega) \\ S_{2}(\omega) \\ \dots \\ S_{n-1}(\omega) \\ S_{n}(\omega) \end{pmatrix}$$

- With induced signals, the signal is still linear sum of direct signal and induced signal
 - R₁ represents the induced signal from i+1th wire signal to ith wire
 - S_i and S_{i+1} are not directly related

The inversion of matrix R can again be done with deconvolution through 2-D FFT

Just 2D deconvolution will not be enough \rightarrow ROI + Adaptive Baseline

 The bi-polar nature of induction signal amplify the lowfrequency noise during deconvolution

$$\mathbf{S}(\omega) = \frac{\mathbf{M}(\omega)}{\mathbf{R}(\omega)} \cdot F(\omega)$$

Signal mV/fC

1000

800

600

400

200

0ª

-40

-20

Frequency Content

40

Frequency (a.b. unit)

20

20

Time (us)

U induction

V induction

W collection

60

80

40

- One can improve the situation through ROI and baseline correction
 - Given N time bins with 2 MHz digitization frequency, the lowest freq (above 0) is 2/N MHz
 - Obviously not sensitive to noise < 2/N MHz
 - 200 bins \rightarrow 10 kHz

Induction U plane

Collection plane

Outline

- LArTPCs for Neutrino Physics
- Principle of LArTPC
 - LArTPC Signal Processing
 - Wire-Cell Tomographic Event Reconstruction
 - Optimization of LArTPCs
- Summary

MicroBooNE LArTPC

Challenges of Event Reconstruction in LArTPCs

- Event topology:
 - Tracks, showers, unknown vertex in LArTPCs
 - Simple tracks in collider's gas TPCs

- Wire vs. Pixel readout
 - Large LArTPCs has to use wire readout due to **power consumption** of electronics and **costs**
 - Puedo-3D detector

2D matching \rightarrow 3D

Cathode Plane Edistin ~ 500V/cm

Wire-Cell Approach

Fig.1:Basic principle of tomography: superposition free tomographic cross sections S1 and S2 compared with the projected image P

https://en.wikipedia.org/wiki/Tomography

Wire-Cell Imaging

Solving for Images

 $\chi^{2} = (\mathbf{B} \cdot \mathbf{W} - G \cdot C)^{T} V_{BW}^{-1} (\mathbf{B} \cdot \mathbf{W} - G \cdot C)$ $\frac{\partial \chi^{2}}{\partial C} = 0 \rightarrow C = (\mathbf{G}^{T} V_{BW}^{-1} \mathbf{G})^{-1} G^{T} V_{BW}^{-1} BW$

- C: charge in each (merged) cell
- G: Geometry matrix connecting cells and wires
- W: charge in each single wire
- B: Geometry matrix connecting merged wires and single wires
- V_{BW}: Covariance matrix describing uncertainty in wire charge

- Use two-plane as an example
- Red points are true hits
- Blue ones are fake hits

Same formulism for Wrapped Wire

$$\chi^{2} = (\mathbf{B} \cdot \mathbf{W} - \mathbf{G} \cdot \mathbf{C})^{T} V_{BW}^{-1} (\mathbf{B} \cdot \mathbf{W} - \mathbf{G} \cdot \mathbf{C})$$
$$\mathbf{C} = (\mathbf{G}^{T} V_{BW}^{-1} \mathbf{G})^{-1} \mathbf{G}^{T} V_{BW}^{-1} \mathbf{B} W$$

- C: charge in each (merged) cell
- G: Geometry matrix connecting cells and **channels**
- W: charge in each single **channel**
- B: Geometry matrix connecting merged channels and single channels
- V_{BW}: Covariance matrix describing uncertainty in **channel** charge

More 3D events can be found at http://www.phy.bnl.gov/wire-cell/bee/ Bee: interactive 3D display

Connectivity information

- Use the connectivity information to choose the optimal imaging solution
 - Penalty term added in χ^2

Without Connectivity

With Connectivity

Strategy Comparison

2D Matching

- Start with 2D (time+wire x 3)
- 2D pattern recognition
 - Particle track/cluster information
- Matching 2D patterns into 3D objects
 - Time information (start/end of clusters)
 - Geometry information
 - Some charge information to remove ambiguities in matching

Each approach uses the same set information in different order!

3D Tomography

- Start with 2D (wire+wire+wire at fixed time slice)
- 2D image reconstruction
 - Explicit Time + Geometry + Charge information
 - Some connectivity information can be used
- 3D image reconstruction
 - Straight forward
- 3D pattern recognition
 - Particle track/cluster information (tracks, showers)

Wire-Cell Pattern Recognition (under developing)

 Given the 3D images, pattern recognition is performed with the track and shower hypotheses

- Operations are all "local" i.e. Hough transformation, Crawler, Vertex fitting/merging ...
- Too many different topologies → many corner cases

Outline

- LArTPCs for Neutrino Physics
- Principle of LArTPC
 - LArTPC Signal Processing
 - Wire-Cell Tomographic Event Reconstruction
 - Optimization of LArTPCs
- Summary

MicroBooNE LArTPC

Information from LArTPC

- Time information: when ionization electrons arrive (drift distance)
- Geometry information: which wires are fired (transverse position)
- Charge information: how many ionization electrons (energy deposition)

Limited Geometry information for Wire Readout

• Due to the wire readout, the geometry information is not as robust as the time information

Default: Parallel TPC Orientation

Parallel APA w.r.t beam

- Perpendicular APA \rightarrow fewer hit wires + more times info \rightarrow less ambiguities
- Parallel APA \rightarrow easier situation for induction plane signal processing

Parallel vs. Perpendicular APA

	Longitudinal (Drift)	Transverse
Digitization length	0.8 mm	3-5 mm
Diffusion (σ)	<1.7 mm	<2.4 mm
Electronics Shaping (σ)	1.3 mm	N/A
Field Response Function	~1.1 mm	3-5 mm

- Better resolution in the drift direction
- Perpendicular APA expects a better e/gamma separation with better gap identification and dE/dx resolution
- Induction signal processing is the key!

