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Background: Flavor Tagging at CEPC

Quarks & Gluons are Fragmented into jets: essential to determine the
original flavor of the parton

Physics motivation:

At Higgs program, Essential to distinguish H–>bb, H–>cc and H–>gg
events: the measurement of g(Hbb), g(Hcc) and g(Hgg)
Enhance the Signal/background separation for multiple analysis
Searching for FCNC & exotic decay of Bosons

Technically difficult, especially to identify the c-quark jets:

TMVA method has been heavily used in Flavor tagging studies;
Try state of the art machine learning algorithms
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Related work

Flavor tagging
Distinguishing different classes of jets, e.g. b quark, c quark and uds

can be regarded as a binary or multi-class classification task.

Classification or Prediction
input: high-dimensional variables
output: labels
train a classifier on the training data, then predict the label of an unseen
point

Variable selection or feature selection
Enhance the interpretability of the models
Investigating the effect of variable selection with Recursive Feature
Elimination (RFE) in Flavor tagging
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Classification algorithms

An investigation on the prediction performances of State-of-The-Art ap-
proaches.

Deep learning
DNN: deep neural networks

Tree ensemble methods: a collective of decision trees
GCForest: multi-Grained Cascade forests
GBDT: gradient boost decision trees
Xgboost: eXtreme Gradient Boosting

Fan Yang (XMU) November 7, 2017 8 / 26



Decision Tree

A decision tree recursively partitions the events in the feature space, which
consists of many nodes.
At each node, the model select a ’best’ variable to split.
Impurity measures the homogeneity of a node.
Gini impurity measures the degree
of impurity.

Gini(t) = 1 −

c−1∑

i=0

[p(i|t)]2

Node splitting–> impurity de-
creases –> events are classified to
different leaf-nodes

Figure: Decision tree model[1]

[1] Chen T, Guestrin C. Xgboost: A scalable tree boosting system[C],Proceedings of the 22nd acm sigkdd international conference
on knowledge discovery and data mining. ACM, 2016: 785-794.
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Deep learning

Deep neural network(DNN)
The neural network contains an input layer, many hidden layers and an
output layer.
A Black Box.

Figure: structure of DNN [1]

[1] http://www.cnblogs.com/pinard/p/6418668.html
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GCForest

GCForest (multi-Grained Cascade Forest)[1] consists of many random forest
models.

multi-grained scanning

cascade forest

multi-grained scanning[1] cascade forest[1]

[1] Zhou Z H, Feng J. Deep forest: Towards an alternative to deep neural networks[J]. arXiv preprint arXiv:1702.08835, 2017.
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Boosted Decision Trees - The baseline

Boosting
Boosting ensemble improves when new basis functions ft (x) are added.

Ft (x) = Ft−1(x) + ft(x),

ft(x) is obtained by minimize loss function L(·).

GBDT[1]

Negative gradient “−g(x)” gives the best step direction.

ft = arg min
f

L
(

− gt (x), f (x)
)

,

[1] Friedman J H. Greedy function approximation: a gradient boosting machine[J]. ,Annals of statistics, 2001: 1189-1232.
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XGboost

In XGboost[1] algorithm, second-order approximation of loss function is used
to optimize the prediction learner.

L(t) =
n∑

i=1

[l(yi ,Ft−i) + gift(xi) +
1

2
hif

2
t (xi)] + Ω(ft),

where gi and hi are first and second order gradient.

[1] Chen T, Guestrin C. Xgboost: A scalable tree boosting system[C],Proceedings of the 22nd acm sigkdd international conference
on knowledge discovery and data mining. ACM, 2016: 785-794.
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Summary of the algorithms

algorithm basic unit integration form output form

DNN neuron former layer’s outputs are
passed to the next layer as in-
puts

neurons in the output lay-
er determine the value of
output vector

gcforest forest former layer’s outputs com-
bined with initial data are
passed to the next layer

averaging the outputs of
forests in the last layer

GBDT CART
tree

training residuals are passed
to the next

results of basis learners
are summed up as final
output

xgboost tree second-order approximation
of loss function is used to op-
timize child nodes

weighted sum of all leaf
nodes’ output
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Variable selection

To enhance the interpretability.
Make the model simpler.
Can be implemented easily in trees ensemble methods which can output
importance scores for each variable.

