

INTERNATIONAL WORKSHOP ON HIGH ENERGY CIRCULAR ELECTRON POSITRON COLLIDER

> November 6-8, 2017 IHEP, Beijing

Heavy Quarkonium Physics at CEPC

- ♦ QCD Final frontier of the SM physics
- Heavy quarkonium production in QCD
- \diamond Heavy quarkonium at CEPC go beyond the SM
- \diamond Summary and outlook

Jianwei Qiu Theory Center, Jefferson Lab

The great success of the SM physics

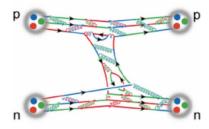
					[fb ⁻¹]	
рр				4	50×10 ⁻⁸	PLB 761 (2016) 158
			0	o	8×10 ⁻⁸	Nucl. Phys. B, 486-548 (2
ets R=0.4			$0.1 < p_{\rm T} < 2 {\rm TeV}$ O	<u>o</u>	4.5	JHEP 02, 153 (2015)
ijets R=0.4			< m _{jj} < 5 TeV O	0	4.5	JHEP 05, 059 (2014)
		$p_{\rm T} > 125 {\rm GeV}$			3.2	arXiv: 1701.06882 [hep-e>
γ	$p_{\rm T} > 25 {\rm GeV}$				20.2	JHEP 06 (2016) 005
	p _T > 100 GeV O			lo	4.6	PRD 89, 052004 (2014)
w		o [□]			0.081	PLB 759 (2016) 601
				<u>Y</u>	4.6	arXiv:1612.03016 [hep-ex JHEP 02 (2017) 117
z		, <u> </u>		K	20.2	JHEP 02 (2017) 117
2	$p_{T} > 125 \text{ GeV} \square p_{T} > 25 \text{ GeV} \square$ $p_{T} > 100 \text{ GeV} \square$			5	4.6	JHEP 02 (2017) 117
		ŭ			3.2	PLB 761 (2016) 136
tī		ب ۸		<u>ل</u>	20.2	EPJC 74: 3109 (2014)
				16	4.6	EPJC 74: 3109 (2014)
					3.2	arXiv:1609.03920 [hep-ex
t _{t-chan}		۵ ۲			20.3	arXiv:1702.02859 [hep-ex
•t-chan		õ	Theory	5	4.6	PRD 90, 112006 (2014)
				0	3.2	arXiv: 1702.04519 [hep-e
ww		Δ		00	20.3	PLB 763, 114 (2016)
		ō	LHC pp √s = 7 TeV	5	4.6	PRD 87, 112001 (2013)
γγ		ŏ	Data	ō	4.9	JHEP 01, 086 (2013)
			• stat	Tom	3.2	arXiv:1612.07231 [hep-e
Wt			stat ⊕ syst	<u> </u>	20.3	JHEP 01, 064 (2016)
		<u>כ</u>	siai 🕀 sysi		2.0	PLB 716, 142-159 (2012
			LHC pp $\sqrt{s} = 8$ TeV	Ū.	3.2	PLB 762 (2016) 1
WZ		Δ		4	20.3	PRD 93, 092004 (2016)
		0	Data	φ	4.6	EPJC 72, 2173 (2012)
	[stat	Þ	3.2	PRL 116, 101801 (2016)
ZZ	Δ		stat ⊕ syst		20.3	JHEP 01, 099 (2017)
	0		-		4.6	JHEP 03, 128 (2013)
t _{s-chan}	ـــــــــــــــــــــــــــــــــــــ		LHC pp $\sqrt{s} = 13 \text{ TeV}$		20.3	PLB 756, 228-246 (2016)
Wγ	O		Data	þ	4.6	PRD 87, 112003 (2013) arXiv:1407,1618 [hep-ph]
Zγ	Δ			₽	20.3	arXiv:1407,1618 [hep-ph] PRD 87, 112003 (2013)
-/	<u> </u>		stat	•	4.6	arXiv:1407.1618 [hep-ph
tŦW			stat ⊕ syst		3.2	EPJC 77 (2017) 40
	<u>۵</u>				20.3	JHEP 11, 172 (2015)
tīZ	_ •				3.2	EPJC 77 (2017) 40
tīγ	~ ~				20.3	JHEP 11, 172 (2015) PRD 91, 072007 (2015)
	m _{ii} > 1TeV ▲		_		4.6	
Wjj ewk	$m_{jj} > 500 \text{GeV}$	ATLAS	Preliminary		4.7	arXiv:1703.04362 [hep-ex arXiv:1703.04362 [hep-ex
Zjjewk			,		20.3	JHEP 04, 031 (2014)
					20.3	PRD 93, 112002 (2016)
$\mathbf{Z}_{\gamma\gamma}$ $\mathbf{W}_{\gamma\gamma}$		Kun 1,2	$\sqrt{s} = 7, 8, 13 \text{ TeV}$		20.3	PRL 115, 031802 (2015)
±Ŵ [±] jj ewk					20.3	arXiv: 1611.02428 [hep-e
					20.3	PRD 93, 092004 (2016)
[<u>M</u>			
1		102 1-2				
10-4	10^{-3} 10^{-2} 10^{-1} 1 10^{1}	$10^2 10^3$	$10^4 \ 10^5 \ 10^6 \ 10^{11}$ ().5 1 1.5 2 2.5)	
10						
10	10 10 10 - 10	10 10		ata/theory		

SM: Electroweak processes + QCD perturbation theory works!

