Pixel Sensor Technologies for the CEPC

S. Grinstein (IFAE Barcelona)

CEPC Workshop 6th - 8th November 2017 IHEP, Beijing

Outline

- Introduction
- DEPFET
- CMOS
- Depleted-CMOS
 - Focus on AMS HV-CMOS technology results
- SOI
- Timing
- Conclusions

- Innermost layers of HEP accelerator-based experiments require:
 - Position resolution
 - Radiation hardness, rate capability, compactness, low material budget, etc
- Technology of choice: silicon pixel sensors

Monolithic detectors

- Standard in current experiments
- Design allows for optimization of electronics and sensor
 - Radiation hardness, rate, power...

- Less material, less complexity
- Smaller pixel possible
 - No pixel size limitation due to interconnection

- Innermost layers of HEP accelerator-based experiments require:
 - Position resolution
 - Radiation hardness, rate capability, compactness, low material budget, etc
- Technology of choice: silicon pixel sensors

- Standard in current experiments
- Design allows for optimization of electronics and sensor
 - Radiation hardness, rate, power...

Monolithic detectors

Comparator and digital part can be in periphery of chip

• Silicon bulk:

 $d \sim \sqrt{\rho \cdot V}$

- High resistivity silicon
 - $\rho > 1 \ k\Omega.cm$
 - Used in most HEP detectors
 - Relatively expensive
 - Charge collection:
 - Can fully deplete (~300 um)
 - By drift
 - Fast (~10 ns)
 - Radiation hard

- Low resistivity silicon
 - $\rho < 100 \ \Omega.cm$
 - Commercial CMOS processes
 - Relatively cheap
 - Charge collection:
 - Under depleted
 - Usually by diffusion
 - Slow (~100 ns)
 - Not radiation hard

- Standard HEP detector on high ρ silicon substrate
- n-on-p collect electrons, faster

- Silicon On Insulator (SOI)
- SiO2 reduces parasitic capacitance
- Top layer varies with application
- Used in specialized processes

- Epitaxial layer on silicon bulk
- Usually deposited through CVD
- Used in CMOS processes
- Wafer to wafer bonding

- Technology selection driven by experimental conditions & requirements, examples:
 - Radiation hard thin SOI 3D sensors (high ρ layer)
 - CMOS sensors on epitaxial wafers

Experimental Conditions

	ATLAS IBL	Belle II	STAR	ALICE ITS Upgrade	ILC	ATLAS ITK HL-LHC	CEPC *
Fluence [neq/cm2]	5E+15	1E+13	1E+12	1E+13	1E+12	1E+16	1E+13
Ionization dose [Mrad]	100	10	0.3	3	1	500	25
Particle rate [kHz/mm2]	1000	400	100	10	200	10000	850
Timing [ns]	25	20000	200000	20000	350	25	30
Pixel size [um x um]	50 x 250	50 x 55	20 x 20	30 x 30	20 x 20	50 x 50	< 20 x 20
Power [mW/cm2]	200	100	170	40	50	100	50
Material [% X0]	1.5	0.2	0.4	0.3	0.2	1	0.15

- Hybrid devices used in many HEP experiments, however
 - Smaller pixels (limited by bump-bond in hybrids)
 - Lower material budget (power dissipation!)
 - Relaxed radiation hardness requirement
- Favor monolithic approach
 - Initially development focused on non-standard processing technologies
 - Now target standard CMOS processes

Bump size limits the size of the hybrid pixel to about 50 μm

* J. Gimaraes da Costa, this

workshop

DEPFETs Devices

Monolithic Active Pixel Sensors

- MAPS: Monolithic Active Pixel Sensor
 - Initially on ρ -low under-depleted bulk
 - Only NMOS transistors
 - R. Turchetta et al., NIM A, 458:677–689, 2001
- A successful line of devices: MIMOSA
 - Minimum Ionizing particle MOS Active pixel sensor
 - Developed at IPHC Strasbourg
- First generations successfully used in:
 - EUDET particle telescopes
 - STAR Heavy Flavor Tracker

First CMOS vertex detector! (0.16 m²)

Cons

• NMOS limitation, slow (diffusion), radiation soft

P-well

p-epitaxial layer

P-substrate low ohmic)

Use triple/quadruple well processes to allow PMOS transistors *R. Turchetta et al. Sensors (2008)*

See talk of C. Hu on this workshop

S. Grinstein - CEPC Workshop 2017

MIMOSA 26 Telescope AMS 350nm CMOS technology

N-well deep P-well

Kolanoski, Wermes 2015

CMOS Devices

ALICE Inner Tracker System Upgrade

• **ALPIDE** chip:

G. Aglieri et al., NIM A 845 (2017) 583-587

- TowerJazz 0.18µm CMOS imaging process
- 30 mm x 15 mm with 30 x 30 μ m² pixels
- Small n-collection electrode in high-p epi-layer
 - Small input capacitance!
 - Low noise, low threshold operation, low power...
 - Moderate bias voltage: increase depletion region
- ALICE ITS Detector
 - ~2019/2020 installation
 - 10 m²
 - 0.3% X₀ /layer (inner)
 - Radiation hardness:
 - 0.6Mrad, 1.7E13 n_{eq}/cm²

Pros

- Promising technology for CEPC
 - Selected for initial CEPC R&D
- ...Radiation hard enough?

