CEPC TPC dE/dx Performance Studies

Fenfen An^{1,2}, Chunhui Chen², Soeren Prell², Manqi Ruan¹ (1) IHEP, (2) Iowa State University

On behavior of the CEPC Study Group

1

π -K separation with dE/dx at TPC

Efficient π - K separation is highly appreciated for CEPC Z pole program dE/dx is a natural tool for π - K separation, even at E > 10 GeV

Study done at CEPC-v1 (ILD TPC Geometry): 220 radial layers (with 6*1 mm² cells) between R = 390 – 1710 mm

Key questions:

How good is the performance? How well is the dE/dx resolution preserved after readout?

Prediction of Bethe-Bloch...

3

Validation of Geant 4 Simulation...

Fig. 1 Variation of the ionizing energy *I* versus (left) $\beta \gamma$ and (right) *p* of particles in argon-based gas (93% Ar+5% CH₄+2% CO₂) in simulation.

Good agreement between Geant4 simulation and Bethe-Bloch prediction

Parameterized dE/dx Truth Resolution

Including ionization, drift, diffusion to read-out pads, but not including readout (amplification, cross-talk, etc.), backgrounds, etc.

Reference to existing experiments

Experiment	PEP-4	TOPAZ	DELPHI	ALEPH	STAR	ALICE	CEPC
•	[21–23]	[24]	[25, 26]	[27, 28]	[29, 30]	[4, 31]	
Year	1982	1987	1989	1989	2000	2009	-
Particle Collide	e ⁻ /e ⁺	Au/Au	p/p	e ⁻ /e ⁺			
Ebeam (GeV)	14	26	45.6	45.6	100	1380	125
	Ar: 0.8	Ar: 0.9	Ar: 0.8	Ar: 0.91	Ar: 0.9	Ne: 0.857	Ar: 0.93
Gas	CH4: 0.2	CH4: 0.1	CH4: 0.2	CH4: 0.09	CH4: 0.1	CO2: 0.095	CH4: 0.05
						N2: 0.048	CO2: 0.02
Pressure (atm)	8.5	3.5	1	1	1	1	1
ρ (mg/ml)	12.43	5.47	1.46	1.57	1.56	0.95	1.73
n	183	175	192	344	13, 32 ²	63,64,32	222
h (mm)	4	4	4	4	12, 20	7.5,10,15	6
L (mm)	2000	3000	2680	4400	4200	4994	4700
Control Sample	e	π	π	e	π	π	π
(GeV/c)	14	0.4-0.6	0.4-0.6	45.6	0.4-0.6	6.0	5.0
Truncation	0-65%	0-65%	8-80%	8-60%	0-70%	0-60%	0-90%
N _{eff}	n	0.7n ³	0.6n ⁴	338	44	149	0.9n
$\overline{(\sigma_I/I)_{MC}}$	2.6%	3.8%	5.4%	3.0%	5.3%	3.3%	3.1%
$(\sigma_I/I)_{exp}$	3.5%	4.6%	6.2%	4.4%	6.8% ⁵	5.0%	4.6%
$\left \frac{(\sigma_I/I)_{exp}}{(\sigma_I/I)_{MC}}-1\right $	0.35	0.21	0.15	0.47	0.28	0.52	0.50

Table 1 Properties of TPCs in previous experiments. Comparison of the relative dE/dx resolution between MC and experimental measurements.

Worst case: total dE/dx resolution is 50% worse than MC Truth ₆

$$S = \frac{\langle dE/dx \rangle_A - \langle dE/dx \rangle_B}{\sqrt{(\sigma_{dE/dx})_A^2 + (\sigma_{dE/dx})_B^2}}$$

Fig. 4 Separation power between kaon and pion in 2-D $(p, \cos\theta)$ space assuming 90% effective hits and deterioration of 0.5 arising in experimental measurements.

Z→qq Differential Distributions of Track Momenta

Overall performance: integrate separation over polar angle and/or momentum

Particle Identification (PID) Performance

Separation range: MC truth w/o degradation (top of band) to 50% degradation (bottom of band) 50% degraded performance + 50 ps σ ToF information (measured from the ECAL)

Overall PID Performance

K efficiency & purity at Z pole

 π yield is roughly 8x kaon yield, which is 1.4x proton yield

Integrated over 2 – 20 GeV momentum range and the fiducial polar angle range

Condition		#σ(π-К / К-р)	K Efficiency	K Purity
MC Truth	dE/dx only	3.9 / 1.5	88%	86%
	+ TOF	4.0 / 3.2	98%	98%
20% degraded	dE/dx only	3.1 / 1.2	81%	79%
	+ TOF	3.3 / 3.0	96%	96%
50% degraded	dE/dx only	2.4 / 0.9	68%	68%
	+ TOF	2.8 / 2.9	91%	94%

Hand waving objective:

To understand the source of degrading, and control it to be less than 20%.

dE/dx and PID Summary

dE/dx (LCTPC setup) + ToF (50 ps resolution) has reasonable π - K separation for CEPC at Z pole – good for flavor physics

Effect of Gain / DAQ / Readout:

Experimental data exhibits degrading of 15 - 50% w.r.t. MC Truth

Induced by hit energy resolution, gain homogeneity, stability, etc.

ToF information:

Closes the K - π gap at 1 GeV

Makes a significant impact for the conservative case of (degrading ~ 50%)

Would be great if the degradation can be controlled to 20% or less

Is it feasible? & HOW? & Tests & Roadmap?

Remark:

Depends on the Bethe-Bloch prediction – How is it validated on experimental data at hadrons with $E \sim 10 \text{ GeV}$?

Geometry optimizations may lead to improvements on dE / dx measurements