QCD – Final frontier of the SM physics

□ How QCD works to get all of us – the visible world?

QCD – Final frontier of the SM physics


□ How QCD works to get all of us – the visible world?

- □ How hadrons are **emerged** from quarks and gluons?
- □ What is the quark/gluon structure of nucleon and nuclei?
- □ How does QCD make up the properties of hadrons?

Their mass, spin, magnetic moment, ...

□ How does the nuclear force arise from QCD?

Why QCD is so hard to deal with?

- □ It is strongly coupled nonlinear + nonperturbative!
- □ It is relativistic nontrivial QCD vacuum, no still picture!
- No localized mass/charge center unlike nucleus in an atom!
- Gluons are "dark" and carry "color" intellectual challenge!

Why QCD is so hard to deal with?

- □ It is strongly coupled nonlinear + nonperturbative!
- □ It is relativistic nontrivial QCD vacuum, no still picture!
- □ No localized mass/charge center unlike nucleus in an atom!
- □ Gluons are "dark" and carry "color" intellectual challenge!
 - How to probe the quark-gluon dynamics, quantify the hadron structure, study the emergence of hadrons, ..., if we cannot see quarks and gluons?

Why QCD is so hard to deal with?

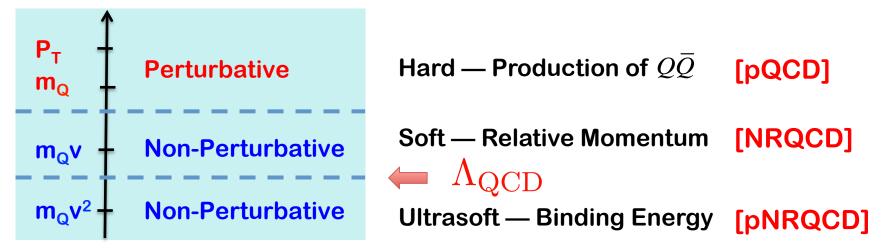
- It is strongly coupled nonlinear + nonperturbative!
- □ It is relativistic nontrivial QCD vacuum, no still picture!
- □ No localized mass/charge center unlike nucleus in an atom!
- Gluons are "dark" and carry "color" intellectual challenge!

How to probe the quark-gluon dynamics, quantify the hadron structure, study the emergence of hadrons, ..., if we cannot see quarks and gluons?

Heavy quarkonium:

- $\diamond\,$ Heavy quark as relatively localized heavy mass/charge center
- ♦ Heavy quark in the pair's rest frame is almost non-relativistic
- Production of heavy quark pair could be perturbative
- $\diamond\,$ Top decays too quickly, strange is too light, \ldots

Charmonium ($_{c\overline{c}}$) + Bottomonium ($_{b\overline{b}}$)

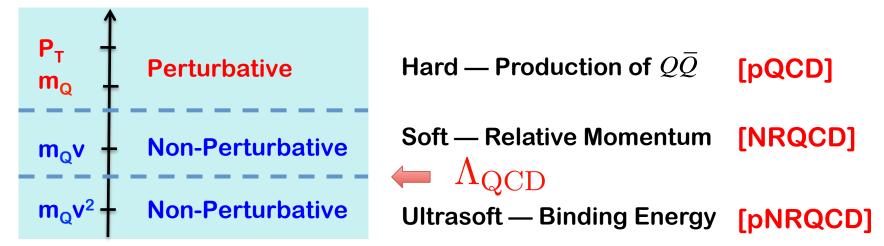

c	$1.0-1.4~{ m GeV}$
b	$4.0-4.5~{ m GeV}$

□ One of the simplest QCD bound states:

Localized color charges (heavy mass), non-relativistic relative motion

Charmonium: $v^2 \approx 0.3$ **Bottomonium:** $v^2 \approx 0.1$

Well-separated momentum scales – effective theory:

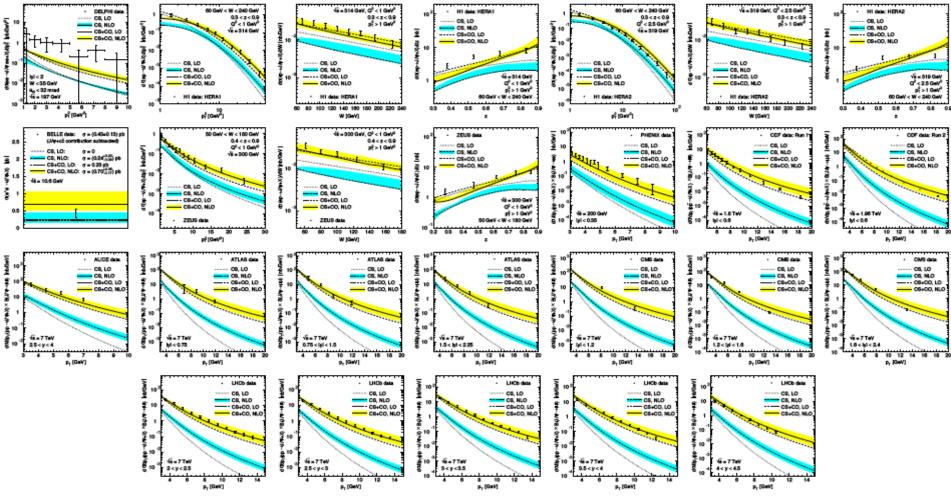


□ One of the simplest QCD bound states:

