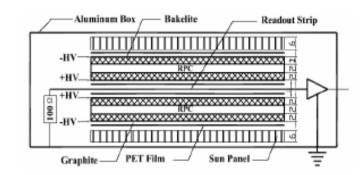

Muon Detector Options for CEPC


Liang Li

Shanghai Jiao Tong University

International Workshop on High Energy Circular Electron Positron Collider

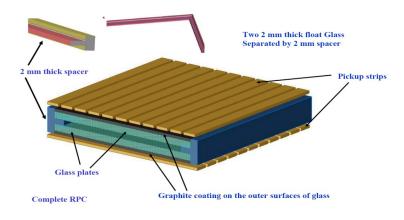
Muon System Overview

Structure:

- Between magnet iron yoke, outside HCAL
- Cylindrical barrel & two endcap system
- Solid angle coverage: 0.98 * 4π

Technology:

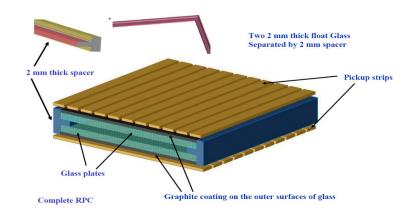
- Bakelite/glass RPC as baseline
- Many other options in consideration
 - µRWell
 - Micromegas, GEM
 - MDT, Scintillator Strip



Parameter	Possible range	Baseline
Lb/2 [m]	3.6 - 5.6	4.0
Rin [m]	3.5 - 5.0	4.4
Rout [m]	5.5 - 7.2	7.0
Le [m]	2.0 - 3.0	2.6
Re [m]	0.6 - 1.0	0.8
Segmentation	8/10/12	12
Number of layers	6 - 10	8
Total thickness of iron	$6 - 10\lambda \ (\lambda = 16.77 \text{ cm})$	8λ (136 cm)
		(8/8/12/12/16/16/20/20/24) cm
Solid angle coverage	$(0.94 - 0.98) \times 4\pi$	0.98
Position resolution [cm]	$\sigma_{r\phi}$: 1.5 – 2.5 σ_z : 1 – 2	2
Position resolution [eni]	$\sigma_z: 1-2$	1.5
Detection efficiency	92% - 99%	95%
$(E_{\mu} > 5 \text{ GeV})$		
Fake $(\pi \rightarrow \mu)@30$ GeV	0.5% - 3%	< 1%
Rate capability [Hz/cm ²]	50 - 100	~ 60
	RPC	RPC (super module, 1
	µRWell	layer readout, 2 layers of
Technology	Micromegas	RPC)
Technology	GEM	
	(s)TGC	
	MDT	
	Scintillating strip	
	Barrel	$\sim \! 4450$
Total area [m ²]	Endcap	~4150
	Total	~8660

Resistive Plate Chamber (RPC)

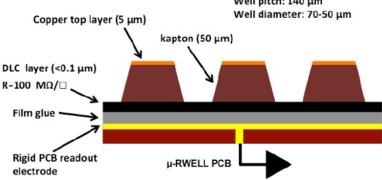
Parameter	Possible range	Baseline
Lb/2 [m]	3.6 - 5.6	4.0
Rin [m]	3.5 - 5.0	4.4
Rout [m]	5.5 - 7.2	7.0
Le [m]	2.0 - 3.0	2.6
Re [m]	0.6 - 1.0	0.8
Segmentation	8/10/12	12
Number of layers	6 – 10	8
Total thickness of iron	$6 - 10\lambda \ (\lambda = 16.77 \ \mathrm{cm})$	8λ (136 cm)
		(8/8/12/12/16/16/20/20/24) cm
Solid angle coverage	$(0.94 - 0.98) \times 4\pi$	0.98
Position resolution [cm]	$\sigma_{r\phi}$: 1.5 – 2.5	2
	$\sigma_z: 1-2$	1.5
Detection efficiency	92% - 99%	95%
$(E_{\mu} > 5 \text{ GeV})$		
Fake $(\pi \rightarrow \mu)@30$ GeV	0.5% - 3%	< 1%
Rate capability [Hz/cm ²]	50 - 100	~ 60
	RPC	RPC (super module, 1
-	μ RWell	layer readout, 2 layers of
	Micromegas	RPC)
Technology -	GEM	
-	(s)TGC	
-	MDT	
-	Scintillating strip	
	Barrel	$\sim \! 4450$
Total area [m ²]	Endcap	~4150
-	Total	~8660


