International Workshop On the CEPC

Implication of Future Higgs and Z precision on MSSM

Wei Su

ITP, CAS & U. Of Arizona

Based on work: 1601.07758 (with J. Yang) 1711.xxxxx (with H. Li, H. Song, S. Su, J. Yang)

Outline

Precision from e⁺e⁻ colliders
Higgs precision on MSSM

MSSM and its Higgs sector

- Current researches
- Results from Higgs precision

Z pole precision on MSSM

R_b
 Constraints on parameter space

Conclusion

Precision: Higgs mass

Precision: Higgs couplings

• Yukawa and gauge Higgs couplings

collider	CEPC	FCC-ee	ILC					
\sqrt{s}	$240{ m GeV}$	$240{ m GeV}$	$250{ m GeV}$	$350{ m GeV}$		$500{ m GeV}$		
$\int \mathcal{L} dt$	5 ab^{-1}	10 ab^{-1}	2 ab^{-1}	ab^{-1} 200 fb ⁻¹ 4			4 ab^{-1}	
production	Zh	Zh	Zh	Zh	$ u \overline{ u} h$	Zh	$\nu \bar{\nu} h$	$t\bar{t}h$
$\Delta\sigma/\sigma$	0.51%	0.4%	0.71%	2.1%	-	1.06	-	-
decay	$\Delta(\sigma \cdot BR)/(\sigma \cdot BR)$							
$h o b \overline{b}$	0.28%	0.2%	0.42%	1.67%	1.67%	0.64%	0.25%	9.9%
$h \to cc$	2.2%	1.2%	2.9%	12.7%	16.7%	4.5%	2.2%	-
$h \to gg$	1.6%	1.4%	2.5%	9.4%	11.0%	3.9%	1.5%	-
$h \to WW^*$	1.5%	0.9%	1.1%	8.7%	6.4%	3.3%	0.85%	-
$h \to \tau^+ \tau^-$	1.2%	0.7%	2.3%	4.5%	24.4%	1.9%	3.2%	-
$h \rightarrow ZZ^*$	4.3%	3.1%	6.7%	28.3%	21.8%	8.8%	2.9%	-
$h ightarrow \gamma \gamma$	9.0%	3.0%	12.0%	43.7%	50.1%	12.0%	6.7%	-
$h \rightarrow \mu^+ \mu^-$	17%	13%	25.5%	97.6%	179.8%	31.1%	25.5%	_
$(\nu\bar{\nu})h \to b\bar{b}$	2.8%	2.2%	3.7%	-	_	-	-	-

Precision: Higgs couplings

• Loop-induced Higgs couplings

collider	CEPC	FCC-ee	ILC					
\sqrt{s}	$240{ m GeV}$	$240{ m GeV}$	$250{ m GeV}$	$350{ m GeV}$		$500{ m GeV}$		
$\int \mathcal{L} dt$	5 ab^{-1}	10 ab^{-1}	2 ab^{-1}	200 fb^{-1}		4 ab^{-1}		
production	Zh	Zh	Zh	Zh	$ u \overline{ u} h$	Zh	$ u \overline{ u} h $	$t\bar{t}h$
$\Delta \sigma / \sigma$	0.51%	0.4%	0.71%	2.1%	-	1.06	-	-
decay	$\Delta(\sigma \cdot BR) / (\sigma \cdot BR)$							
$h \rightarrow b\bar{b}$	0.28%	0.2%	0.42%	1.67%	1.67%	0.64%	0.25%	9.9%
$h \to c\bar{c}$	2.2%	1.2%	2.9%	12.7%	16.7%	4.5%	2.2%	-
h ightarrow gg	1.6%	1.4%	2.5%	9.4%	11.0%	3.9%	1.5%	-
$h \to WW^*$	1.5%	0.9%	1.1%	8.7%	6.4%	3.3%	0.85%	-
$h \to \tau^+ \tau^-$	1.2%	0.7%	2.3%	4.5%	24.4%	1.9%	3.2%	-
$h \rightarrow ZZ^*$	4.3%	3.1%	6.7%	28.3%	21.8%	8.8%	2.9%	-
$h ightarrow \gamma \gamma$	9.0%	3.0%	12.0%	43.7%	50.1%	12.0%	6.7%	-
$h \rightarrow \mu^+ \mu^-$	17%	13%	25.5%	97.6%	179.8%	31.1%	25.5%	_
$(\nu\bar{\nu})h \to b\bar{b}$	2.8%	2.2%	3.7%	-	_	-	-	-