Localized color charges (heavy mass), non-relativistic relative motion

Charmonium: $v^2 \approx 0.3$ **Bottomonium:** $v^2 \approx 0.1$

Well-separated momentum scales – effective theory:

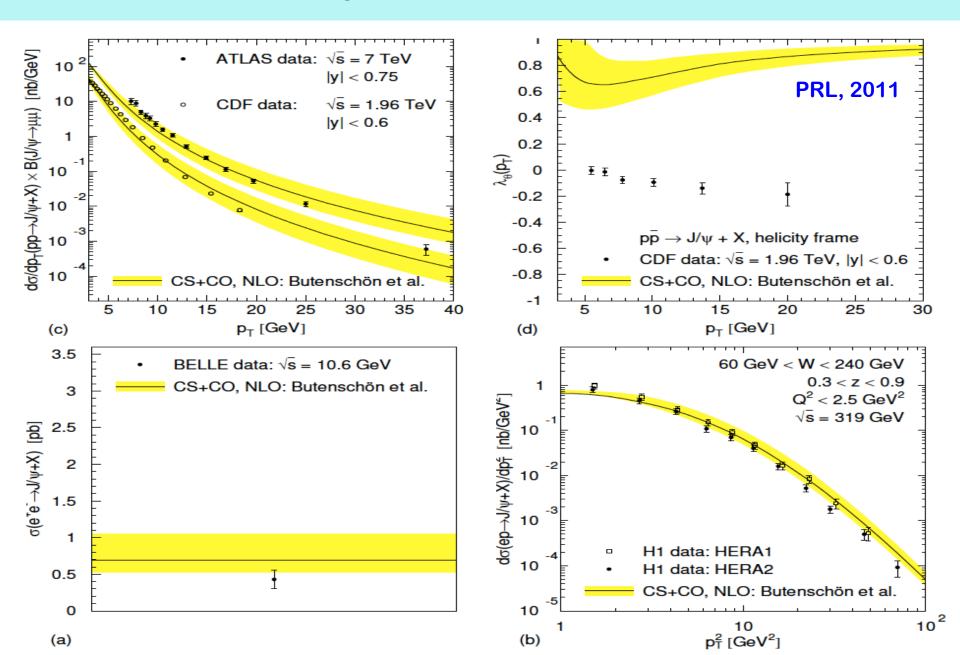


Cross sections and observed mass scales:

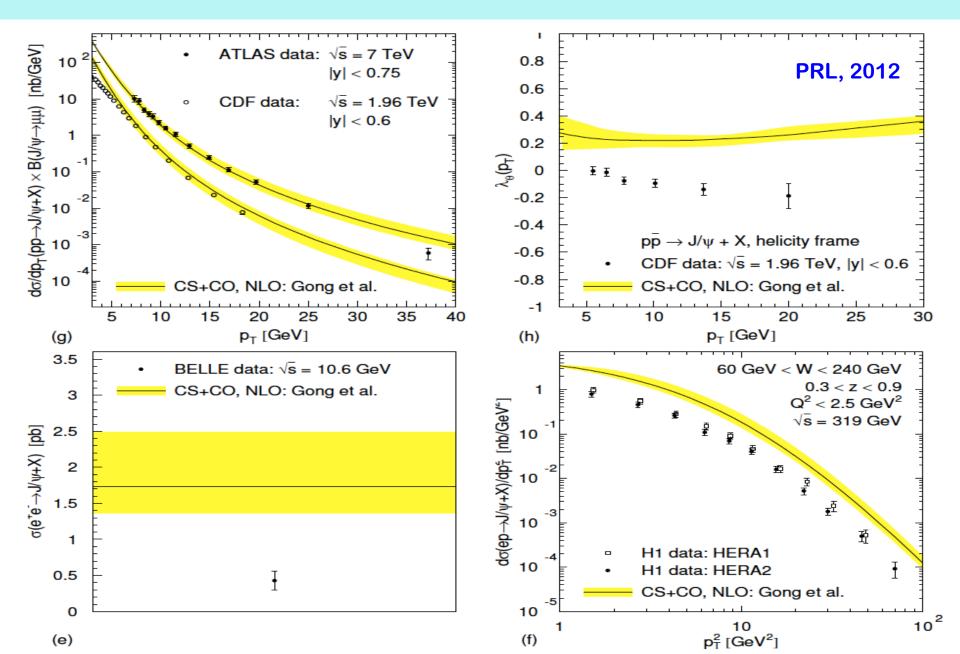
 $\frac{d\sigma_{AB\to H(P)X}}{dydP_T^2} \qquad \sqrt{S}, \qquad P_T, \qquad M_H,$

PQCD is "expected" to work for the production of heavy quarks Ideal probe: Emergence of a quarkonium from a heavy quark pair?

