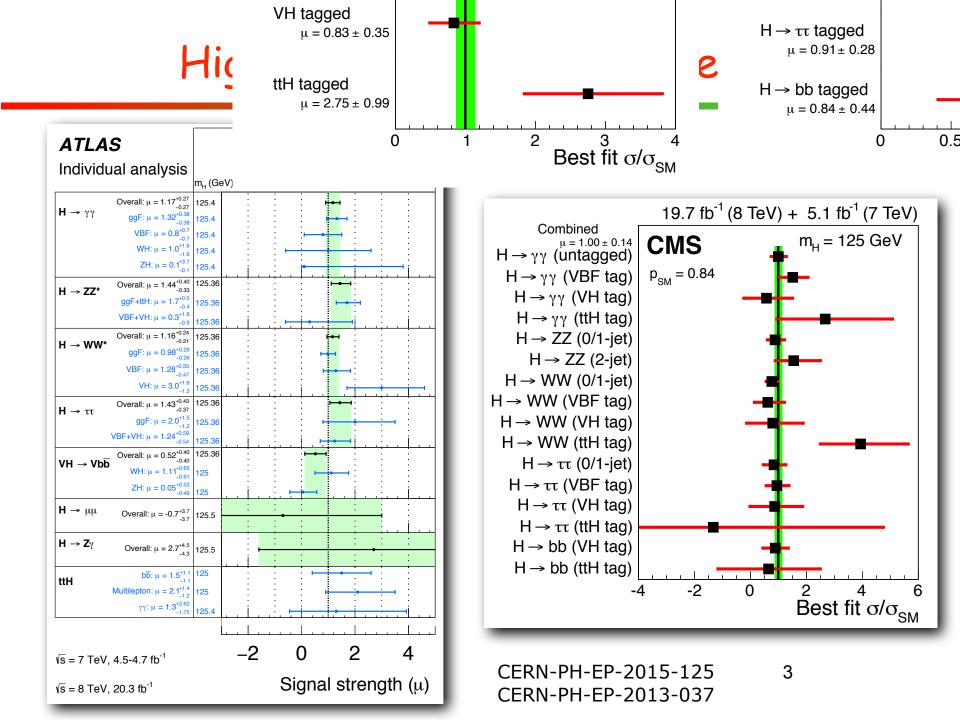
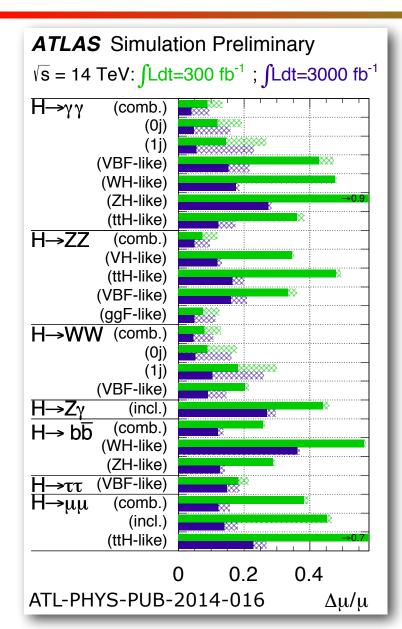
Implication of Higgs Factory Precision Measurements on New Physics Models



Shufang Su • U. of Arizona


CEPC Workshop Nov 6, 2017

Outline

- Higgs precision measurements
- Global fit framework
- Perturbative models
 - SM with a real singlet extension
 - **-2HDM**
- Strong dynamics
 - Minimal composite Higgs Model (MCHM)
 - General EFT patterns of strongly interacting models
- Conclusion

Higgs Precision Measurements

LHC: 14 TeV, 300 fb⁻¹, 3000 fb⁻¹

$\Delta\mu/\mu$	3	$800 \; \text{fb}^{-1}$	3000 fb^{-1}		
	All unc.	No theory unc.	All unc.	No theory unc.	
$H \rightarrow \gamma \gamma \text{ (comb.)}$	0.13	0.09	0.09	0.04	
(0j)	0.19	0.12	0.16	0.05	
(1j)	0.27	0.14	0.23	0.05	
(VBF-like)	0.47	0.43	0.22	0.15	
(WH-like)	0.48	0.48	0.19	0.17	
(ZH-like)	0.85	0.85	0.28	0.27	
(ttH-like)	0.38	0.36	0.17	0.12	
$H \rightarrow ZZ \text{ (comb.)}$	0.11	0.07	0.09	0.04	
(VH-like)	0.35	0.34	0.13	0.12	
(ttH-like)	0.49	0.48	0.20	0.16	
(VBF-like)	0.36	0.33	0.21	0.16	
(ggF-like)	0.12	0.07	0.11	0.04	
$H \rightarrow WW \text{ (comb.)}$	0.13	0.08	0.11	0.05	
(0j)	0.18	0.09	0.16	0.05	
(1j)	0.30	0.18	0.26	0.10	
(VBF-like)	0.21	0.20	0.15	0.09	
$H \to Z\gamma$ (incl.)	0.46	0.44	0.30	0.27	
$H \rightarrow b\bar{b} \text{ (comb.)}$	0.26	0.26	0.14	0.12	
(WH-like)	0.57	0.56	0.37	0.36	
(ZH-like)	0.29	0.29	0.14	0.13	
$H \rightarrow \tau\tau$ (VBF-like)	0.21	0.18	0.19	0.15	
$H \rightarrow \mu\mu \text{ (comb.)}$	0.39	0.38	0.16	0.12	
(incl.)	0.47	0.45	0 4 18	0.14	
(ttH-like)	0.74	0.72	0.27	0.23	