MSSM

General SUSY : symmetry between the fermions and bosons:

Names		spin 0	spin $1/2$	$SU(3)_C, SU(2)_L, U(1)_Y$
squarks, quarks	Q	$(\widetilde{u}_L \ \widetilde{d}_L)$	$(u_L \ d_L)$	$({f 3},{f 2},{1\over 6})$
$(\times 3 \text{ families})$	\overline{u}	\widetilde{u}_R^*	u_R^\dagger	$(\overline{3},1,-rac{2}{3})$
	\overline{d}	\widetilde{d}_R^*	d_R^\dagger	$(\overline{3}, 1, \frac{1}{3})$
sleptons, leptons	L	$(\widetilde{ u} \ \widetilde{e}_L)$	$(u \ e_L)$	$({f 1}, {f 2}, -{1\over 2})$
$(\times 3 \text{ families})$	\overline{e}	\widetilde{e}_{R}^{*}	e_R^\dagger	(1, 1, 1)
Higgs, higgsinos	H_u	$\begin{pmatrix} H_u^+ & H_u^0 \end{pmatrix}$	$(\widetilde{H}^+_u \ \widetilde{H}^0_u)$	$({f 1},{f 2},+{1\over 2})$
	H_d	$(H^0_d \ H^d)$	$(\widetilde{H}^0_d \ \widetilde{H}^d)$	$({f 1}, {f 2}, -{1\over 2})$

Names	spin $1/2$	spin 1	$SU(3)_C, SU(2)_L, U(1)_Y$
gluino, gluon	\widetilde{g}	g	(8, 1, 0)
winos, W bosons	$\widetilde{W}^{\pm}~\widetilde{W}^{0}$	$W^{\pm} W^0$	(1 , 3 , 0)
bino, B boson	\widetilde{B}^0	B^0	(1, 1, 0)

Physical particle: h, H, A, H^{\pm} m_h =125 GeV $m_A \approx m_H \approx m_{H^{\pm}}$

arxiv: hep-ph/9709365

Mass

$$\mathcal{M}_{\text{Higgs}} = \frac{\sin 2\beta}{2} \begin{pmatrix} \cot \beta \ M_Z^2 + \tan \beta \ M_A^2 & -M_Z^2 - M_A^2 \\ -M_Z^2 - M_A^2 & \tan \beta \ M_Z^2 + \cot \beta \ M_A^2 \end{pmatrix} + \begin{pmatrix} \Delta_{11} \ \Delta_{12} \\ \Delta_{12} \ \Delta_{22} \end{pmatrix}$$

$$\frac{\text{Tree-level}}{4}$$

$$M_{H,h,eff}^2 = \frac{M_A^2 + M_Z^2}{2} \pm \left(\frac{(M_A^2 + M_Z^2)^2}{4} - M_A^2 M_Z^2 \cos^2 2\beta\right)^{1/2}$$

$$m_{h,\text{tree}} \leq m_Z = 91.18 \text{ GeV} < 125 \text{ GeV}$$

LHC Run-I: $m_h = 125.09 \pm 0.24 \text{ GeV}$

MSSM Higgs sector

140

-3000

-2000

-1000

1000

0 X,^{™S} [GeV] 2000

3000

 m_A , $m_{SUSY} = m_{\widetilde{0}} = m_{\widetilde{u}},$ diagrammatic RG tan β $X_t = A_t - \mu \tan \beta$ 130 Package: FeynHiggs M_h [GeV] 120 $\delta m_h = 3$ GeV, MSSM uncertainty > 0.24 GeV, LHC Run-I 110 >> 5.9 MeV, CEPC M_{s}^{MS} = 1000 GeV, M_{a} = 1000 GeV, tan β = 30 100 0407244: S. Heinemeyer

MSSM Higgs couplings

Yukawa and gauge couplings

Tree-level: mixing angle α \longrightarrow Loop-level: α_{eff}

$$\binom{H}{h} = \begin{pmatrix} \cos \alpha_{eff} & \sin \alpha_{eff} \\ -\sin \alpha_{eff} & \cos \alpha_{eff} \end{pmatrix} \binom{H^d}{H^u}$$

Loop modified effective Higgs couplings

hZZ:sin(
$$\beta - \alpha_{eff}$$
)
hbb: $-\sin \alpha_{eff} / \cos \beta$...