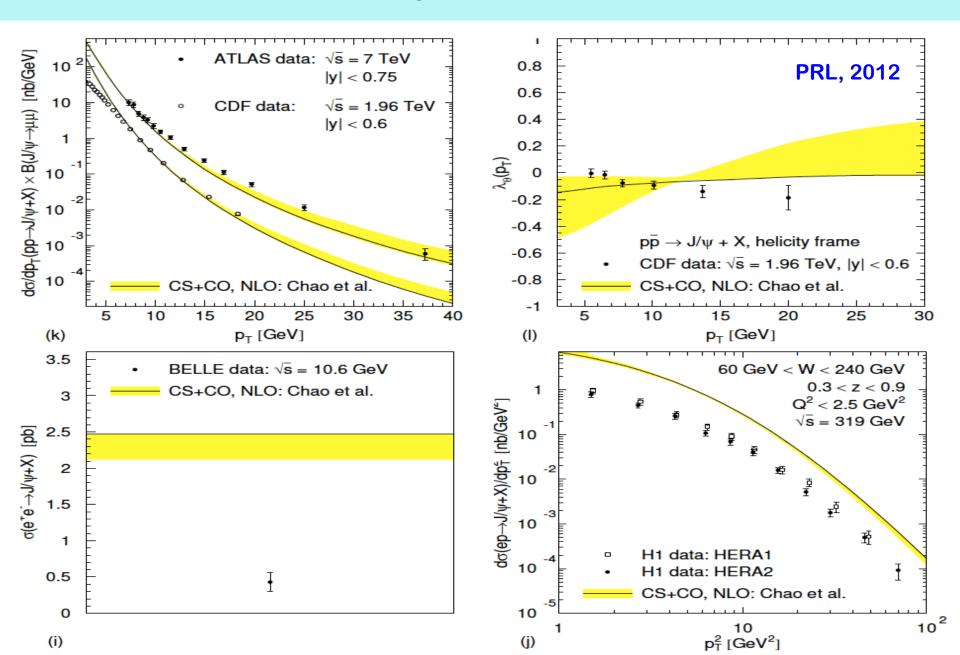
NRQCD – global analysis


194 data points from 10 experiments, fix singlet $<O[^{3}S_{1}^{[1]}]> = 1.32 \text{ GeV}^{3}$

 $< O[^{1}S_{0}^{[8]}] > = (4.97 \pm 0.44) \cdot 10^{-2} \text{ GeV}^{3}$ $< O[^{3}S_{1}^{[8]}] > = (2.24 \pm 0.59) \cdot 10^{-3} \text{ GeV}^{3}$ $< O[^{3}P_{0}^{[8]}] > = (-1.61 \pm 0.20) \cdot 10^{-2} \text{ GeV}^{5}$


 $\chi^2/d.o.f. = 857/194 = 4.42$

Butenschoen and Kniehl, arXiv: 1105.0820

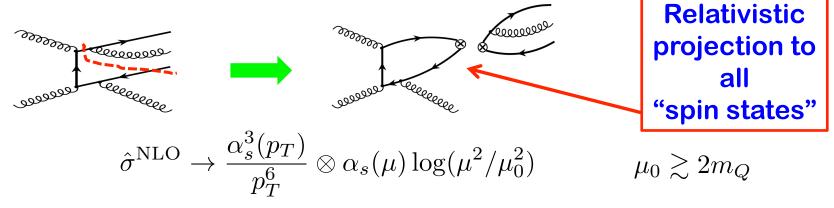

NLO theory fits – Butenschoen et al.

NLO theory fits – Gong et al.

NLO theory fits – Chao et al.

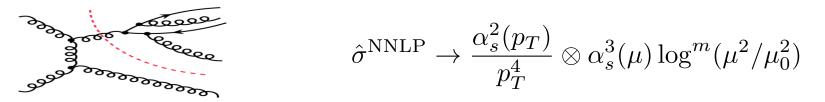
Why high order corrections are so large?

P/2



CSM and NRQCD spin-1 projection NNLP in 1/p_T!

I NLO in α_s but lower power in $1/p_T$:


 \Box LO in α_s but higher power in $1/p_T$:

LO in α_s :

 $\sim_{P/2} \qquad \hat{\sigma}^{
m LO} \propto rac{lpha_s^3(p_T)}{p_{T}^8} \, .$

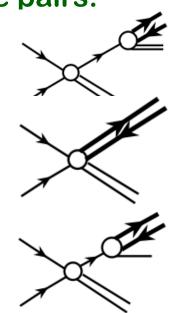
\Box NNLO in α_s but leading power in $1/p_T$:

Leading order in α_s -expansion =\= leading power in 1/p_T-expansion!

New factorization formalism

□ Factorization formalism:

Kang, Qiu and Sterman, 2010


$$d\sigma_{A+B\to H+X}(p_T) = \sum_{i} d\hat{\sigma}_{A+B\to i+X}(p_T/z,\mu) \otimes D_{i\to H}(z,m_Q,\mu)$$

+
$$\sum_{[Q\bar{Q}(\kappa)]} d\hat{\sigma}_{A+|B\to[Q\bar{Q}(\kappa)]+X}(P_{[Q\bar{Q}(\kappa)]} = p_T/z,\mu)$$

+
$$\mathcal{O}(m_Q^4/p_T^4) \otimes D_{[Q\bar{Q}(\kappa)]\to H}(z,m_Q,\mu)$$

□ Production of the pairs:

 \diamond at 1/m_Q:

 \diamond at 1/P_T:

♦ between: [1/m_Q , 1/P_T]

