

P. Chang, K. Chen, P. Hsu, C. Kuo, R. Lu, S. Paganis, C. Wang, Y. Yang 台灣 : 中研院 · 中央大學 · 清華大學 · 成功大學 · 台灣大學 · 聯合大學

Luminosity measurement

- Z lineshape, $e^+e^- \rightarrow Z \rightarrow q\bar{q}$ is dominant, $\sigma = 41 \ nb$
- Luminosity is best provided by detecting bhabha, $e^+e^- \rightarrow e^+e^-$, elastics scattering
 - a pure QED process, theoretical MC to <0.1% precison
 - triggering on a pair of scattered e⁺e⁻

 $E(e^{t}) \sim E_{beam}$, Back-to-Back

$$\sigma = \frac{16\pi\alpha^2}{s} \left(\frac{1}{\theta_{min}^2} - \frac{1}{\theta_{max}^2} \right)$$

 $\Delta \theta \equiv \theta_{\text{RIGHT}} - \theta_{\text{LEFT}}$

LumiCal precision

Luminosity is by counting Bhabha events In a fiducial θ region $1 N_{acc} = 16\pi \alpha^2$.

 $\mathcal{L} = \frac{1}{\varepsilon} \frac{N_{\rm acc}}{\sigma^{\rm vis}} \quad \sigma = \frac{16\pi\alpha^2}{s} \left(\frac{1}{\theta_{\min}^2} - \frac{1}{\theta_{\max}^2} \right)$

Dominant systematic error

 $\delta L/L \sim 2 \delta \vartheta/\vartheta_{min}$

For a precision of $\delta L/L < 10^{-3}$

LumiCal at $z = \pm 1 m$, $\theta_{min} = 30 mRad$

 $\rightarrow \delta \vartheta = 15 \ \mu Rad$ or $dr = 15 \ \mu m$

Error due to offset on Z

offset on the **mean** of spatial resolution = offset on θ_{min} → dominant LUMINOSITY error

LumiCal vs LEP/ILD

	CEPC	OPAL	ILD
z to IP (m)	.95 ~ 1.11 m	2.5 m	2.5 m
radius (mm)	28 .5 ~ 100 mm	62 - 142 mm	80 – 195 mm
θ range	28.5 ~ 100 mRad	25 - 57 mRad	40 – 69 mRad
Si r-pitch		2.5 mm	1.8 mm
radius precision	Scale by Z to	4.4 µm	
Ref.	UFAL/ILD	arXiv-0206074v1 EPJC 14 373	Procedia 37 258

Silicon Wedge

LumiCal in MDI region

Mounted in front of Quadruple, front $z \sim \pm 1$ m

studies are conducted for

- Beam crossing 33 mRad
- Electron shower leakage in to TPC volume (z to ± 2 m)

5

Boost by CEPC beam crossing angle

- **BHIumi** simulation, most are LO, $E(e^+)=E(e^-)=E_{beam}$, OpenAng = π
- CMS(e⁺e⁻) boosted by beam crossing
- e[±] boosted ~16.5 mRad off ring-center lost into beam-pipe

Boosted Bhabha

- Shift of LO Bhabha, $(e^+e^-, no \gamma)$ on r- ϕ plane
- assuming e⁺, e⁻ detected in *fiducial of >20 mm*
- plotted in bands (every 45 deg in φ)
- event loss **163 nb → 98 nb**
- Ioss is SIGNIFICANT
- LumiCal wants a small inner r, in OVAL shape if feasible

LumiCal detector options

Luminosity precision = e^{\pm} detection in *r*, at inner radius of fiducial

- → Silicon strip is the choice!
- Alignment CAN NOT reach 1 μm
- wide strip (~2mm) CAN NOT reach 10 μm resolution
- → A stand-alone LumiCal CAN NOT calibrate its offsets to IP