Parameters		Bakelite	Glass
Bulk resistivity $[\Omega \cdot cm]$	Normal	$10^{10} \sim 10^{12}$	$> 10^{12}$
	Developing	10 ⁸ ~	~10 ⁹
Max unit size (2 mm thick) [m]		1.2×2.4	1.0×1.2
Surface flatness [nm]		< 500	< 100
Density [g/cm ³]		1.36	2.4~2.8
Min board thickness [mm]		1.0	0.2
Mechanical performance		Tough	Fragile
Rate capability [Hz/cm ²]	Streamer	100@92% [<mark>97</mark>]	
	Avalanche	10K	100@95% [98]
Noise rate [Hz/cm ²]	Streamer	< 0.8	0.05 [99]

Resistive Plate Chamber (RPC)

Parameter	Possible range	Baseline
Lb/2 [m]	3.6 - 5.6	4.0
Rin [m]	3.5 - 5.0	4.4
Rout [m]	5.5 – 7.2	7.0
Le [m]	2.0 - 3.0	2.6
Re [m]	0.6 - 1.0	0.8
Segmentation	8/10/12	12
Number of layers	6 – 10	8
Total thickness of iron	$6 - 10\lambda \ (\lambda = 16.77 \text{ cm})$	8λ (136 cm)
		(8/8/12/12/16/16/20/20/24) cm
Solid angle coverage	$(0.94 - 0.98) \times 4\pi$	0.98
Position resolution [cm] -	$\sigma_{r\phi}$: 1.5 – 2.5	2
rostuon tesotuuon [eni] -	$\sigma_z: 1-2$	1.5
Detection efficiency	92% - 99%	95%
$(E_{\mu} > 5 \text{GeV})$		
Fake $(\pi \rightarrow \mu)@30$ GeV	0.5% - 3%	< 1%
Rate capability [Hz/cm ²]	50 - 100	~ 60
	RPC	RPC (super module, 1
-	μRWell	layer readout, 2 layers of
Technology -	Micromegas	RPC)
Teennology	GEM	
-	(s)TGC	
-	MDT	
-	Scintillating strip	
	Barrel	~4450
Total area [m ²]	Endcap	~4150
-	Total	~ 8660


Parameters		Glass
Normal	$10^{10} \sim 10^{12}$	$> 10^{12}$
Developing	$10^8 \sim 10^9$	
Max unit size (2 mm thick) [m]		1.0×1.2
Surface flatness [nm]		< 100
Density [g/cm ³]		$2.4 \sim 2.8$
Min board thickness [mm]		0.2
Mechanical performance		Fragile
Streamer	100@92% [97]	
Avalanche	10K	100@95% [<mark>98</mark>]
Streamer	< 0.8	0.05 [99]
	Developing () [m] Streamer Avalanche	$\begin{array}{c cccc} \hline \text{Developing} & 10^8 \\ \hline \text{Developing} & 10^8 \\ \hline \text{(b)} & 1.2 \times 2.4 \\ & < 500 \\ 1.36 \\ \hline 1.0 \\ \hline \text{Tough} \\ \hline \text{Streamer} & 100 @92\% \ [97] \\ \hline \text{Avalanche} & 10 \\ \hline \text{K} \end{array}$

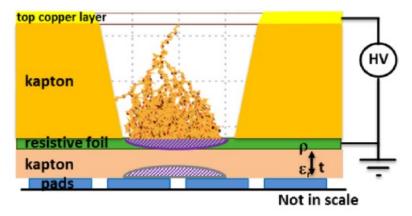


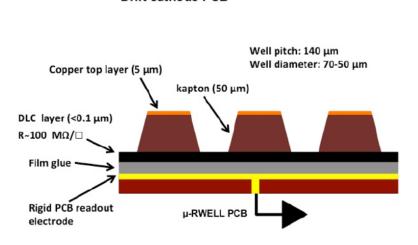
Signal efficiency > 95% for muon pT > 4 GeV with 8 layers