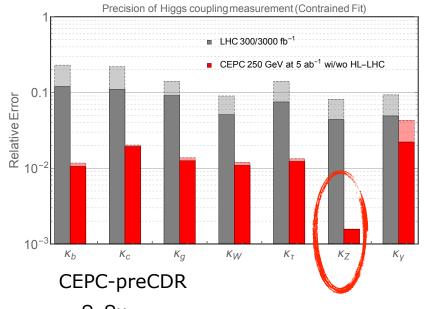
Higgs Precision Measurements

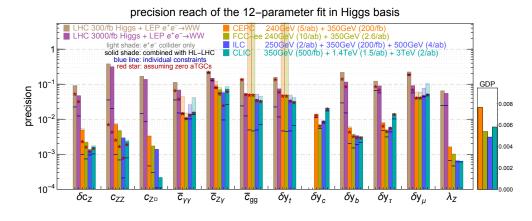
CEPC / FCC / ILC

collider	CEPC	FCC-ee	ILC							
\sqrt{s}	$240\mathrm{GeV}$	$240\mathrm{GeV}$	$250\mathrm{GeV}$	$350\mathrm{GeV}$		$500\mathrm{GeV}$				
$\int \mathcal{L}dt$	5 ab^{-1}	10 ab^{-1}	2 ab^{-1}	200	fb^{-1}	4 ab^{-1}				
production	Zh	Zh	Zh	Zh	$ u \bar{\nu} h$	Zh	$ u \bar{\nu} h$	$t ar{t} h$		
$\Delta\sigma/\sigma$	0.51%	0.4%	0.71%	2.1%	-	1.06	-	_		
decay		$\Delta(\sigma \cdot BR)/(\sigma \cdot BR)$								
$h o b ar{b}$	0.28%	0.2%	0.42%	1.67%	1.67%	0.64%	0.25%	9.9%		
$h \to c\bar{c}$	2.2%	1.2%	2.9%	12.7%	16.7%	4.5%	2.2%	-		
$h \rightarrow gg$	1.6%	1.4%	2.5%	9.4%	11.0%	3.9%	1.5%	-		
$h \to WW^*$	1.5%	0.9%	1.1%	8.7%	6.4%	3.3%	0.85%	-		
$h \to \tau^+ \tau^-$	1.2%	0.7%	2.3%	4.5%	24.4%	1.9%	3.2%	-		
$h o ZZ^*$	4.3%	3.1%	6.7%	28.3%	21.8%	8.8%	2.9%	-		
$h o \gamma \gamma$	9.0%	3.0%	12.0%	43.7%	50.1%	12.0%	6.7%	-		
$h \to \mu^+ \mu^-$	17%	13%	25.5%	97.6%	179.8%	31.1%	25.5%	_		
$(\nu\bar{\nu})h \to b\bar{b}$	2.8%	2.2%	3.7%	-	_	_	-	-		