PWELL

See talk of W. Snoeys on this workshop

NWELL

DIODE

W. Snoevs. CERN

PMOS

TRANSISTOR

DEEP PWELL

NWELL

NMOS

TRANSISTO

PWELL

- HL-LHC is a harsh radiation environment (~1E16 n_{eq}/cm², 500 Mrad)
 - Not the target for CEPC, but lessons to be learned...
- Achieve higher radiation harness with **depleted substrates**:
 - High voltage or high resistivity approach (HV/HR-CMOS)
 - I. Peric et al., NIM A 582 (2007) 876

Two approaches to depleted-CMOS

- Electronics inside n-well
 - Full CMOS inside
 - Large collection node
 - Shorter drift distances (more rad hard)

Cons

• Higher noise or power (larger capacitance)

S. Grinstein - CEPC Wor

- Electronics outisde n-well
 - Full CMOS inside
 - Small collection node
 - Small capacitance (less noise & power)

Cons

PC Wor • Potential lower radiation hardness (larger drift)

- HL-LHC is a harsh radiation environment (~1E16 n_{eq}/cm², 500 Mrad)
 - Not the target for CEPC, but lessons to be learned...
- Achieve higher radiation harness with **depleted substrates**:
 - High voltage or high resistivity approach (HV/HR-CMOS)
 - I. Peric et al., NIM A 582 (2007) 876

Two approaches to depleted-CMOS

- Electronics inside n-well
 - Full CMOS inside
- AMS LFoundry
- Large collection node
- Shorter drift distances (more rad hard)

Cons

• Higher noise or power (larger capacitance)

- Electronics outisde n-well
- TowerJazz ESPROS
- Full CMOS insideSmall collection node
- Small capacitance (less noise & power)

Cons

S. Grinstein - CEPC Wor • Potential lower radiation hardness (larger drift)

H35demo: first full size investigator with large fill factor

- AMS 350 nm HV-CMOS
- Two monolithic and two analogonly (for AC coupling *) matrices
- Resistivity: 20-80-200-1000 Ωcm

Edge TCT

Optics

z stage

Pixel: CSA + Discr/2nd Ampl

Polished edge

PCB holder

Bias to

substrate

Signals

to DRS

S. Grinstein - CEPC Workshop 2017

* See backup for AC coupling comments

- H35demo monolithic matrices characterization
 - R. Casanova et al., TWEPP 2017

Hit reconstruction efficiency

- Before irradiation
 - Uniform efficiency

- Hit row 12 Efficiency map 0 0 50 100 150 200 250 300 Hit column
- For low resistivity, large bias needed to achieve 99% (in large fill factor designs)
- After irradiation (5E14 n_{eq}/cm²)
 - For $\rho = 200 \ \Omega \text{cm}$: eff > 90% above 80 V
 - Other resistivities being studied

- However: 350mW/cm2
- Significantly lower in next generation (ATLASpix, aH18): 100mW/cm2

I. Peric, priv comm 2017

Efficiency Efficiency

0.96

0.95 0.94 0.93

0.92 0.91

Small fill factor approach

• ESPROS

100

80

60

40

20

0

0

ENC [e⁻]

- 150nm CMOS, 6 metal layer process
- Deep p-well, isolated full CMOS
- Substrate: high-ρ **n-type bulk**
- Backside implant

 $5 \cdot 10^{14} n_{eq}$ $1 \cdot 10^{14} n_{eq}$

 $5 \cdot 10^{13} n_{er}$

2

V_{ndiode} [V]

- 40 x 40 µm² pixels
- CSA and discr. + binary readout

 $1 \cdot 10^{13} n_{er}$

5

n [Jum]

20

not irr.