 $D_{i
ightarrow H}(z,m_Q,\mu_0)$ Transversely polarized pair

 $d\hat{\sigma}_{A+B\to [Q\bar{Q}(\kappa)]+X}(P_{[Q\bar{Q}]}(\kappa),\mu)$ Longitudinally polarized pair

$$\frac{d}{d\ln(\mu)} D_{i \to H}(z, m_Q, \mu) = \dots$$
$$+ \frac{m_Q^2}{\mu^2} \Gamma(z) \otimes D_{[Q\bar{Q}(\kappa) \to H}(\{z_i\}, m_Q, \mu)]$$

Quarkonium 2017

The 12th International Workshop on Heavy Quarkonium

November 6-10, 2017, PKU, Beijing, China Organized by the Quarkonium Working Group

http://itp.phy.pku.edu.cn/conference/qwg2017/

Electron-positron collider – CEPC

□ Ideal for studying the emergence of hadrons:

 $e^+ + e^- \rightarrow$ "Energy" \rightarrow Hadrons + Leptons...

Electron-positron collider – CEPC

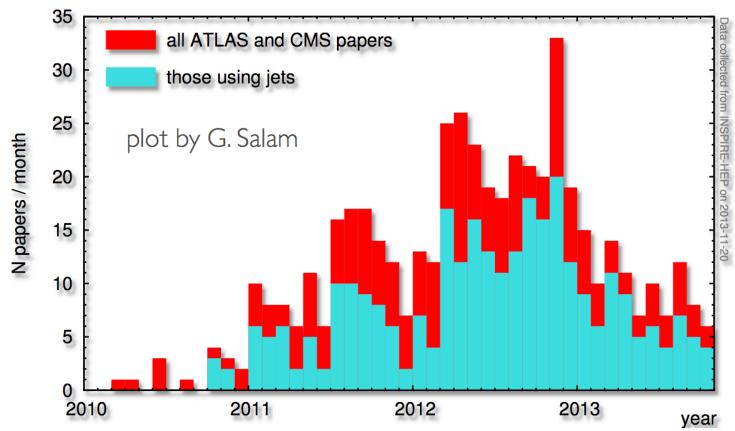
□ Ideal for studying the emergence of hadrons:

 $e^{+} + e^{-} \rightarrow \text{``Energy''} \rightarrow \text{Hadrons} + \text{Leptons...}$ $\square \text{ Puzzles at low energy:}$ $\sigma(e^{+}e^{-} \rightarrow J/\psi c\bar{c}) \qquad \text{Kiselev, et al 1994,}$ $Belle: \quad (0.87^{+0.21}_{-0.19} \pm 0.17) \text{ pb} \qquad \text{Cho, Leibovich, 1996}$ Yuan, Qiao, Chao, 1997 $\sigma(e^{+}e^{-} \rightarrow J/\psi c\bar{c})/\sigma(e^{+}e^{-} \rightarrow J/\psi X) \qquad \text{``Production rate of } J/\psi c\bar{c}$ $Belle: \quad 0.59^{+0.15}_{-0.13} \pm 0.12 \qquad \text{``Production rate of } J/\psi q\bar{q}, \dots$

channels combined!?"

Electron-positron collider – CEPC

□ Ideal for studying the emergence of hadrons:

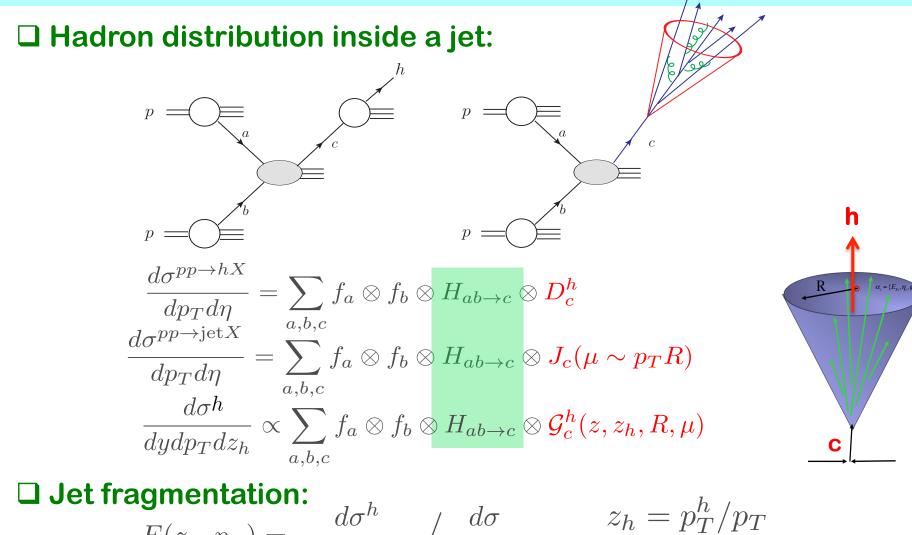

 $e^{+} + e^{-} \rightarrow \text{``Energy''} \rightarrow \text{Hadrons} + \text{Leptons...}$ $\square \text{Puzzles at low energy:}$ $\sigma(e^{+}e^{-} \rightarrow J/\psi c\bar{c})$ $\text{Belle:} (0.87^{+0.21}_{-0.19} \pm 0.17) \text{ pb}$ NRQCD: 0.07 pb $\sigma(e^{+}e^{-} \rightarrow J/\psi c\bar{c})/\sigma(e^{+}e^{-} \rightarrow J/\psi X)$ $\text{Belle:} 0.59^{+0.15}_{-0.13} \pm 0.12$ $\text{``Production rate of } J/\psi c\bar{c}$ $J/\psi gg, J/\psi q\bar{q}, ...$ channels combined!?''