S. Su CEPC-preCDR, TLEP Design Study Working Group, ILC Operating Scenarios.

Kappa framework and EFT Framework

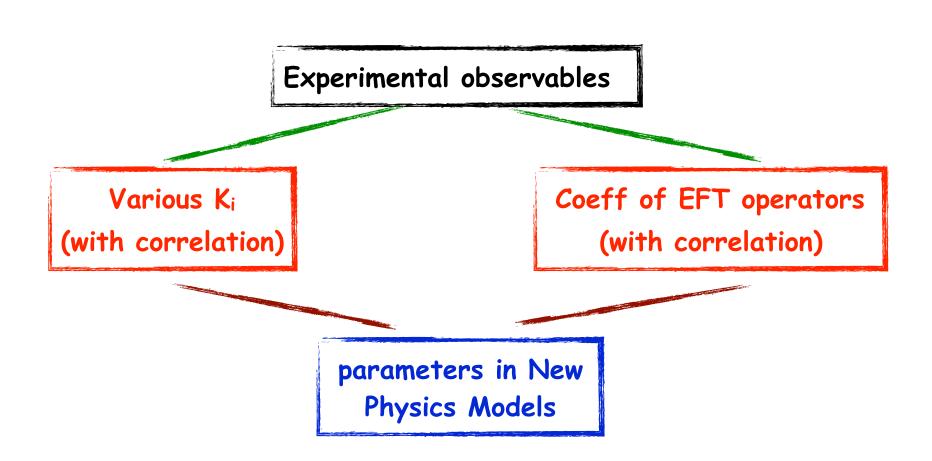

Two model-independent approaches


kappa framework

EFT framework

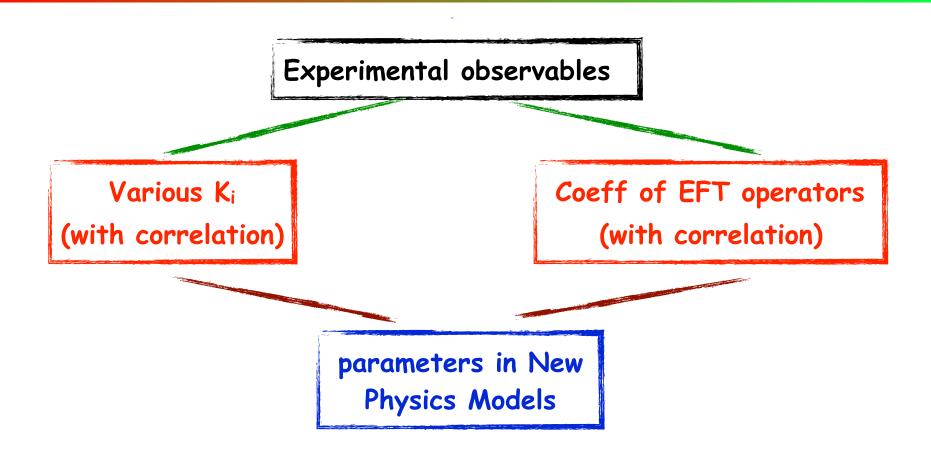
$$\kappa_f = \frac{g(hff)}{g(hff; SM)}, \ \kappa_V = \frac{g(hVV)}{g(hff; SM)}$$

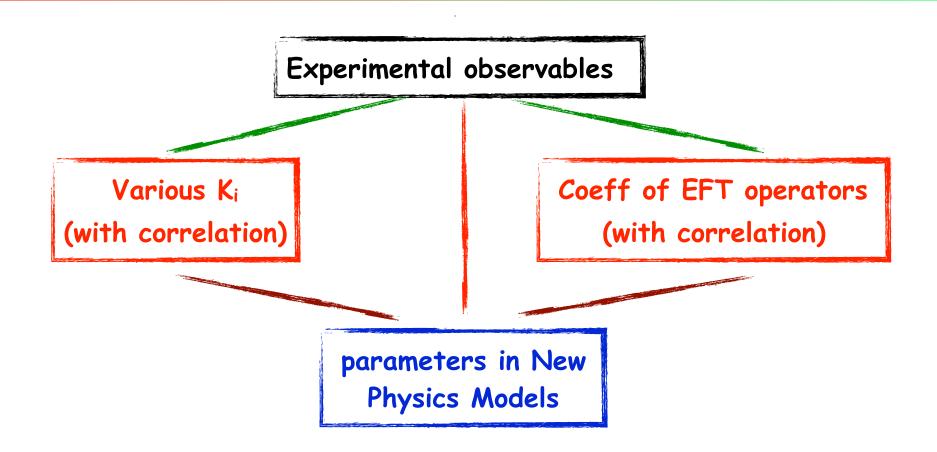
$$\delta c_Z\,, \quad c_{ZZ}\,, \quad c_{Z\square}\,, \quad c_{\gamma\gamma}\,, \quad c_{Z\gamma}\,, \quad c_{gg}\,, \quad \delta y_u\,, \quad \delta y_d\,, \quad \delta y_e\,, \quad \lambda_Z$$



1704.02333

S. Su


6



Kappa Framework and EFT Framework

limitations of model-independent approaches

- large level of degeneracy
 parameter space for specific model much smaller
- correlation matrix often not provided
 over conservative estimation when not include correlation
- assumptions and simplifications
 may not be valid for a particular model

Various K_i (with correlation)

Coeff of EFT operators (with correlation)

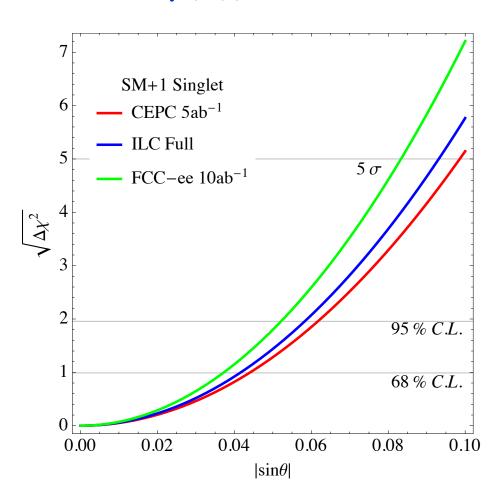
parameters in New Physics Models

$$\chi^2 = \sum_i \frac{(\mu_i^{\text{BSM}} - \mu_i^{\text{obs}})^2}{\sigma_{\mu_i}^2} \quad \mu_i^{\text{BSM}} = \frac{(\sigma \times \text{Br})_{\text{BSM}}}{(\sigma \times \text{Br})_{\text{SM}}}$$