Parallel vs. Perpendicular TPC

	CC-QE	CC-Res	CC-DIS	Total	Vertex-overlapping	Displaced-overlapping	
				Signal	Bkgd.	Bkgd.	
Events	175.2	254.1	371.8	801.1			
Parallel TPC							
$\theta_h, \theta_e < 2.5^\circ$	2.5~(1.4%)	4.4 (1.7%)	6.3~(1.6%)	13.2~(1.6%)	15.5 (1.9%)	21.6 (2.7%)	
$\theta_h, \theta_e < 5.0^\circ$	7.0(3.9%)	$16.2 \ (6.3\%)$	22.5~(5.6%)	45.6(5.4%)	52.9~(6.6%)	95.1 (11.9%)	
$\theta_h, \theta_e < 7.5^\circ$	12.1~(6.8%)	32.5 (12.6%)	45.7 (11.3%)	90.3~(10.8%)	103.5 (12.9%)	189.4 (23.6%)	
Perpendicular TPC							
$\theta_h, \theta_e < 2.5^\circ$	0.0~(0.0%)	0.1~(0.0%)	0.2~(0.1%)	0.3~(0.0%)	1.6 (0.2%)	1.6~(0.2%)	
$\theta_h, \theta_e < 5.0^\circ$	0.0~(0.0%)	0.2~(0.1%)	0.9~(0.2%)	1.1~(0.1%)	5.8(0.7%)	6.0 (0.7%)	
$\theta_h, \theta_e < 7.5^\circ$	0.1~(0.0%)	0.5~(0.2%)	1.8~(0.5%)	2.4~(0.3%)	12.1~(1.5%)	$13.9\ (1.7\%)$	

 Significant background reduction is expected for perpendicular TPC → increased physics sensitivity

Four Wire Planes: Reduction of Ambiguities

- Ambiguities can be evaluated by comparing the "# of real hits" and the "# of potential hits"
- Take two-plane as an example
 - 3 real hits
 - 6 potential hits (each has two fired wires going through them)
- Ambiguities can be reduced with Connectivity, Charge, Recognized Pattern information
 - These tools are powerful, but not yet robust enough
 - It is much desired to have less ambiguities to start with

Four Wire Planes: Reduction of Ambiguities

- Three-plane setting is much better than two-plane setting, the latter has two much ambiguities
- Four-plane setting can significantly reduce the ambiguities, especially when things are busy

Robustness Against Dead Channels

Overall

efficiency

- In reality, it is highly unlikely to have 100% good ٠ channels for a 10 kt detector
- Let's assume "p" is the efficiency of a single plane, the given "n" number of planes, the $\mathcal{E}_n = p^n$ volume efficiency can be estimated as

1x1 m² 3 mm pitch

3 planes

$$\mathcal{E}_{n-1} = p^n + n \cdot (1-p) \cdot p^{n-1}$$

However, the cost of higher efficiency is an increase of ambiguities (i.e. fake hits)

$$\left(\frac{F_n}{P_n} + (1-p) \cdot n \cdot \left(F_{n-1} - F_n \right) \right) \cdot \mathcal{E}_{n-1}$$

Original fake hits at "n" planes

Increase of fake hits due to dead channel, leaked from fake hits at "n-1" planes, n different "n-1" planes

5% dead wires for dotted lines 40

ROI finder in TPC Induction Signal Processing

- The developed ROI finder is very complicated, and uses the connectivity information and also cut off at ~ O(100) us
- Some part of the phase space will be lost ...
 - http://www.phy.bnl.gov/wire-cell/bee/set/pps/event/0/?theme=light

- Each band is for one induction wire plane
- Adding one more plane (4 wire planes) will largely reduce these regions (other benefits not covered here)
- ROI finder would rely on the other three planes' tight ROI

Summary

- Significant progresses have been made in the TPC signal processing and event reconstruction
 - 2D deconvolution + Wire-Cell Tomographic Reconstruction
 - Challenges still remains in achieving low electronic noises and high-quality automated event reconstruction
- Lots of room available to improve the LArTPC design and performance for DUNE's four 10 kt modules
 - Perpendicular TPC orientation, four wire planes ...
- LArTPC technology may hold the key to many major discoveries:
 - Lepontic CP violation, neutrino mass ordering, proton decay, sterile neutrinos ...
- Exciting program in the next decades

Before and After Excess Noise Filter

MicroBooNE preliminary

Excess noises are observed and have to be filtered

Induction U-Plane Channel

This harmonic noise filtered out directly in the frequency domain (noise in the drift high voltage)

Coherent noise subtraction for the regulator noise (power supply to the preamp)

> MicroBooNE preliminary

Excess Noise Removed via Hardware Fix

MicroBooNE preliminary