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TALK OUTLINE

• The Hierarchy Problem and top partner masses 

• Effects on Higgs Precision Measurements 

• Ways to Hide 

• Zh probes on colored top-partners



TOP PARTNER SUMMARY

• Hierarchy problem - huge disparity between Planck and 
Electroweak (EW) mass scales 

• Top partners ubiquitous in theories that invoke symmetries to 
protect the EW scale 

• LEP+Tevatron+LHC see no stops/heavy tops 

• Higher Mass of top partners = a more finely tuned theory



EVADING DIRECT SEARCHES

• Direct Search: decay to SM colored and LSP 

• DD Caveats: Stealth SUSY, Oddest Little Higgs.  

• Top partners could be charged under another SU(3) (not this talk) 

• Future lepton colliders will not be producing heavier top partners 

• Interesting to explore other avenues

arXiv:1105.5135[Fan,Reece,Ruderman]  arXiv:1506.05130 :Anandakrishnan et al.
arXiv:1512.05781  [Fan et.al.]
arXiv:1201.4875 [Fan et.al.]

http://arxiv.org/abs/arXiv:1512.05781
http://arxiv.org/abs/arXiv:1201.4875


Indirect limits as an independent probe?



Yukawa couplings are of the form h†Qtc. Let us change notation slightly to
reflect the fact that tc and T c mix, and call them tc1 and tc2. We can now write
two terms that both look like they contribute to the top Yukawa coupling1,

Lyuk = λ1φ
†
1Ψtc1 + λ2φ

†
2Ψtc2. (41)

To see what couplings for the Higgs arise we substitute the parametrization of
Eq. (37) and expand in powers of h. For simplicity, let us also set λ1 ≡ λ2 ≡
λ/

√
2. This will reduce the number of terms we encounter because it preserves

a parity 1 ↔ 2, but the main points here are independent of this choice. We
find

L ∼
λ√
2

[

fT (tc2 + tc1) + ih†Q(tc2 − tc1) −
1

2f
h†hT (tc2 + tc1) + · · ·

]

= λf(1 −
1

2f2
h†h)TT c + λh†Qtc + · · · , (42)

where the second line is written in terms of the linear combinations T c = (tc2 +
tc1)/

√
2 and tc = i(tc2 − tc1)/

√
2.

The last term of the second line in Eq. (42) is the top Yukawa coupling, and
so we identify λ = λt. The Dirac fermion T, T c has a mass λtf and a coupling to
two Higgs fields with coupling constant λt/(2f). The couplings and masses are
related by the underlying SU(3) symmetries. To see how the new fermion and

ct

Q
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Figure 5: The quadratically divergent contribution to the Higgs mass from the
top loop is canceled by the T loop.

its couplings to the Higgs cancel the quadratic divergence from the top quark
loop, we compute the fermion loops including interactions to order λ2. The two
relevant diagrams (Figure 5) give

λ2
t

16π2
Λ2h†h +

λ2
t f

2

16π2
(1 −

h†h

f2
) Λ2 + O(h4) = const. + O(h4). (43)

The quadratically divergent contribution to the Higgs mass from the top and T
loops cancel!2

1We do not write the couplings φ†
1
Ψtc

2
and φ†

2
Ψtc

2
as they would reintroduce quadratic

divergences. They can be forbidden by global U(1) symmetries and are therefore not generated
by loops.

2In order for the two cut-offs for the two loops to be identical, the new physics at the
cut-off must respect the SU(3) symmetries. This is analogous to the situation in SUSY where
the boson-fermion cancellation also relies on a supersymmetric regulator/cut-off.
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Both SM and TP contributions start at 1-loop



IS IT POSSIBLE TO SET LIMITS ON TOP PARTNER 
MASSES SOLELY FROM THIS PROPERTY?

See for e.g.  
Fan, Reece arXiv:1401.7671 

http://arxiv.org/abs/arXiv:1401.7671


CANCELLATION VS GGF

Since the top has by far the largest SM coupling to the Higgs, the top-partner mass scale is
the most critical among the BSM masses. For a natural theory, all µi for the top partners
should be O(m

weak

), and masses heaver than this require tuning for successful EWSB.
On the other hand, lowering top partner masses as required by fine-tuning considerations

increase the visibility of the partners at colliders. Top partners that share the top’s color
and electric charge a↵ect the loop-induced hgg and h�� couplings. The qualitative behavior
can be immediately understood by considering the low-energy Higgs theorem [40,41], which
relates the mass of the particles to their contribution to these couplings. For a heavy particle
that receives some or all of its mass from the Higgs mechanism, the e↵ective coupling is
proportional to

v2

M2

ˆt

@M2

ˆt

@v2
h

v
Gµ⌫Gµ⌫ , (2.6)

where v is the Higgs vacuum expectation value (VEV), M2

ˆt
is the appropriately evaluated

mass-squared matrix for the top partner, and Gµ⌫ is the gluon field strength; a similar equa-
tion holds for the electromagnetic field-strength. When the partial derivative evaluates to
a constant, we can see the / 1/M2