□ At higher energy – CEPC:

 $e^+ + e^- \rightarrow$ "Energy" \rightarrow Jets $(J/\psi, ...) + ...$ *Complementary or better way to test QCD and the SM* $e^+ + e^- \rightarrow$ "Energy" \rightarrow H⁰ $(\rightarrow J/\psi(\Upsilon) + \gamma, ...) + ...$ *Potential for testing Higgs couplings, and beyond the SM*

Jets are everywhere at the LHC

□ 60-70% of ATLAS & CMS papers using iets in their analysis!



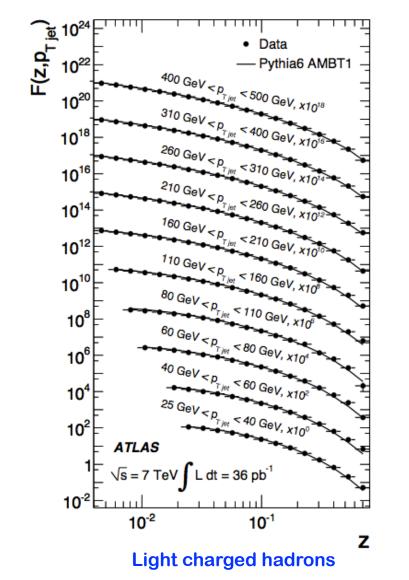
 \diamond Jets as a precision probe of QCD: precision α_s , g(x), ...

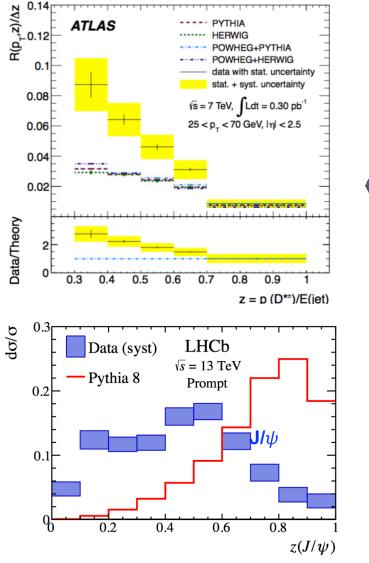
 \diamond Jets as a tool for BSM physics: jet correlation, jet sub-structure, ...

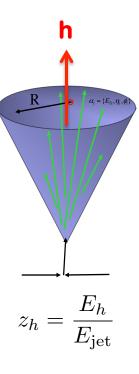
♦ Jet sub-structure: longitudinal vs transverse, …

Jet & jet fragmentation function

$$F(z_h, p_T) = \frac{a\sigma}{dydp_T dz_h} / \frac{a\sigma}{dydp_T}$$

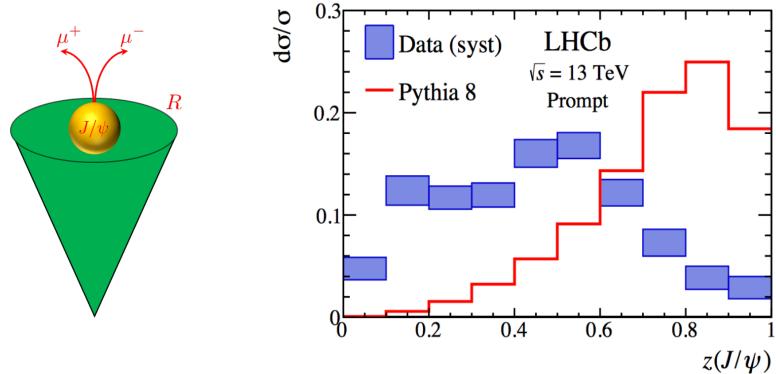

First produce a jet, and then look further for a hadron inside the jet!


$$z = p_T / p_T^c$$


Kang, Ringer, Vitev, arXiv:1606.07063

Lots of data at the LHC

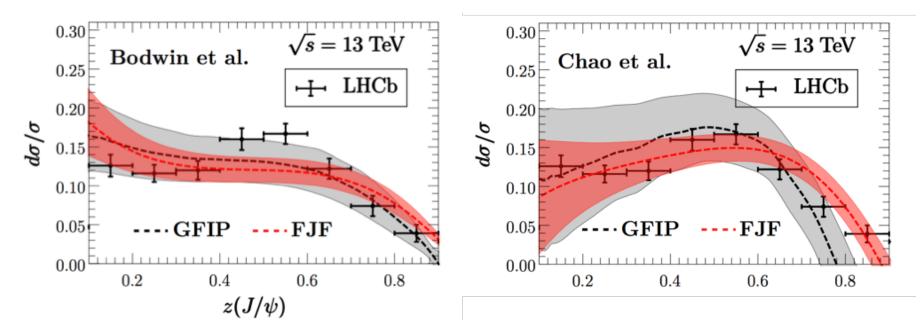
□ Hadron distribution inside a jet – puzzle for heavy flavor?