✓ Low cost, easy construction
✓ Position resolution: 5-10 mm
✓ Time resolution: ~1 ns

Micro-RWell technology

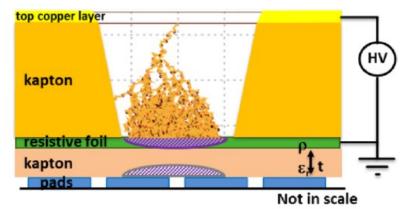
Drift cathode PCB


MPGD with two PCBs: a standard GEM Drift cathode PCB and a µRWell PCB

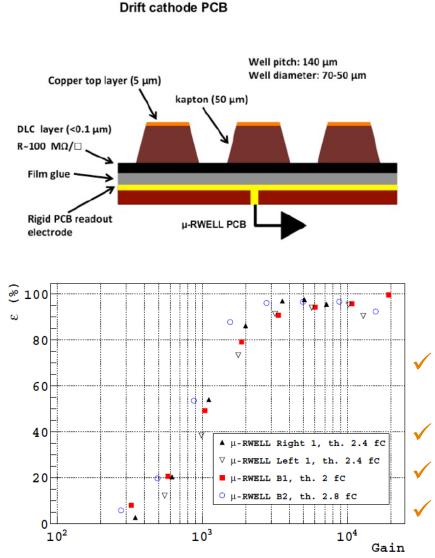

Amplification stage couples directly with readout: low/high rate option

Micro-RWell technology

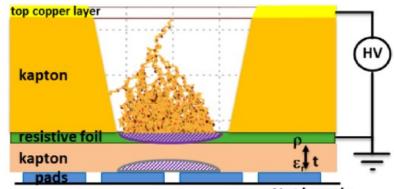
• Amplification stage couples directly with readout: low/high rate option

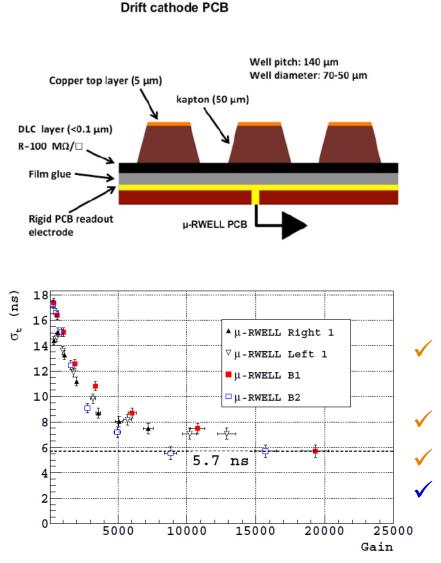


Drift cathode PCB

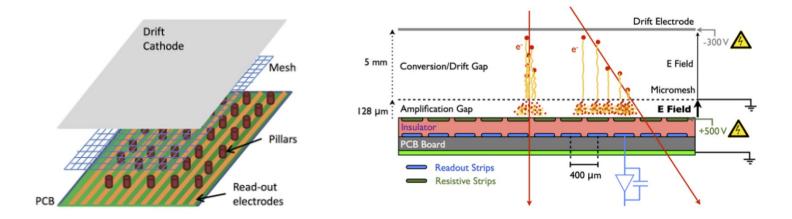

Micro-RWell technology

 Amplification stage couples directly with readout: low/high rate option


Much simpler than many other MPGDs, such as GEMs or MicroMegas Rate capability: a few tens of KHz/cm² Position resolution: ~60 μm Time resolution: 5-6 ns