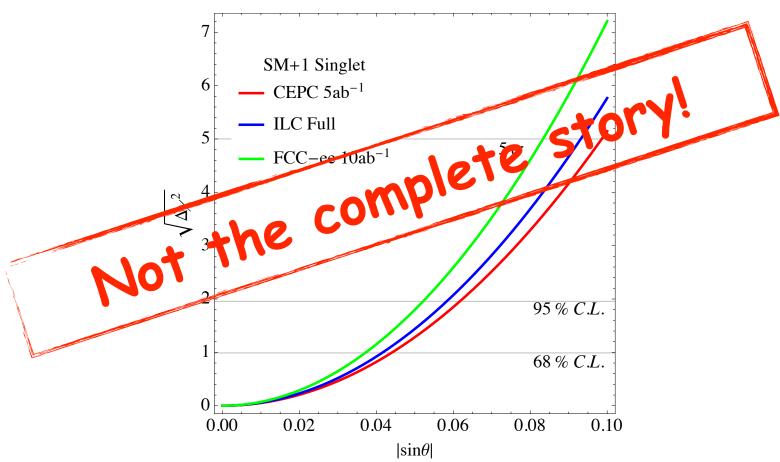
Perturbative Models

- SM with a real singlet extension
- 2HDM (Type I, II, L, F)

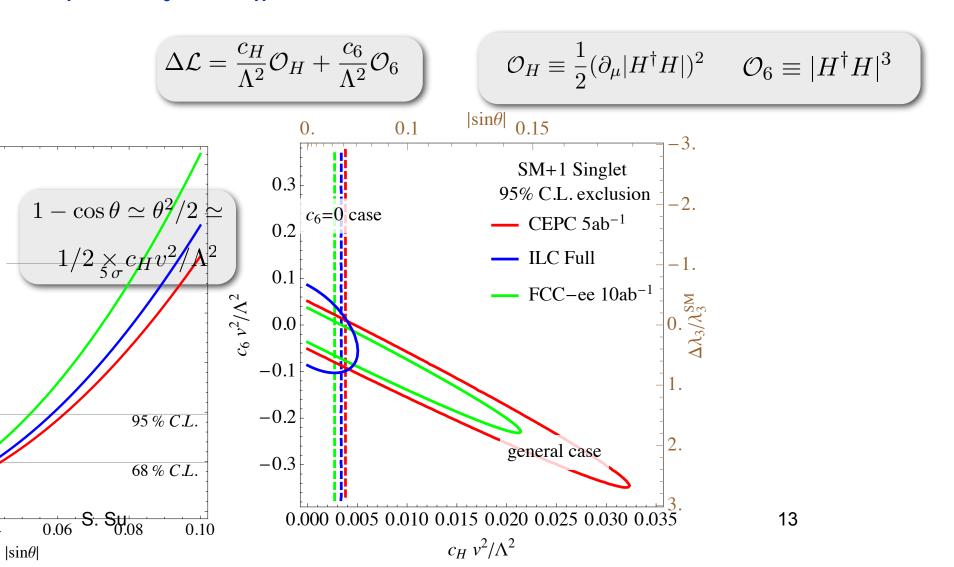
SM + real scalar singlet


$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{2} (\partial_{\mu} S)^{2} - \frac{1}{2} m_{S}^{2} S^{2} - \Lambda_{SH} S(H^{\dagger} H) - \frac{1}{2} \lambda_{SH} S^{2} (H^{\dagger} H) - \frac{1}{3!} \Lambda_{S} S^{3} - \frac{1}{4!} \lambda_{S} S^{4}$$

- after EWSB, 2 physical Higgse: CP-even Higgses: hsm, singlet S
- Z₂ breaking: mixing between h_{SM} and S


$$h_{125} = \cos\theta \ h_{\rm SM} + \sin\theta \ S$$

$$\kappa_i = g_i^{\text{SM+singlet}} / g_i^{SM} = \cos \theta$$


• fit to sin θ

• fit to sin θ

• fit to c₆ and c_H

Perturbative Models

- SM with a real singlet extension
- 2HDM (Type I, II, L, F)