ˆt
dependence. Therefore in a natural theory the contri-

butions are largest to Higgs observables for colored top partners. Alternatively, improving
Higgs precision measurements without seeing deviations from the SM expectations results
in a more fine-tuned theory, since it requires larger top-partner masses. Thus Higgs phe-
nomenology and naturalness are inexorably tied together for colored top partners, and it
provides an important constraint independent of direct searches.

3 Higgs Precision Constraints & Colored Top Partners

In this section, we describe our formalism and strategy to constrain colored top-partner
models through Higgs precision physics. We discuss the generic features of these models
that are most constrained by current data. Moreover, we identify those model features that
are best at hiding top partners from current Higgs precision data alone, thereby reducing
tension with naturalness. Finally, we describe how upcoming data from the LHC or a future
precision electron-positron collider will a↵ect these model features.

Higgs precision data can constrain BSM models mainly if these models modify the cou-
pling of the Higgs to SM particles or contain new decay modes for the Higgs. Modifications
to the Higgs couplings can a↵ect the Higgs partial widths and production modes, while new
decay modes a↵ect only the partial widths. Since new decay modes are not a generic pre-
diction of colored top-partner models, we will assume in this paper that the Higgs cannot
decay into the colored top partners. However, we will consider the possibility that new decay
modes can help hide colored top partners from Higgs precision measurements.

3.1 Definitions for non-Standard Model Higgs couplings

As we have emphasized in the introduction, a generic prediction of colored top partners is a
modification of a certain set of Higgs couplings. Since the SM Higgs fits the data well, we

5

results.

2 Naturalness and Higgs Couplings

To understand the Higgs hierarchy problem and possible symmetry-based solutions, we uti-
lize the one-loop Coleman-Weinberg potential with a hard UV cuto↵, ⇤, and examine the
contributions to the Higgs mass term in the potential in the mass eigenbasis. The form of
the Coleman-Weinberg potential for the Higgs is [23]

V
CW

=
1

64⇡2

X

i

(�1)Fini

✓
2M2

i ⇤
2 +M4

i log
M2

i

⇤2

◆
, (2.1)

where i runs over all particles in the Higgs loop diagrams, ni is the number of flavors of
particle i, Fi is the fermion number, and Mi is the field-dependent mass taking the form

M2

i = µ2

i + aih
2 , (2.2)

where ai is given by the particle’s e↵ective coupling to the Higgs, and µi represents a possible
bare mass for the particle whose origin is not from the Higgs mechanism. The origin of the
hierarchy problem comes from quadratic divergences that appear when computing the shift
in the Higgs mass at one-loop,

�m2

h =
d2V

CW

dh2

' 1

32⇡2

X

i

(�1)Fini

✓
ai⇤

2 + 2µ2

i ai ln
⇤2

M2

i

◆
. (2.3)

To eliminate the leading term we require

X

i

(�1)Finiai = 0 . (2.4)

This imposes certain relationships among the Higgs couplings that must be preserved by a
symmetry. If the particles responsible for the cancellation are charged under the SM gauge
symmetries, as in our case, this immediately has implications for Higgs precision physics,
since their couplings to the Higgs are related to SM couplings of the Higgs through Eq. (2.3).

To predict the impact of the new physics on Higgs phenomenology, we also need its
overall mass scale. This is dictated by the sub-leading terms in Eq. (2.3), since cancellation
of the quadratic divergences do not automatically eliminate log⇤ divergences as well.2 This
results in the usual logarithmic dependence on the cuto↵ in theories that solve the hierarchy
problem, and a quadratic sensitivity to the mass of the BSM states

�m2

h ' 1

16⇡2

X

i

(�1)Finiµ
2

i ai ln
⇤2

M2

i

. (2.5)

2Unless for instance there is a symmetry that also forbids EWSB, such as a conformal symmetry.
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cancellation condition

TP Mass(Matrix)



SIGNAL STRENGTH MODIFIERS

parameterize modifications to the most important tree-level SM Higgs couplings as

rj = chjj/c
SM

hjj , (3.7)

where j = t, b, V , or ⌧ , chjj is the coupling of the Higgs to the state j, and cSMhjj is the
coupling of the SM Higgs to the state j; the SM value is rSMj = 1.3