Quarkonium production inside a jet

 \Box J/ ψ -in-jet measurement from LHCb:

Production: Baumgart, et al., JHEP 14, Bain, et al., PRL17 Polarization: Kang, Ringer, Xing, et.al., PRL17


 $\frac{d\sigma^{J/\psi(\to \ell^+ \ell^-)}}{d\cos\theta} \propto 1 + \lambda_F \cos^2\theta \qquad \qquad \lambda_F = \begin{cases} +1, & \text{transversely polarized} \\ -1, & \text{longitudinally polarized} \end{cases}$

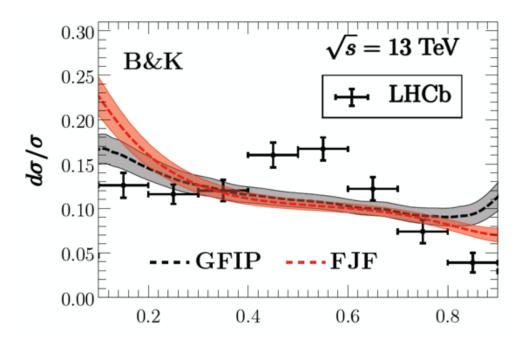
\mathbf{J}/ψ production in jets

□ Fitted NRQCD matrix elements:

Baumgart et al., JHEP14 Bain et al. PRL17

				$\langle {\cal O}^{J/\psi}({}^3P_0^{[8]}) \rangle /m_c^2$
	$\times { m GeV}^3$	$\times 10^{-2}~{\rm GeV^3}$	$ imes 10^{-2} { m GeV}^3$	$ imes 10^{-2} { m GeV}^3$
B & K [5, 6]	1.32 ± 0.20	0.224 ± 0.59	4.97 ± 0.44	-0.72 ± 0.88
Chao, et al. [12]	1.16 ± 0.20	0.30 ± 0.12	8.9 ± 0.98	0.56 ± 0.21
Bodwin et al. [13]	1.32 ± 0.20	1.1 ± 1.0	9.9 ± 2.2	0.49 ± 0.44

FJFs: fragmentation jet functions GFIP: gluon fragmentation improved PYTHIA

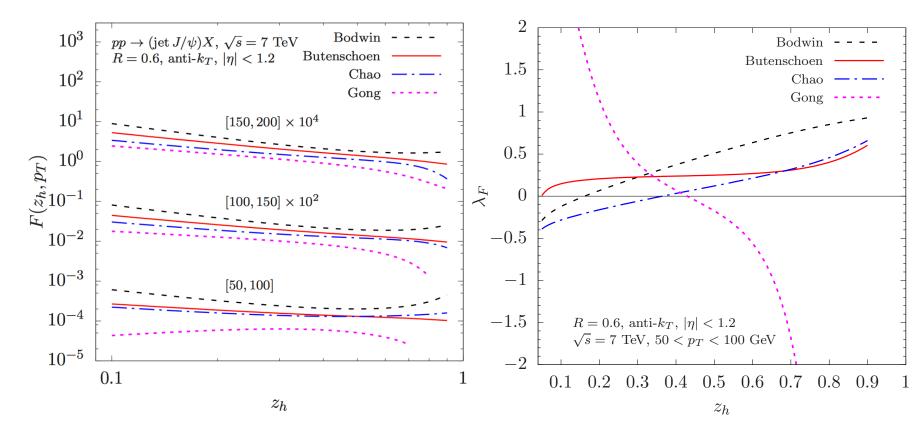

Two are consistent

J/ψ production in jets

□ Fitted NRQCD matrix elements:

Baumgart et al., JHEP14 Bain et al. PRL17

	$\langle \mathcal{O}^{J/\psi}({}^3S_1^{[1]}) \rangle$	$\langle \mathcal{O}^{J/\psi}({}^3S_1^{[8]})\rangle$	$\langle \mathcal{O}^{J/\psi}({}^1S_0^{[8]})\rangle$	$\langle \mathcal{O}^{J/\psi}(^{3}P_{0}^{[8]}) angle/m_{c}^{2}$
	$\times { m GeV}^3$	$\times 10^{-2}~{\rm GeV^3}$	$ imes 10^{-2} { m GeV}^3$	$ imes 10^{-2} { m GeV}^3$
B & K [5, 6]	1.32 ± 0.20	0.224 ± 0.59	4.97 ± 0.44	-0.72 ± 0.88
Chao, et al. [12]	1.16 ± 0.20	0.30 ± 0.12	8.9 ± 0.98	0.56 ± 0.21
Bodwin et al. [13]	1.32 ± 0.20	1.1 ± 1.0	9.9 ± 2.2	0.49 ± 0.44