2HDM in one slide

Two Higgs Doublet Model (CP-conserving)

$$\Phi_i = \begin{pmatrix} \phi_i^+ \\ (v_i + \phi_i^0 + iG_i)/\sqrt{2} \end{pmatrix}$$

$$v_u^2 + v_d^2 = v^2 = (246 \text{GeV})^2$$

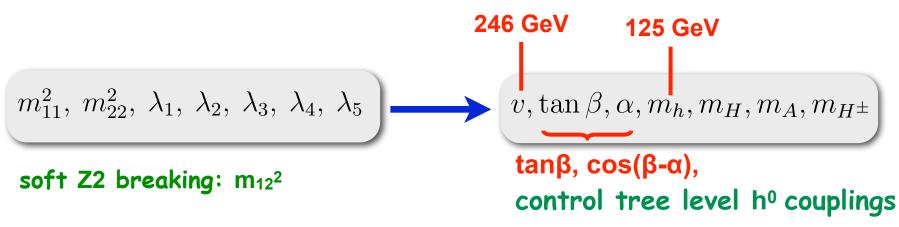
 $\tan \beta = v_u/v_d$

$$\begin{pmatrix} H^0 \\ h^0 \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \phi_1^0 \\ \phi_2^0 \end{pmatrix}, \quad A = -G_1 \sin \beta + G_2 \cos \beta \\ H^{\pm} = -\phi_1^{\pm} \sin \beta + \phi_2^{\pm} \cos \beta \end{pmatrix}$$

after EWSB, 5 physical Higgses

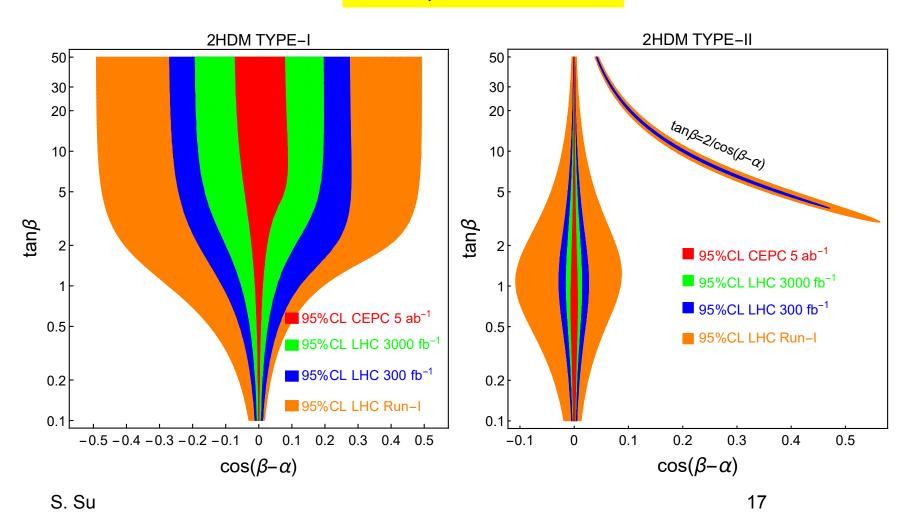
CP-even Higgses: h^0 , H^0 , CP-odd Higgs: A^0 , Charged Higgses: H^\pm

$$\bullet \ \ \mathbf{h^0/H^0} \ \ \mathbf{VV} \ \ \mathbf{coupling} \quad g_{H^0VV} = \frac{m_V^2}{v} \cos(\beta - \alpha), \quad g_{h^0VV} = \frac{m_V^2}{v} \sin(\beta - \alpha).$$

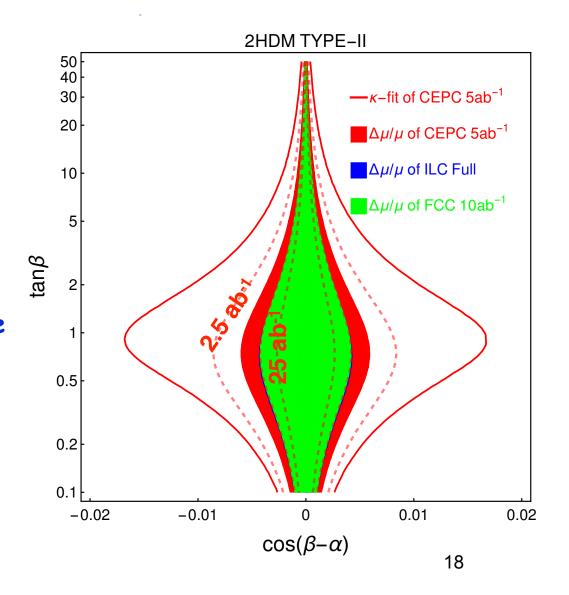

alignment limit: $\cos(\beta-\alpha)=0$, ho is the SM Higgs with SM couplings. S. Su

2HDM parameters

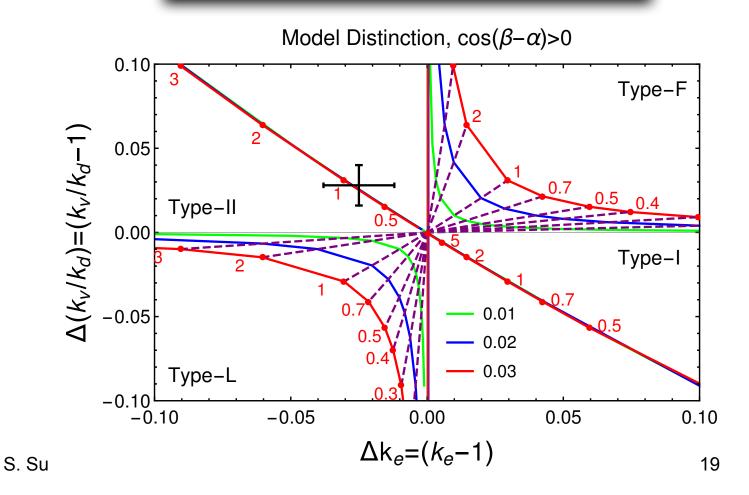
	Ф1	ф2
Type I	u,d,l	
Type II	u	d,I
lepton-specific	u,d	I
flipped	u,l	d


