

Beam-beam weak-strong simulations for LHC and HL-LHC

Nikos Karastathis

Acknowledgements:

F. Antoniou, G. Arduini, S. Fartoukh, R. de Maria, Y. Papaphilippou, D. Pellegrini our OP & MP Colleagues and all the LHC@Home volunteers!

International Workshop on High Energy Circular Electron Positron Collider 06/11/2017 IHEP, Beijing, China

Introduction

- **Beam-beam effects** are responsible for the largest part of "losses" at LH<u>C</u>!
 - The BB potential quickly becomes **non-linear** as the amplitude of the particle is increased...
 - ... but we want to **stay** at collisions for as long as effectively possible. *Well... it is a collider!*
- **LHC** is a complex machine!
 - Non-linear magnet elements, fringe fields, two states of energy regime, etc

Can my simulations drive the **machine performance** <u>during</u> its operation?

 Dynamic Aperture within the Weak-Strong Approximation: The strong beam generates the fields while the weak beam just probes them, without reciprocal perturbation
Computationally easier, while captures adequately all the necessary beam dynamics

Setting the Stage: DA Scans

LHC Crossing Scheme

CEPC2017 @ IHEP, Beijing, 06/11/2017

N. Karastathis

Which crossing for my intensity?

ATS 2017; β^* =40 cm; Chr=15; Oct=500 A, ϵ =2.5 µm; Min DA.

Nominal LHC parameters (2017):

- Init. Bunch Intensity = $1.25 \ 10^{11}$ ppb
- Half-Crosing Angle = 150µrad
- β^* (IP1/5) = 40cm
- Positive Landau Octupoles (500 A)
- Large Chromaticity (15)
- (Qx, Qy) = (62.31, 60.32)

ATS 2017; β^* =40 cm; Q=(.313; .317); Q'=15; Oct=500 A; ϵ =2.5 µm; Min DA.

- Optimized Tune LHC:
 - (Qx, Qy) = (62.313, 60.317)
 - → Margin to push for performance

What about 30cm β*?

Min DA, ATS β^* =30cm, (Q_X,Q_Y)=(62.313,60.317) ε=2.5µm, Q[']=15, I_{MO}=510A

- At the nominal working point, 30cm β* was very tight
- With the tune adjustment, 30cm totally feasible with 175µrad
- **150µrad** are within reach (no change)
- Based on operational experience could even push for 140µrad at start of the fill!
 - → tested during operation

How can I push more?

Crossing Anti-Levelling

LHC 2017; 8b4e₁; β^* =30 cm; (Q_x, Q_y)=(62.314, 61.320) I_{MO}=330 A; Q'=15; ε=2.5 µm; Min DA.

With careful steps, gain in integrated luminosity of ~3-5% for 10h in Stable Beams

Crossing Anti-Levelling

LHC 2017; 8b4e₁; β^* =30 cm; (Q_x, Q_y)=(62.314, 61.320) I_{MO}=330 A; Q'=15; ε=2.5 µm; Min DA.

When you are in a regime with reduced DA beam lifetime suffers and losses appear!

Careful handling is required, but experience on changing the crossing angle in operation is very valuable for the future...

EPC2017 @ IHEP, Beijing, 06/11/2017

N. Karastathis

HL-LHC Era: Adaptive Levelling

HL-LHC TDR:

"Both the consideration of energy deposition by collision debris in the interaction region magnets, and the necessity to limit the peak pile-up in the experimental detector, impose an a priori limitation upon peak luminosity. The consequence is that HL-LHC operation will have to rely on luminosity levelling."

Levelling Scenarios:

- \checkmark So far LHC has successfully operated levelling by separation
- ✓ HL-LHC design includes the installation of **crab cavities** around the IR1/IR5.
- \checkmark The size of the luminous region can be modified by changing the β^* at the IP.

Levelling Proposal:

- "Adaptive Levelling Scenario"
 - Depending on the time within the fill (during levelling, i.e. bunch intensity) and driven by the available DA, adapt the **crossing angle** and β^* at the interaction points to keep the target 5 Hz/cm/cm.

Min DA Scan for Half Crossing Angle and β^{\star} at the start of the collisions.

Overlay iso-luminosity lines.

Peak luminosity 1.1 - 1.4 10^{35} Hz/cm² can be achieved with 20cm β^* ... but with PU>300 events.

Overlay iso-length of luminous region lines.

Reduction of **crossing angle** at **constant luminosity** enables the reduction of **PU density** (increase of luminous region) and triplet irradiation.

Time evolution can be folded in in terms of bunch intensity.

Min DA; I = 1.9e11; $I_{MO} = 0$ A; Q' = 3 #

CEPC2017 @ IHEP, Beijing, 06/11/2017

N. Karastathis

Min DA; I = 1.6e11;
$$I_{MO} = 0 A$$
; Q' = 3 #

CEPC2017 @ IHEP, Beijing, 06/11/2017

N. Karastathis

Following the intersection of the iso-luminosity and iso-DA lines one can define a levelling path

Min DA; I = 1.275e11; $I_{MO} = 0$ A; Q' = 3 #

Adaptive Levelling – What do I gain?