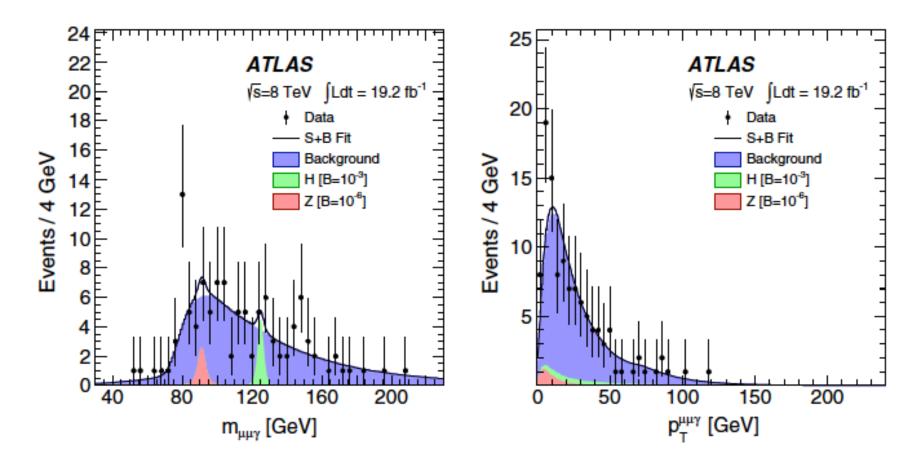

FJFs: fragmentation jet functions GFIP: gluon fragmentation improved PYTHIA

This fit has a poor agreement with jet data

J/ψ production and polarization in jets

□ Polarization is even more sensitive:

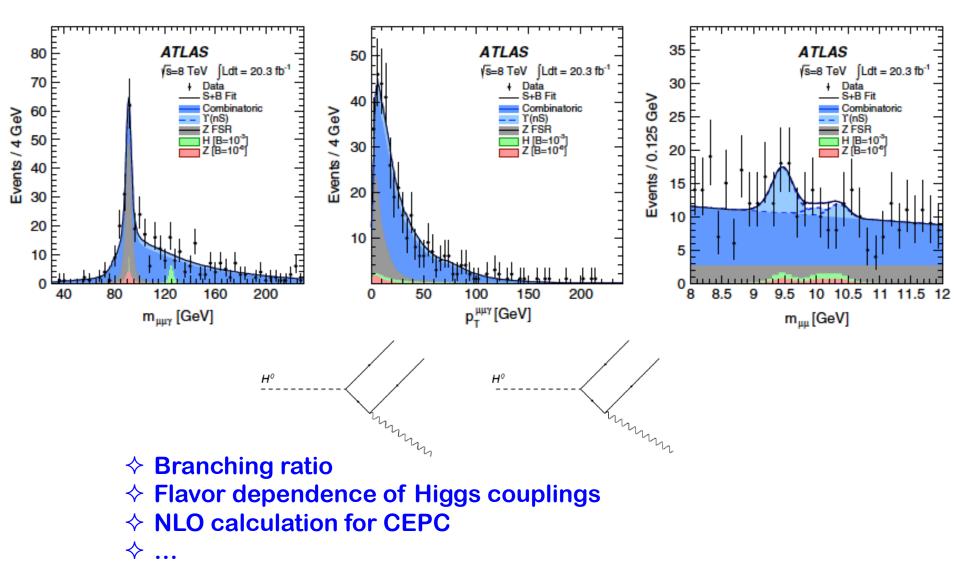
Kang, Qiu, Ringer, Xing, Zhang, PRL 2017 See also Bain, et al, PRL 2017



More differential than inclusive $J/\psi p_{\tau}$ spectrum, and can better discriminate different NRQCD parameterizations

Higgs decays to quarkonium + γ at the LHC

 \Box J/ ψ + isolated γ :

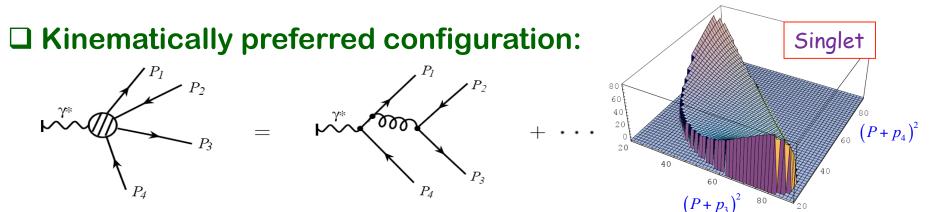

G. Aad et al. PRL114, 121801 (2015)

Higgs decays to quarkonium + γ at the LHC

\Box Y(n)+ isolated γ :

G. Aad et al. PRL114, 121801 (2015)

Summary and outlook


 $\Box\,$ It has been over 40 years since the discovery of J/ $\Psi\,$

- When p_T (E) >> m_Q at collider energies, earlier model calculations for the production of heavy quarkonia are not perturbatively stable
 LO in α_s-expansion may not be the LP term in m_Q/p_T(E)-expansion
- QCD factorization works for both LP and NLP (α_s for each power)
 Sub-leading power is very important for the p_T-shape and polarization
 There are still a lot of unanswered questions related to quarkonium!
- Quarkonium production and polarization in the jet could be very good observables to help pin down the production mechanism
- CEPC provides a clean and good environment for studying the emergence of heavy quarkonia/hadrons, and the potential for testing the SM and exploring the BSM physics

Thank you!

Backup slides

Associated production at B-factory

Production rate of a singlet charm quark pair is dominated by the phase space where $s_3 = (P_1 + P_2 + P_3)^2$ or $s_4 = (P_1 + P_2 + P_4)^2$ near its minimum

NRQCD formalism does not apply when there are more than one heavy quark velocity involved

Color transfer enhances associated heavy quarkonium production

A heavy quark as a color source to enhance the transition rate for an octet pair to become a singlet pair

Nayak, Qiu, Sterman, PRL 2007