40

v [µm]

20

> Low noise performance... but significant efficiency degradation at 5E14 n_{en}/cm^2

40 v [μm]

S. Grinstein - CEPC Workshop 2017

20

40

v [µm]

Small fill factor approach

- TowerJazz ATLAS Investigator
 - Based on ALICE developments
 - TJ 180 nm full CMOS modified process
 - TJ-Monopix
 - epi p-type 25 µm on p-type substrate
 - $\rho > 1k\Omega$ cm
 - Various pixel sizes included
 - 25 x 25 to 50 x 50 μm²
 - Pixel: CSA + discr + hit memory

See talk of W. Snoeys on this workshop

S. Grinstein - CEPC Workshop 2017

nwell collection

depleted zone

depletion boundary

NMOS

PMOS

"ALPIDE design"

SOI Devices

- SOI: Silicon On Insulator (on SiO2)
 - Combine thin low ρ electronic layer with high ρ bulk:
 - Monolithic approach with good detector efficiency
 - J. Marczewski et al., IEEE Trans Nucl Schi 51 1025 (2004) SUCIMA project

Pros

- Full CMOS process and depleted bulk
- Small pixels possible
- Now SOI CMOS available:
 - FD-SOI, OKI, LAPIS, KEK

Cons

- Radiation limitation due to positive charge trapped in BOX
- Back gate effect: bulk bias affects electronics
 - Suppressed with buried p well
 - R. Itimisha et al., 10.5170/CERN-2009-006.68
- See talk of Y. Lu on this workshop

- INPTIX6, KEK/Lapis SOI CMOS technology
- Rad hardness
 60krad

Y. Arai et al 2017 JINST 12 C01028

Other Issues: Timing

- Timing detector for CEPC?
 - Timing detectors being considered for HL-LHC upgrades at ATLAS & CMS
 - Performance gains in pile-up rejection impact b-tagging, jet-reconstruction, etc
 - Impact at CEPC?
- Integrated timing on CMOS-based technologies
 - Already achieved 100 ps resolution on 130 nm CMOS technology (NA62 GTK [1])
 - However, large pixel size and high power consumption needed for TDC/pixel
 - 300 x 300 μm^2 and 1mW/pixel
- LGAD technology developed at CNM (Barcelona)
 [2], proposed for timing [3]

- Resolution <30 ps/layer/mip after 3E14n_{ed}/cm²!!
- But.. problem of small pitch LGAD sensors?
 - E. Cavallaro et al., NIM A 796 (2015)136
- See talk of A. Staiano on this workshop

[1] S. Garbolino and S. Martoiu, PRIME 2010
[2] G. Pellegrini et al., NIM A765 (2014) 12
[3] H.-W. Sadrozinski et al., arXiv: 1704.08666]

Conclusions

- **Pixel silicon detectors** will play a critical role in the **CEPC** experiments
- CEPC benefits from synergies with ILC, ALICE, ATLAS, etc
 - Already ongoing common efforts
- Several sensor technologies promise to satisfy pixel detector requirements
 - Radiation hardness requirements attainable
 - Challenge to fit functionality in small pixel size and moderate power consumption
- Important to keep multiple sensor R&D lines open
 - Avoid single failure point

Thank you

Backup Slides

On AC Coupled CMOS Devices

I. Peric et al., NIM A 765(2014)172

- Initial R&D focused on AC coupled CMOS devices
- Motivation was radiation hardness and timescale to develop fully monolithic ASIC
- However, "glueing" more challenging that expected
 - Uniformity & planarity complicated to achieve
 - No clear cost effectiveness

Proven radiation hardness *M. Benoit et al., arXiv:1611.02669v2*

S. Grinstein - CEPC Workshop 2017

Other Issues: Large Area Coverage

- Largest device size is currently ~2.5x2.5 cm²
- Butting and stitching may overcome this limitation
 - Butting commonly used in HEP
 - Stitching available only on certain foundries/processes
 - Should not be an after thought...
 - Cost implications, need very good yield

S. Grinstein - CEPC Workshop 2017

Butting

Readout				Readout				Readout						
	S	Э	Ы			S	з	d			S	з	Ы	
	P	XEI	s			PI	XEI	.s			P	XEI	s	
Readout			Readout				Readout							

LFoundry Development Line

Uni Bonn et al.

CCPD_LF (PROTO)

- Subm. in Sep. 2014
- 33 x 125 μm² pixels
- Fast R/O coupled to FE-I4 •
- Standalone R/O for test
- (Almost) Fully characterized

LF-CPIX (DEMO)

- Subm. in Mar. 2016
- CPIX demonstrator in LF
 - 50 x 250 μm² pixels
- 34 col of 168 pixels
- Fast R/O coupled to FE-I4 •
- Standalone R/O for test
- Many meas. available

LF-Monopix01 (monolithic)

- Subm. in Aug. 2016
- "Demonstrator size"
- 50 x 250 μm² pixels

.

- 142x36 pixel matrix
 - Fast standalone R/O
 - Standalone R/O like LF-CPIX
 - Just started measurements

10mm

A. Rozanov AIDA 2020 meeting Paris 2017.

S. Grinstein - CEPC Workshop 2017