However, this definition is not su�cient for BSM particles, since cSMhjj is not defined. We
present a more general definition that works for both SM/BSM particles, which is derived
directly from the mass matrix Mj for particle j. The 125 GeV Higgs, h, can in principle be
a linear combination of Higgses Hi with VEVs vi that supply some or all of the mass to j.4

The ratio of the hjj coupling to its SM value is then given by

rj =
X

i

hh|Hii v
vi

d log[M2

j ]

d log[v2i ]
, (3.8)

where M2

j = M †
jMj for fermions and v = 246 GeV. In the SM there is only a single Higgs

and therefore this reduces to rj = 1 as desired.
Apart from BSM physics a↵ecting tree-level couplings, the loop-induced couplings hgg

and h�� play a particularly important role in constraining colored and charged top partners.
These partners appear at the same order in perturbation theory as the pure SM processes.
Moreover, the hgg coupling controls the dominant production mechanism in the SM, and the
h�� coupling controls one of the most sensitive decay channels. When these loop particles
are heavy and can be integrated out, the e↵ective vertex is given by the low-energy Higgs
theorems [40–42]. The exact one-loop result for the hgg coupling, including finite mass
e↵ects, is given by

L � �1

4
cG

h

v
Ga

µ⌫G
µ⌫a , (3.9)

where
cG =

↵s

12⇡

X

j

N j
cC2

(R)rjAj(⌧j) . (3.10)

Here N j
c is the number of colors, C

2

(R) is the quadratic Casimir, and Aj ⌘ Asj(⌧j) are the
loop functions defined in Appendix A, which depend on the spin sj and ⌧j ⌘ m2

h/4m
2

j , where
mj are the eigenvalues of Mj. For electrically charged states, a similar operator with the
electromagnetic field strength replacing the gluon field strength can be used to calculate the
Higgs coupling to two photons.

These definitions allow us to express now the modifications to the e↵ective hgg coupling
from a colored top-partner, t̂, and any accompanying BSM physics that a↵ects the tree-level
couplings rj as

rG ⌘ cG
cSMG

=
rtAt + rbAb + r

ˆtAˆt + �rG
At +Ab

, (3.11)

3For simplicity, we assume that the Higgs boson couples equally to the W - and Z-bosons, i.e. rV ⌘ rW =
rZ , as otherwise electroweak precision tests would be far more constraining than Higgs precision data for
the foreseeable future.

4h =
P

RiHi such that hh|Hii = Ri

6

<h|Hi>: how much of the 125 GeV h is Hi  
useful for extended Higgs sectors 
Mj2: mass square matrix for particle j 
vi: vev of Hi 
v :246 GeV 
rj(SM)=1
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the boson-fermion cancellation also relies on a supersymmetric regulator/cut-off.
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˜t) if Nˆt < 0.125. In this limit, Eq. (5.27) simplifies to
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m2

t

2m2
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As a result, smaller N
˜t leads to stronger constraints on m

˜t, while N˜t < 0 completely rules out
the degenerate direction. However, in the extreme non-degenerate limit where m

˜t
1

! 0 (or
m

˜t
2

! 0), the exclusions on the heavier stop m
˜t
2

(or m
˜t
1

) are given by 2mt. This exclusion
is (mostly) independent of (N

˜t)
fit;max, i.e., independent of experimental input and cannot be

ruled out by future Higgs precision measurements.
Our discussion thus far is su�cient to talk about the bounds on stops in any model. How-

ever, as stated above, there are at least two Higgs doublets instead of a single doublet as in
the SM, which will impact the phenomenology. Furthermore, in a concrete model such as the
MSSM, there will be a number of relationships that relate the top-sector with other sectors
through the particular structure of EWSB. We next discuss how the relations imposed by
concrete models a↵ect their ability to accommodate light stops with the guiding philosophy
of Section 3 in mind. We then outline the most promising model building directions for
natural spin-0 colored top partners.