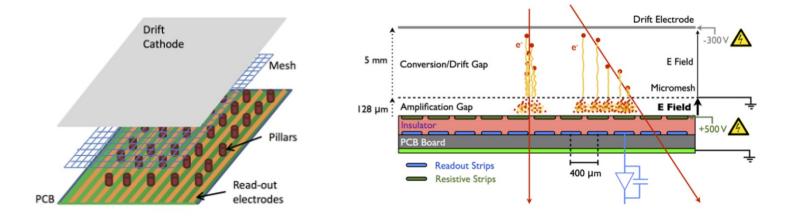

Micro-RWell technology

 Amplification stage couples directly with readout: low/high rate option



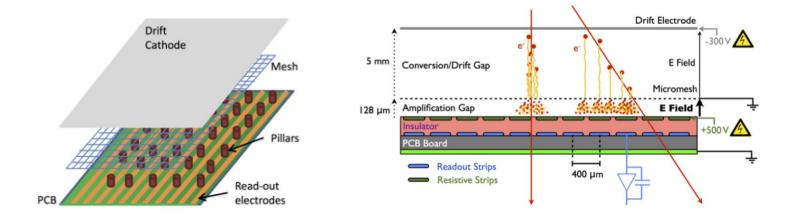
Much simpler than many other MPGDs, such as GEMs or MicroMegas Rate capability: a few tens of KHz/cm² Position resolution: ~60 μm Time resolution: 5-6 ns

Micro Mesh Gaseous Structure (Micromegas)


A planar drift electrode, a gas gap of a few millimeters thickness as conversion and drift region, and a thin metallic mesh typically 100–150 μ m distance from the readout electrode as the amplification region.

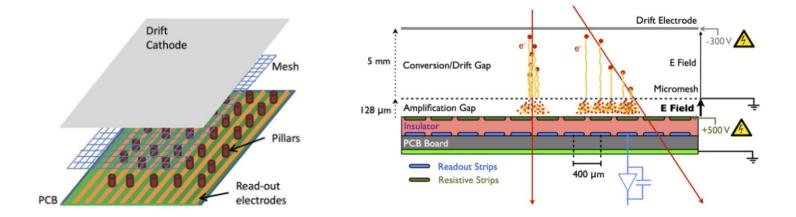
Micro Mesh Gaseous Structure (Micromegas)

A planar drift electrode, a gas gap of a few millimeters thickness as conversion and drift region, and a thin metallic mesh typically 100–150 μ m distance from the readout electrode as the amplification region.


Good spatial resolution < 100 μm, time resolution ~ 10ns

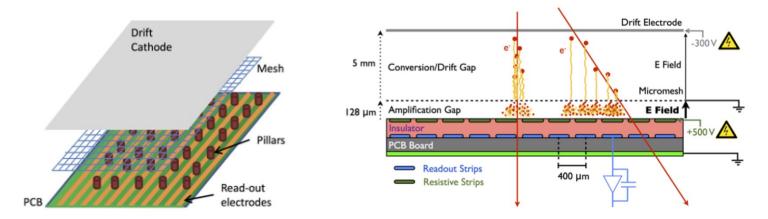
Micro Mesh Gaseous Structure (Micromegas)

A planar drift electrode, a gas gap of a few millimeters thickness as conversion and drift region, and a thin metallic mesh typically 100–150 μ m distance from the readout electrode as the amplification region.

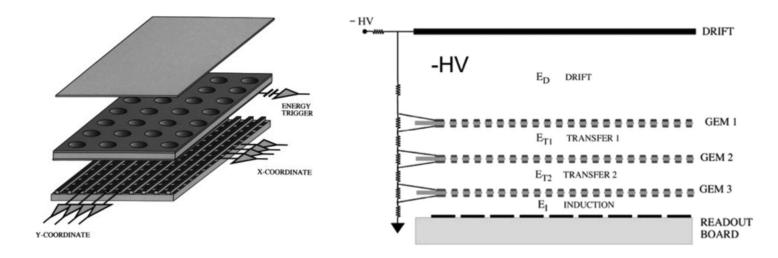

- Good spatial resolution < 100 μm, time resolution ~ 10ns
- High rate capability: ~10MHz/cm²

Micro Mesh Gaseous Structure (Micromegas)

A planar drift electrode, a gas gap of a few millimeters thickness as conversion and drift region, and a thin metallic mesh typically 100–150 μ m distance from the readout electrode as the amplification region.