MSSM Higgs couplings

Study strategy

Higgs mass + $h\gamma\gamma$ and hgg + Yukawa and gauge (FeynHiggs)

Study strategy

• Relevant parameters and some considerations

 m_A , tan β , m_{SUSY} , X_t , $\mu = 500 \text{ GeV}$

> Plane: $m_{SUSY} vs X_t$ > Plane: $m_{SUSY} vs m_A$ > Plane: $m_A vs tan \beta$

Three-dimension fit, projected to two-dimension plane: $\Delta \chi^2 = 7.82$

Not discussed here: $m_{\widetilde{b}}$, $X_{\widetilde{b}}$, $m_{\widetilde{g}}$, M_1 , M_2 ...

 $\tan \beta = 30, \mu = 500 \text{ GeV}, m_A = 2000 \text{ GeV}$

 m_{SUSY} (GeV)

 $\tan \beta = 30, \mu = 500 \text{ GeV}, m_A = 2000 \text{ GeV}$

 m_{SUSY} (GeV)

$\tan \beta = 3$, $\tan \beta = 7$, $\tan \beta = 50$

Results: $m_A vs tan \beta$

For tan $\beta \leq 20$, $m_A \leq 1000$ GeV excluded, complementary with LHC Run-II

m_A: Yukawa,gauge

m_{SUSY}:

Small tan β , mass precision Large tan β , mass + Yukawa,gauge

m_A: Yukawa,gauge

 m_{SUSY} : tan β ≥ 7, hgg + hγγ

Z pole precision on MSSM

Z pole precision on MSSM

EWPT (Electroweak Precision Test)

	Measurement	Fit	O ^{meas} –O ^{fit} /o ^{meas}
			0 1 2 3
$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02758 ± 0.00035	0.02767	
m _z [GeV]	91.1875 ± 0.0021	91.1874	
Г _z [GeV]	2.4952 ± 0.0023	2.4965	
σ_{had}^{0} [nb]	41.540 ± 0.037	41.481	
R _I	20.767 ± 0.025	20.739	
A ^{0,I} fb	0.01714 ± 0.00095	0.01642	
Α _I (Ρ _τ)	0.1465 ± 0.0032	0.1480	
R _b	0.21629 ± 0.00066	0.21562	
R _c	0.1721 ± 0.0030	0.1723	
$A_{fb}^{0,b}$	0.0992 ± 0.0016	0.1037	
A ^{0,c} _{fb}	0.0707 ± 0.0035	0.0742	
A _b	0.923 ± 0.020	0.935	
A _c	0.670 ± 0.027	0.668	
A _I (SLD)	0.1513 ± 0.0021	0.1480	

FCC-ee, ILC, CEPC $10^{10} \sim 10^{12}$, precision of R_b $10^{-4} \sim 10^{-5}$

$$\delta R_b = 2 \times 10^{-5}$$

Z pole precision on MSSM R_b : $R_b = \frac{\Gamma(Z \rightarrow b\bar{b})}{\Gamma(Z \rightarrow hadrons)}$

 $\Delta^{\text{SUSY}}(R_b) = 0.2196 \{ 0.78 [\nabla_b^{\text{SUSY}}(m_t) - \nabla_b^{\text{SUSY}}(0)]$

Advantages:

1. Loop-level $Z \rightarrow b\overline{b}$ vertex effects are sizable

stop, sbottom, charged Higgs, neutral Higgs

- 2、Weak dependence on oblique corrections
- 3、 Measurable

Results: stop correction

- Condition: $\tilde{\chi}_1^{\pm}$: 100 - 200GeV
- Result:
 - \tilde{t}_1^R > 530 GeV

Results: sbottom correction

Condition: $\tilde{\chi}_1^0$: 100 - 200GeV Conclusion: $\tilde{b}_1 > 850$ GeV if $\tan \beta > 32$

Results: charged Higgs correction

• Conclusion: $m_{H^\pm} > 1000 \text{ GeV if } \tan\beta > 28$

Results: neutral Higgs correction

• Conclusion:

 $\tan \beta < 46$ is allowable

conclusion

Higgs Precision

(V) $\chi^2_{T_{cr}}$ M4=2000 GeV 4000 2500 2000 2000 -2000 . . -4000 1.6 500 1000 1500 500 1000 1500 2000 2500 3000 3500 M. (GeV) $\tan eta$ 500 1500 1000