- In terms of crossing angle, I can operate with less voltage in the crab cavities (max crabbing 380µrad).
- In terms of β* delayed exit from the levelling (here: 20cm target, design: 15cm).

Comparing:

- Constant crossing at 510µrad
- Adaptive scenario of 6σ DA
- Adaptive scenario of 5σ DA

Assuming a cross-section of 80mb

Adaptive Levelling – What do I gain?

Overview

- Weak-strong simulations are heavily used to estimate the long term conditions in the presence of beam-beam for a given configurations;
 - *Fast, reliable, accurate* thanks to the continuous development & extension of computational frameworks & infrastructure
 - Identify margins → construct operational scenarios
- The excellent LHC performance and the operational experience allows to push the beam and machine parameters to extract more luminosity, eg:
 - 2017: ATS & reducing $\beta^* \rightarrow$ increased performance
 - 2017: crossing angle anti-levelling \rightarrow increased performance

- The knowledge and experience gained are propagated in the HiLumi LHC era, e.g:
 - Adaptive levelling scenario → increased performance

Thank you for your attention!

EPC2017 @ IHEP, Beijing, 06/11/2017

N. Karastathis

SPARE SLIDES

IR1

2017 Settings

Parameter	BCMS	BCMS	BCMS	BCMS	BCMS	Standard
	144b	144b	288b	144b	288b	288b
	40 cm	31 cm				
	300 urad	340 urad	340 urad	310 urad	310 urad	340 urad
Beam energy in collision [TeV]	6.5	6.5	6.5	6.5	6.5	6.5
Particles per bunch, N [10 ¹¹]	1.25	1.25	1.25	1.25	1.25	1.25
Number of bunches per beam	2556	2556	2748	2556	2748	2760
Number of collisions in IP1 and IP5 [*]	2544	2544	2736	2544	2736	2748
Number of collisions in IP2/IP8	2205/2308	2205/2308	2258/2378	2205/2308	2258/2378	2494/2572
Maximum number of bunches per injection	144	144	288	144	288	288
Crossing angle in IP1 and IP5 [µrad]	300	340	340	310	310	340
Minimum normalized LRBB separation [σ]	10	10	10	9	9	8.4
Minimum β [*] [m]	0.40	0.31	0.31	0.31	0.31	0.31
e _n [μm]	2.5	2.5	2.5	2.5	2.5	3.5
ε _L [eVs]	2.2	2.2	2.2	2.2	2.2	2.2
R.M.S. bunch length [cm]	8.3	8.3	8.3	8.3	8.3	8.3
Peak luminosity L _{peak} [10 ³⁴ cm ⁻² s ⁻¹]	1.7	1.9	2.1	2.0	2.2	1.63
Max pile-up	48	54	54	57	57	42
Levelling time [h] for levelling at 1.7x10 ³⁴ cm ⁻² s ⁻¹	0.	2.5	4.25	3.5	5.25	0.
L _{int} with levelling (1.7x10 ³⁴) [fb ⁻¹ /day] – no heat load lim.	0.79	0.85	0.91	0.88	0.93	0.82
L _{int} without levelling [fb ⁻¹ /day] – no heat load lim.	0.79	0.86	0.92	0.89	0.95	0.82
L _{int} with levelling (1.7x10 ³⁴)[fb ⁻¹ /day]-heat load lim. (160 W)	0.74	0.80	0.78	0.83	0.81	0.64
L _{int} without levelling [fb ⁻¹ /day] – heat load limited (160 W)	0.74	0.80	0.78	0.83	0.81	0.64

Setting the Stage: DA Scans

Which Tools & How?

- The geometry and basic optics are generated using MADX;
- The tracking is done in SixTrack
 - Particles (weak beam) are tracked through the lattice under the impact of the external fields;
 - The particles are uniformly distributed in terms of amplitude... (here: 2σ -10 σ);
 - ... and laying on a number of angles (here: 5 angles);
 - ... the longitudinal initial conditions of the weak beam are fixed;
 - The particles are tracked for a number of turns (here: 1M), with the view to find the survival at 1M turns → DA;
 - The final result is quoted in terms of rms transverse beam size units (LHC: protons ~ round beams).

Is this perfect?

- Tracking for 1M turns is only ~90s of machine time
- The initial longitudinal action is fixed
- Beam phase space distribution is not taken into account, no diffusion information

No.

... but it captures all the relevant aspects of beam dynamics

Which crossing for my intensity?

Min DA, ATS $\beta^*=30$ cm (Q_X,Q_Y)=(62.31, 60.32) $\epsilon=2.5\mu$ m, Q =15, I_{MO}=510A

I would need **175µrad** to have the same normalized separation at the start of the fill

For $\beta^*=30$ cm and nominal tune gives me DA < 5 σ

Continuous crossing

Fill 6061: STABLE BEAMS declared on Wed, 09 Aug 2017 23:45:11