- Good spatial resolution < 100 μm, time resolution ~ 10ns
- High rate capability: ~10MHz/cm²
- Vulnerability to sparking

Micro Mesh Gaseous Structure (Micromegas)

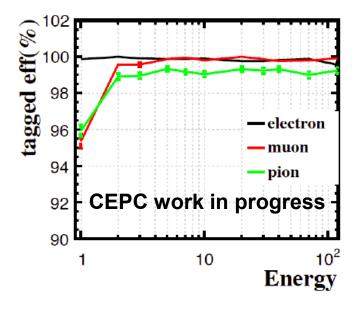

A planar drift electrode, a gas gap of a few millimeters thickness as conversion and drift region, and a thin metallic mesh typically 100–150 μ m distance from the readout electrode as the amplification region.

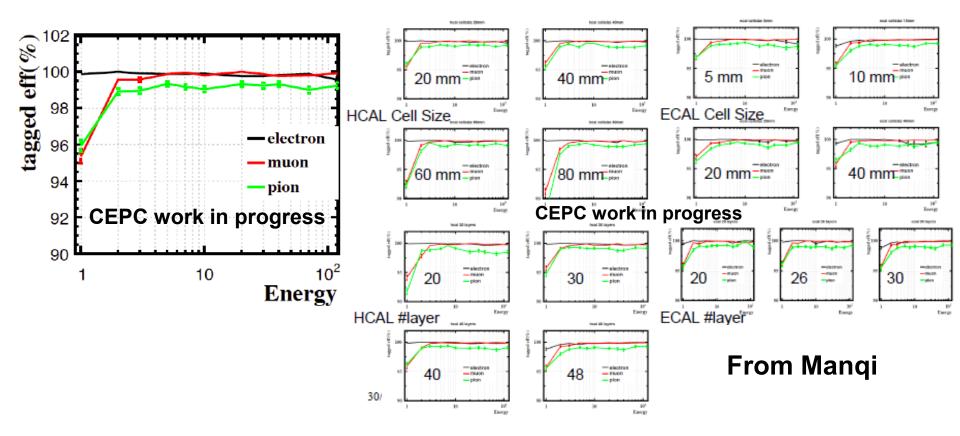
- Good spatial resolution < 100 μm, time resolution ~ 10ns
- High rate capability: ~10MHz/cm²
- Vulnerability to sparking
- Large active area (10⁴m²) Micromegas still under development

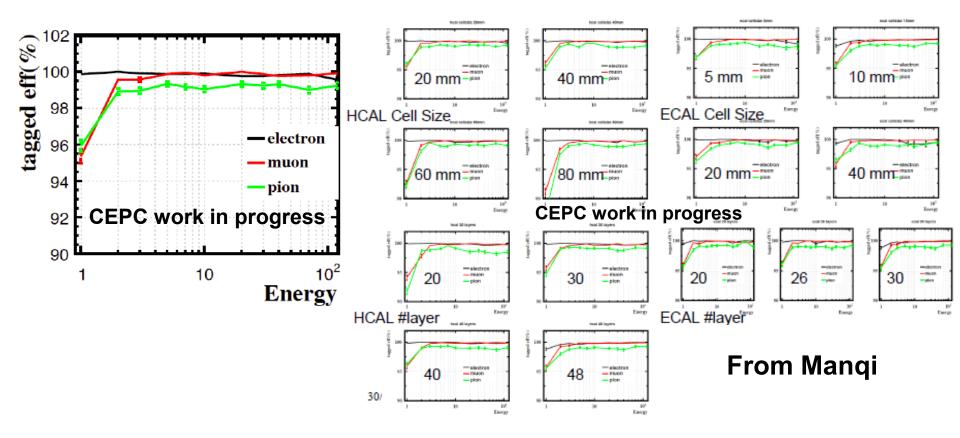
Gas Electron Multiplier (GEM) technology