LumiCal with a simple tracking ring

Si strips resolution

- Silicon strip of p-n on ~300 μm wafer ionization e-h ~ 25k pairs in ~20 μm cone
- Readout pitch 50 μm ~5 μm resolution
 strip ~10 um, a floating p-implant
- Charge sharing of a MIP

to neighboring strips

$$\eta = \frac{Q_r}{Q_r + Q_l},$$

\rightarrow A flat η gives better resolution

Spatial resolution of a wide Si strip

- CMS preshower prototype strips*
 380 μm thick, 1810 μm pitch, 50, 160 μm gap
- charge of A MIP is collected mostly in one strip
- a MIP in gap between two Si strips charge tend to drift to the nearest strip collection efficiency ~100% spatial resolution > 20 μm, the mean on error ??

LumiCal shower leakage

GEANT3 of a lateral shower testbeam*

agree on charged multiplicity, lateral dist.

– Si-W sandwich

better shower description, and compactness W $1X_0(3.5mm) + 1mm$ Air gap \rightarrow Moliere Radius = 12mm

- Mockup of a $\cos\theta = .992$ cone

detecting leakage to TPC

- Mininum e/γ cuts .01 MeV

l0cm

LumiCal simulation

- TPC cone: θ=126.6 mRad (cosθ=.992)
 Fe 0.5 cm
 scintillators on surfaces detecting charged hits
- **DQ0 support**: Fe=100 cm tube, behind LumiCal

```
 TUBE SiW: 20 decks of tubes
 W: 0.35 cm (1X<sub>0</sub>), r = 2.5 - 10 cm
 Airgap: 0.2 cm
 Si: 0.03 cm thick, r = 2.5 - 10 cm
```

```
 CONE SiW: 20 decks of cones
 W: 0.35 cm (1X<sub>0</sub>), front r = 2.5 - 10 cm @z=100cm
 Airgap: 0.2 cm outer edge radially to IP, θ=.997
 Si: 0.03 cm thick, front r = 2.5 - 10 cm
```


5 cm

"TUBE" LumiCal shower leak distribution

50 GeV electron shower, reaching the outer Fe cone (5mm) at θ =.992

"CONE" LumiCal shower leak distribution

50 GeV electron shower, particles off Calo to outer cone at θ =.992

15

50GeV electron shower leak vs theta

Simulate 50 GeV electron from IP at fixed theta Shower leakage are mostly low energy < 100 MeV particles

50 GeV electronaverage events enter/pass5 mm Fe cone at 0.992 Rad				
electron θ (mRad)	TUBE LumiCal N(enter) /N(pass)	CONE LumiCal N(enter) /N(pass)		
40	15.4 / 5.6	13.6 / 5.8		
90	392 / 155	173 / 76		
95	501 / 290	367 / 152		
98	762 / 216	860 / 284		
99	553 / 140	1331 / 367		

125GeV electron shower leak vs theta

Simulate 125 GeV electron from IP at fixed theta Shower leakage are mostly low energy < 100 MeV particles

125 GeV electronaverage events enter/pass5 mm Fe cone at 0.992 Rad			
electron θ (mRad)	TUBE LumiCal N(enter) /N(pass)	CONE LumiCal N(enter) /N(pass)	
40	38.0 / 16.0	35.8 / 14.7	
90	1028 / 399	434 / 197	
95	2389 / 720	937 / 382	
98	1718 / 473	2176 / 725	
99	1102 / 273	3306 / 915	

- Luminosity of Bhabha counting is demanded to *δL/L* ~ 0.1% with Si Strip to reach *r_{inner}* to resolution <10 μm
 A "floating LumiCal" has unknown systematics on *r_{inner}* By adding electron tracking to calibrate "mean of *r_{inner}*" to 1 μm → to reach *δL/L* ~ 0.01%
- 2. Beam crossing boosts electrons and \rightarrow loss of event requiring both e^+ , e^- detected by LumiCal \rightarrow smaller r_{inner} of LumiCal is demanded for $\sigma > 50$ nb
- Shower leakage is ~ 1k secondaries, mostly <100 MeV to TPC