5.1.1 Concrete Model: MSSM

In this subsection, we restrict ourselves to the EWSB structure of the MSSM. After EWSB,
there are two CP-even Higgs bosons, and we identify the lightest of these as the 125 GeV
SM-like Higgs boson for the rest of our discussion. The Higgs couplings in a MSSM(-like)
model are described by two parameters: the rotation angle of the Higgs mass matrix, ↵,7

and the ratio of the two Higgs VEVs, tan �(⌘ v
2

/v
1

). The modifications of tree-level Higgs
couplings are

rt =
cos↵

sin �
, rb = r⌧ = � sin↵

cos �
, rV = sin(� � ↵), (5.31)

which can be recast into a more convenient form in terms of rt and tan �

rb = r⌧ =
q

1 + (1� r2t ) tan
2 �, rV =

rt tan2 � +
p

1 + (1� r2t ) tan
2 �

1 + tan2 �
. (5.32)

As discussed in Section 3, the most powerful way to hide top partners is to modify rt
directly. The 2HDM naturally allows for modifications of yt to non-SM values, and to hide
stops, we would require rt < 1 given N

˜t > 1. However, in the MSSM, Eq. (5.32) dictates
changes in rb, rV , and tan �, which are better constrained than rt itself. The tan � ! 0 limit
however removes the rt dependence of rb and rV , and fixes them to 1 allowing lower values
of rt without changing other Higgs observables. There is a lower limit of tan � = 2.2 in order
to retain perturbativity of Yukawa couplings at the GUT scale.8 Smaller values of tan�

7In MSSM models �⇡/2  ↵  0 while in a general type-II 2HDM �⇡/2  ↵ < ⇡.
8Perturbativity of top/bottom Yukawa couplings at the GUT scale yields the inequality 2.2  tan �  57.
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Scalars Fermions

Rather than investigating a complete model, we focus on the physics of the fermionic
top partner’s cancellation of quadratic divergences. We start with the simplest spin-1/2
top partner extension, a singlet fermionic top partner, T under the EW gauge group. The
Lagrangian of the top sector takes the form,

L
top

= (T, t)M

✓
T c

tc

◆
+ h.c. , (5.33)

where M is a 2⇥2 mixing matrix of the top/top-partner, and tc and T c are the right-handed
top/top-partner conjugates. We assign t and tc with SU(2)L charge (t, tc) = (2,1) as in
the SM, while T and T c are singlets under SU(2)L. The top Lagrangian, before electroweak
symmetry breaking (EWSB), in the mass eigenbasis up to O(1/f 2) is then restricted to be

L
top

= (T, t)

✓
M

1

� aH2/f �bH2/f
cH � c0H3/f 2 dH � d0H3/f 2

◆ ✓
T c

tc

◆
+ h.c. , (5.34)

where {a, b, c, d, c0, d0} are dimensionless real coe�cients obtained from the expansion of
the sigma fields. The mass matrix given in Eq. (5.34) shows that T has a bare mass M

1

and t remains massless before EWSB. The cancellation of diagrams in Fig. 2 requires the
following relationship to be satisfied

2aM
1

/f = c2 + d2 . (5.35)

After (EWSB), H gets a VEV, which generates additional mixing in the top/top-partner
sector, requiring further rotation to eliminate the o↵-diagonal mixing terms. This gives
electroweak-scale masses to the top

mT = M
1


1� v2

f 2

✓
f 2

M2

1

◆
d2

2
+O

✓
v4

f 4

◆�
, mt = vd


1 +

v2

f 2

✏t
2
+O

✓
v4

f 4

◆�
(5.36)

with ✏t = (�4a2c2d + 4abc(c2 + d2) + 2dd0(c2 + d2)2)/(c2 + d2)2. In the extreme heavy
top/top-partner limit, NT defined in Eq. (3.13), is given by

NT = �m2

t

m2

T

, (5.37)

up to O(v2/f 2) corrections. The relation is very similar to the degenerate stop case in
Eq. (5.30). Furthermore this is a negative-definite quantity. Given a lower limit on NT (
�1 < NT < 0) from Higgs precision measurements, we can use Eq. (5.37) to constrain mT .

5.2.1 Concrete Models: Little Higgs models with one Higgs doublet

[RE: lots of editing and new subsections below – please check] Two primary classes
of concrete LH models exist in literature, one with a simple group (e.g. the Simplest Little
Higgs (SLH) models [77, 78, 81]) and one with a product group (e.g. Littlest Little Higgs
(LLH) [75,76]). In the SU(3) SLH and the SU(5) LLH, there is only a single Higgs doublet.
A generic feature of these models is that rt ' yt  1. Since we need to have rt > 1 to
compensate for the negative definite NT , constraints on top partners from Higgs precision
data cannot be weakened by adjusting rt.
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use the signal strengths reported by ATLAS and CMS for particular final states of the Higgs
given by

µf ⌘ �BSM

prod

⇥ BBSM

h!ff

�SM

prod

⇥ BSM

h!ff

, µf
inv

⌘ �BSM

prod

⇥ BBSM

h!ff

�SM

prod

, (3.18)

where for the SM µSM

f = 1 and µSM

f
inv

= 0. Given that a particular final state may come
from a variety of di↵erent production modes, we must also take into account the weighting
of the production modes, ⇠G,V,T , which give the relative strength of contributions to Higgs
production from gluon fusion (ggF), vector-boson fusion plus Higgs associated production
(VBF+Vh), and top-quark-pair production in association with a Higgs (tth), respectively.
Similarly, for a particular production channel with multiple final states, we weight the decay
modes (see Appendix C for more details).