Model	κ_V	κ_u	κ_d	κ_ℓ
2HDM-I	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$
2HDM-II	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$-\sin\alpha/\cos\beta$	$-\sin\alpha/\cos\beta$
2HDM-L	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$	$-\sin\alpha/\cos\beta$
2HDM-F	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$-\sin\alpha/\cos\beta$	$\cos \alpha / \sin \beta$

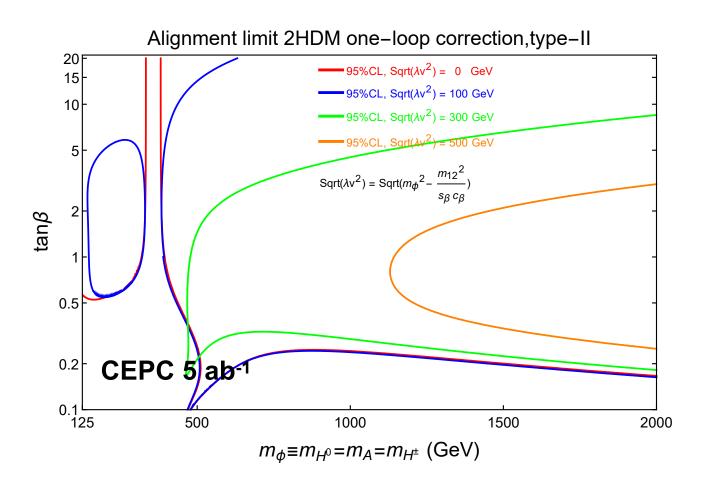
parameters (CP-conserving, flavor limit, Z₂ symmetry)


Tree-level 2HDM fit

2HDM, LHC/CEPC fit


Tree-level 2HDM fit

- κ-fit vs Δμ/μ fit,
- CEPC/FCC/ILC,
- luminosity dependence


2HDM Model Distinction

Mo	odel	κ_V	κ_u	κ_d	κ_ℓ
2HI	I-MC	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$
2HD	M-II	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$-\sin\alpha/\cos\beta$	$-\sin\alpha/\cos\beta$
2HD	M-L	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$	$-\sin\alpha/\cos\beta$
2HD	M-F	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$-\sin\alpha/\cos\beta$	$\cos \alpha / \sin \beta$

2HDM: Loop in the Alignment Limit

Type II

Strong Dynamics

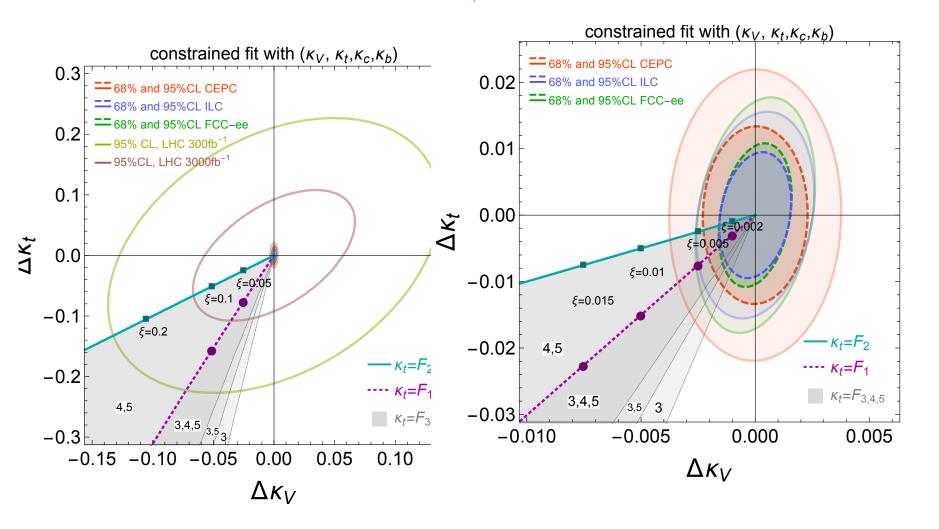
- Minimum composite Higgs Model (MCHM)
- General EFT patterns of strong interacting models with a light Higgs

Composite Higgs in one slide

- Higgs is the PNGB of the spontaneous breaking of G⇒H
- \bullet EWSB is induced by vacuum misalignment, parametrized by $\xi=v^2/f^2$
- mass of SM fermion generated by mixing with composite states
- light top partners can be searched at the LHC
- minimal composite Higgs Model (MCHM): SO(5)/SO(4)
 - hVV $\kappa_V \equiv rac{g_{hVV}^{
 m CH}}{g_{hVV}^{
 m SM}} = \sqrt{1-\xi}$