- Gaseous ionization detector using copper-clad Kapton foil (50-70 μm thick) with etched holes (30-50 μm diameter) for gas amplification.
- Very good spatial resolution ~ diameter, time resolution ~10-20ns
- High rate capability: ~10MHz/cm²
- Vulnerability to sparking
- Complexity of assembly procedure: stretching and gluing GEM foils

Monitored Drift Tube (MDT) technology


- Wire chamber: an anode wire at center of tube and a metallic cathode (aluminum) with gas in between
- Good spatial resolution ~ 80µm, good time resolution ~10ns
- Rate capability: ~500Hz/cm²


Monitored Drift Tube (MDT) technology


- Wire chamber: an anode wire at center of tube and a metallic cathode (aluminum) with gas in between
- Good spatial resolution ~ 80µm, good time resolution ~10ns
- Rate capability: ~500Hz/cm²

Scintillator Strips technology

- Plastic scintillator material can be extruded into strips longer than 5 m. Use wave-length shifting (WLS) fibers to shift the light spectrum to match the response of Si photo-diodes (SiPM) or multi pixel photo counters (MPPC)
- Construct compact and rigid modules with 1-D or 2D readout strip arrays
- Spatial resolution ~ 3 cm, time resolution < 1 ns
- Extrusion techniques with massive production required

- PFA has done a terrific job in terms of Lepton ID
- No significant degradation for E > 2 GeV charged particles

Muon system as an add-on

International Workshop on High Energy Circular Electron Positron Collider

Muon system as an add-on

- Simulation study with built-in calorimeter / TCMT geometry, also integrated with yoke and magnet system
- Complementary to Calorimeter

Muon system as an add-on

- Simulation study with built-in calorimeter / TCMT geometry, also integrated with yoke and magnet system
- Complementary to Calorimeter
 - Effect as a tail catcher / muon tracker (TCMT) JER with/wo TCMT
 - Study ongoing

Muon system as an add-on

- Simulation study with built-in calorimeter / TCMT geometry, also integrated with yoke and magnet system
- Complementary to Calorimeter
 - Effect as a tail catcher / muon tracker (TCMT) JER with/wo TCMT
 - Study ongoing
 - Preliminary test with fast simulation: the level of improvement depends on the energy deposited in the muon detector, ranging from 1% (energy compensation ~ 1GeV) to 8% (energy compensation ~ 10GeV or more)

 Long-lived particles optimization: explore new physics scenario of long-lived particles and exotic decays. Optimize detector parameters and technologies.

- Long-lived particles optimization: explore new physics scenario of long-lived particles and exotic decays. Optimize detector parameters and technologies.
- Layout and geometry optimization: detailed studies on the structure of the segments and modules. The geometry and dimensions need to be optimized together with the inner detectors, in particular the ECAL and the HCAL.

- Long-lived particles optimization: explore new physics scenario of long-lived particles and exotic decays. Optimize detector parameters and technologies.
- Layout and geometry optimization: detailed studies on the structure of the segments and modules. The geometry and dimensions need to be optimized together with the inner detectors, in particular the ECAL and the HCAL.
- Gas detectors: Study aging effects, improve long-term reliability and stability.

- Long-lived particles optimization: explore new physics scenario of long-lived particles and exotic decays. Optimize detector parameters and technologies.
- Layout and geometry optimization: detailed studies on the structure of the segments and modules. The geometry and dimensions need to be optimized together with the inner detectors, in particular the ECAL and the HCAL.
- Gas detectors: Study aging effects, improve long-term reliability and stability.

All detectors: Improve massive and large area production procedures and readout technologies.

✓ Muon detector baseline design with RPC.

✓ Muon detector baseline design with RPC.

✓ Survey of various detector options.

✓ Muon detector baseline design with RPC.

- ✓ Survey of various detector options.
- ✓ Lots of R&D to be done.

✓ Muon detector baseline design with RPC.

- ✓ Survey of various detector options.
- ✓ Lots of R&D to be done.
- International/domestic collaboration welcome.