2000

2000

2500

3000

2500

Higgs mass + $h\gamma\gamma$ and hgg + Yukawa and gauge

Theorem 1 m_{SUSY} vs X_t : strong constraint on stop sector **Theorem 1** m_A vs m_{SUSY} : precision to constraints **Theorem 1** m_A vs $tan\beta$: complementary with LHC Run-II

*****Z Precision: **R**_b

The stop, sbottom, charged Higgs, neutral Higgs

Thanks for your attention

$m_{SUSY} vs X_{\tilde{t}}$

$\tan \beta = 3$, $\tan \beta = 7$, $\tan \beta = 50$

Yukawa and Gauge couplings

$$\begin{split} \Delta m_b^{SEW} &= \frac{h_t^2}{16\pi^2} \mu A_t \tan \beta I(m_{\tilde{t}_1}, m_{\tilde{t}_2}, \mu) \\ &\quad - \frac{g^2}{16\pi^2} \mu M_2 \tan \beta \big[\cos^2 \theta_{\tilde{t}} I(m_{\tilde{t}_1}, M_2, \mu) + \sin^2 \theta_{\tilde{t}} I(m_{\tilde{t}_2}, M_2, \mu) \\ &\quad + \frac{1}{2} \cos^2 \theta_{\tilde{b}} I(m_{\tilde{b}_1}, M_2, \mu) + \frac{1}{2} \sin^2 \theta_{\tilde{b}} I(m_{\tilde{b}_2}, M_2, \mu) \big] \end{split}$$

Higgs precision on MSSM

m_{SUSY} vs tan β $X_t = \sqrt{6} * M_{SUSY}$ $X_t = \mathbf{0}$ 50 50 40 40 $m_{A} = 700$ $m_{A} = 1000$ 30 30 $m_{A} = 1500$ $\tan \beta$ **** $\tan \beta$ ••••• ***** $m_{A} = 2000$ 20 20 10 10....... 500 1000 1500 1000 1500 2000 2500 3000 2000 2500 3000 M_{SUSY} (GeV) M_{SUSY} (GeV)

Results: gluino correction

Because gluino and neutralino are both electroneutral, they have same Feynman diagrams

• Conclusion:

Because gluino required by experiments is so heavy that its correction is negligible.

Higgs precision on MSSM Current researches

- Higgs mass is well-measured (compared to theory estimation)
- $h\gamma\gamma$ and hgg channels are well studied

$$r_{G}^{\tilde{t}} \equiv \frac{c_{hgg}^{\tilde{t}}}{c_{hgg}^{\text{SM}}} \approx \frac{1}{4} \left(\frac{m_{t}^{2}}{m_{\tilde{t}_{1}}^{2}} + \frac{m_{t}^{2}}{m_{\tilde{t}_{2}}^{2}} - \frac{m_{t}^{2}X_{t}^{2}}{m_{\tilde{t}_{1}}^{2}m_{\tilde{t}_{2}}^{2}} \right)$$
$$r_{\gamma}^{\tilde{t}} \equiv \frac{c_{h\gamma\gamma}^{\tilde{t}}}{c_{h\gamma\gamma}^{\text{SM}}} = \frac{\mathcal{A}_{\tilde{t}}^{\gamma}}{\left(\mathcal{A}_{W}^{\gamma} + \mathcal{A}_{t}^{\gamma}\right)^{\text{SM}}} \approx -0.28r_{G}^{\tilde{t}}$$

Higgs precision on MSSM Current researches

fit	with	13	TeV	data

	Best fit
M_1	$0.25 { m TeV}$
M_2	$0.25~{ m TeV}$
M_3	- 3.86 TeV
$m_{ ilde q}$	$4.0 { m TeV}$
$m_{ ilde{q}_3}$	$1.7 { m TeV}$
$m_{ ilde{\ell}}$	$0.35 { m ~TeV}$
$m_{ ilde{ au}}$	$0.46 { m TeV}$
M_A	$4.0 { m TeV}$
A	2.8 TeV
μ	1.33 TeV
aneta	36

1710.11091

Further research

- Direct search
- Higgs precision
- Electroweak Precision
- Theoretical constraints(1310.4174)
- Dark Matter

Higgs precision on MSSM Current researches

Results: δA_{FB}^b

 $\sigma_{F(B)} = \int_{0(-1)}^{1(0)} \frac{d\sigma}{d\cos\theta} d\cos\theta$ $A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$

Two order in need for δA_{FB}^b