- hff: depends on the fermion representation

$$F_1 \equiv \frac{1 - 2\xi}{\sqrt{1 - \xi}}, \qquad F_2 \equiv \sqrt{1 - \xi}$$


MCHM

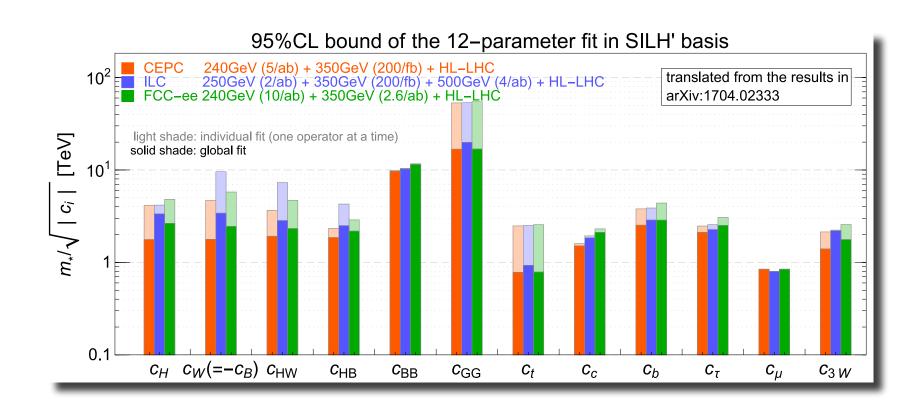
• Fermion representation

MCHM: $\xi=v^2/f^2 < 10^{-3}$, f > 4 TeV

MCHM Reps.	5, 10 14-1-10 14-10-10 10-14-10	10-5-10	5-5-10	5-10-10 5-1-10	14-14-10	14-5-10	5-14-10	
κ_t, κ_g	F_1	F_2	F_1	F_2	F_3	F_4	F_5	
κ_b	F_1	F_1	F_2	F_2	F_1	F_1	F_1	
CEPC								
$\xi \times 10^3$	2.56	2.36	4.19	3.87	2.78 - 2.56	2.71 - 2.36	2.36 - 2.04	
f [TeV]	4.86	5.06	3.80	3.95	4.67 - 4.86	4.72 - 5.07	5.07 - 5.45	
				ILC				
$\xi \times 10^3$	2.19	2.02	3.44	3.20	2.31 - 2.19	2.06 - 2.01	1.87 - 1.72	
f [TeV]	5.26	5.48	4.19	4.35	5.12 - 5.26	5.42 - 5.48	5.69 - 5.93	
FCC-ee								
$\xi \times 10^3$	1.80	1.66	3.06	2.74	1.85 - 1.80	1.70 - 1.66	1.66 - 1.41	
f [TeV]	5.79	6.04	4.45	4.70	5.72 - 5.80	5.97 - 6.05	6.05 - 6.56	

MCHM

Strong Dynamics in EFT Language

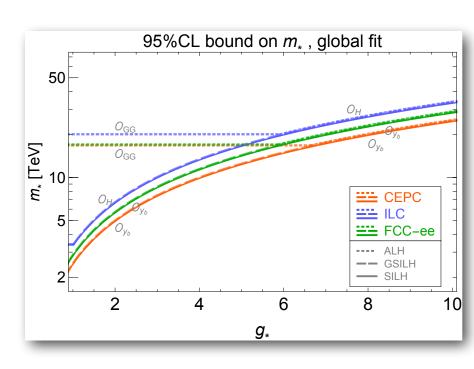

EFT operators

$$\mathcal{L}_6 = \frac{1}{m_*^2} \sum_i c_i \mathcal{O}_i$$

$$\begin{array}{|c|c|c|}
\hline
\mathcal{O}_{H} = \frac{1}{2} (\partial_{\mu} | H^{2} |)^{2} & \mathcal{O}_{GG} = g_{s}^{2} | H |^{2} G_{\mu\nu}^{A} G^{A,\mu\nu} \\
\mathcal{O}_{W} = \frac{ig}{2} (H^{\dagger} \sigma^{a} \overrightarrow{D}^{\mu} H) D^{\nu} W_{\mu\nu}^{a} & \mathcal{O}_{Y_{u}} = Y_{u} | H |^{2} \overline{Q}_{L} \widetilde{H} u_{R} \\
\mathcal{O}_{B} = \frac{ig'}{2} (H^{\dagger} \overrightarrow{D}^{\mu} H) \partial^{\nu} B_{\mu\nu} & \mathcal{O}_{Y_{d}} = Y_{d} | H |^{2} \overline{Q}_{L} H d_{R} \\
\mathcal{O}_{HW} = ig (D^{\mu} H)^{\dagger} \sigma^{a} (D^{\nu} H) W_{\mu\nu}^{a} & \mathcal{O}_{Y_{e}} = Y_{e} | H |^{2} \overline{L}_{L} H e_{R} \\
\mathcal{O}_{HB} = ig' (D^{\mu} H)^{\dagger} (D^{\nu} H) B_{\mu\nu} & \mathcal{O}_{3W} = \frac{1}{3!} g \epsilon_{abc} W_{\mu}^{a \nu} W_{\nu\rho}^{b} W^{c \rho\mu} \\
\mathcal{O}_{BB} = g'^{2} |H|^{2} B_{\mu\nu} B^{\mu\nu} & \mathcal{O}_{3W} = \frac{1}{3!} g \epsilon_{abc} W_{\mu}^{a \nu} W_{\nu\rho}^{b} W^{c \rho\mu}
\end{array}$$