RFE
The main idea of Recursive feature elimination (RFE) is removing the
least important feature from the current feature set recursively.

training an estimator with the current feature
set(10-fold cross validation);

obtaining feature importance scores by averag-
ing;

eliminating the least important feature from the
feature set;

repeating the procedure.

a  b  d  f  c  k  l  t  p

a  b  d  f  c  k  l  t  
eliminate

b  d  a  f  c  t  k  l  

b  d  a  f  c  t  k
eliminate

rank

repeat

a  b  c  d  f  k  l  p  t 
rank

b  t   f
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Experiment setting

Data

Experimental data were generated from simulation tools.The number of
variables is 63.
To avoid overfitting, 630000 events are split randomly into a training
set (400000), three validation sets (50000 events per set) and a test set
(80000).

Evaluation metrics

Tagging accuracy.
Misidentification vs. Tagging efficiency.
Area under the ROC (AUC)

Classification methods

Hyperparameters are fine-tuned by maximizing the average accuracies
on validation sets.

Variable selection

Scores of models with different features are compared in order
to achieve a “performance-complexity” balance.
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ROC and AUC

Confusion matrix, table of confusion
ROC, Receiver Operating Characteristics Curve, illustrates the diagnostic
ability of a binary classifier.
AUC, Area under the curve.

Figure: Confusion matrix
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Cross validation(CV)

Optimum parameters for every algorithm can be fine-tuned on the training
data in 10-fold CV, which is widely used as model evaluation technique.

Figure: K-fold cross-validation
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Classification results

Accuracy
For events in the test set, each algorithm has three outputs which repre-
sent the probabilities of three categories. The label with the maximum
probability is the predicted class of the events.
The average accuracies are shown in the table.

Algorithm DNN BDT GBDT gcforest xgboost

Accuracy 0.788 0.776 0.794 0.785 0.801
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Experiment

Variable selection with Recursive Feature Elimination
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Experiment

The highest AUC and corresponding number of features

Algorithm [b-c] [b-uds] [c-uds]

GBDT 0.929 / 31 0.986 / 36 0.893 / 39
RF 0.933 / 49 0.987 / 57 0.895 / 46
XGB 0.939 / 49 0.988 / 35 0.896 / 37

Data in the table is displayed in the form of “a/n” where “a” denotes the
highest AUC and “n” denotes the corresponding number of features.
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Experiment

Tagging efficiency vs. Mis-Id fraction:
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Experiment

Tagging efficiency vs. Mis-Id fraction:

tag- efficiency Mis-id fraction (%)
background (%) xgboost DNN GBDT BDT gcforest

b-c
80 5.4 7.5 5.8 9.3 10.8
90 20.1 23.7 20.6 29.2 26.3
95 39.0 43.5 39.6 50.2 56.3

b-uds
80 0.5 0.7 0.5 1.0 1.1
90 2.7 3.7 2.8 4.7 4.9
95 7.8 9.7 7.8 11.3 13.6

c-b
80 20.8 23.1 21.5 25.6 25.1
90 26.5 30.2 28.1 32.1 36.1
95 30.6 33.9 31.8 34.4 36.8

c-uds
80 22.3 23.3 22.3 26.0 27.4
90 43.4 43.5 43.8 51.9 43.5
95 63.6 61.7 62.1 68.8 66.1
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Conclusions

State-of-the-art machine learning algorithms achieve high accuracies.

XGboost is a promising tool for its interpretability and accuracy.

Future work.
Imbalanced data
Real-world data
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