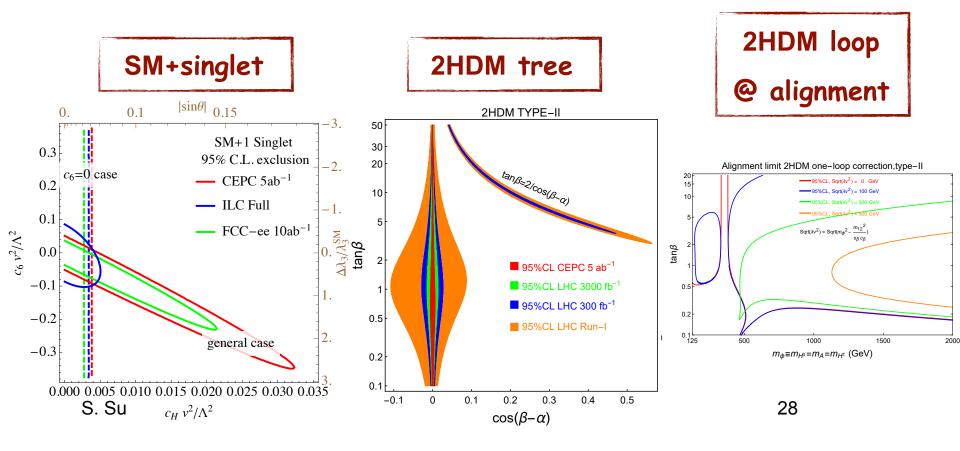
	\mathcal{O}_H	\mathcal{O}_W	\mathcal{O}_B	\mathcal{O}_{HW}	\mathcal{O}_{HB}	\mathcal{O}_{BB}	\mathcal{O}_{GG}	\mathcal{O}_{y_u}	$oxed{\mathcal{O}_{y_d}}$	\mathcal{O}_{y_e}	\mathcal{O}_{3W}
ALH	g_*^2	1	1	1	1	1	1	g_*^2	g_*^2	g_*^2	$rac{g^2}{g_*^2}$
GSILH	g_*^2	1	1	1	1	$\frac{y_t^2}{16\pi^2}$	$\frac{y_t^2}{16\pi^2}$	g_*^2	g_*^2	g_*^2	$\frac{g^2}{g_*^2}$
SILH	g_*^2	1	1	$\frac{g_*^2}{16\pi^2}$	$\frac{g_*^2}{16\pi^2}$	$\frac{y_t^2}{16\pi^2}$	$\frac{y_t^2}{16\pi^2}$	g_*^2	g_*^2	g_*^2	$\frac{g^2}{16\pi^2}$

Strong Dynamics in EFT Language



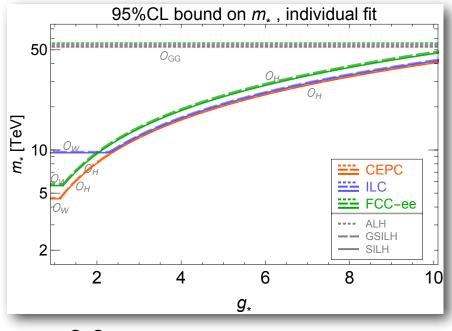
Strong Dynamics in EFT Language

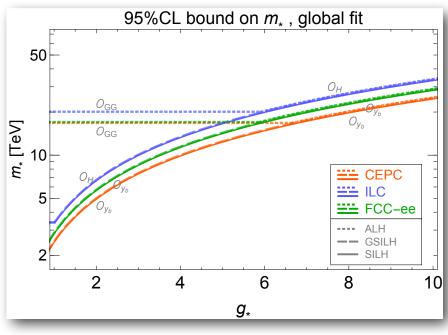
individual fit



global fit

Conclusion


- future Higgs factories measure Higgs properties to a high precision
- Kappa-scheme/EFT scheme/model specific fit
- perturbative model


Conclusion

- strong dynamics models
 - MCHM: $\xi=v^2/f^2 < 10^{-3}$, f > 4 TeV
 - ALH/GSILH/SILH

individual fit

global fit

Conclusion

Lepton Collider

100 TeV pp

An exciting journey ahead of us!