[PM: Kfir stu↵... easiest way to hide is delta rg but it’s a lot of tuning so we
don’t care (or it’s impossible in which case we don’t keep this term)]

In the limit that all SM particles couple to the Higgs with their SM tree-level values
(rj = 1), and assuming there are no exotic/invisible Higgs decays, the largest shift to Higgs
phenomenology in the large N

ˆt limit appears in rG,

rG ⇠ (1 +N
ˆt) . (3.19)

In particular this dictates that in this limit

µf ⇠ �|rG|2⇠G + ⇠V + ⇠t
� 1

1 + (|rG|2 � 1)BSM

h!gg + · · · , (3.20)

which will give µf � 1 for many channels if they have a large contribution from gluon fusion.
This then implies a bound on N

ˆt, which can be translated into a bound on the mass of the
top-partner and a constraint on naturalness. This has been used to rule out top partners
with low masses, but as the mass increases, the e↵ects are more subtle than this limit because
additional contributions to rG become important. Moreover, most models a↵ect also other
Higgs-couplings. For instance, if the Higgs sector is extended or it gets non-renormalizable
contributions, there may be other shifts, rj, that must be taken into account. Nevertheless,
the dominant contribution from colored top partners will always be its contribution to rG.

Before investigating particular models, it is useful to see how best to alleviate a shift in rG
from its SM value. If gluon fusion was the only way the LHC produced the Higgs, it would be
straightforward to change the total width of the Higgs to o↵set this with a r

exo/inv

contribution
to attempt to hide this shift. However, this will not reduce the constraints significantly,
since with the recent increased integrated luminosity there are strong constraints now on all
production mechanisms except for htt̄. Instead, a shift in one or more couplings is needed
to o↵set the contribution of a colored top partner to rG.

From Eq. (3.14), in the limit that the top quark and top partner dominate the contribu-
tions to rG, we have

rG ⇠ rt(1 +N
ˆt) . (3.21)

8

where �rG captures the presence of other colored BSM (non-top-partner) particles. For
modifications to the e↵ective h�� coupling, we have

r� ⌘ c�
cSM�
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j2(W,t,b,⌧) rjQ

2
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ˆtQ
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ˆt + �r�P
j2(W,t,b,⌧) Q

2
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, (3.12)

where �r� captures other color-neutral (non-top-partner) particles carrying electric charge.
It is now useful to define a new variable N

ˆt such that

N
ˆt ⌘

r
ˆtAˆt

rtAt

. (3.13)

This serves also to eliminate the hh|Hii dependence of the top-partner contribution, as it is
common to both the top-quark and top partner. We can then re-express rG as

rG =
rtAt(1 +N

ˆt) + rbAb + �rG
At +Ab

. (3.14)

Finally, changing the couplings of the Higgs to SM particles a↵ects the partial widths
and hence the total width possibly as well. To parametrize the e↵ects of this shift we define

rh ⌘ 1 +
X

j=G,�,V,b,⌧

(|rj|2 � 1)BSM

h!jj , (3.15)

where the SM branching ratios are given in e.g. [43]. While this is a redundant definition,
it is useful, because in addition to colored top partners there may also be new decay modes
for the Higgs, which would either be a contribution to the invisible width of the Higgs or
an exotic decay channel. The di↵erence between invisible and exotic will occur only in
discussing direct search constraints. In particular, it is much easier to constrain an invisible
decay rather than an arbitrary exotic decay. The total decay width of the Higgs, �

tot

, is
then given by

�
tot

= rh�
SM

tot

+ �
exo

+ �
inv

, (3.16)

where �SM

tot

, �
exo

, and �
inv

are decay widths of the Higgs to SM particles, exotic final states,
and invisible final states, respectively. The relation can be re-parameterized as
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where the branching ratios are defined as B
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and B
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.

3.2 Higgs-precision constraints on top partners and how to avoid
them

With the definitions given in the previous sub-section, it is straightforward to understand
where the strongest constraints on top partners come from. To constrain top partners we
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use the signal strengths reported by ATLAS and CMS for particular final states of the Higgs
given by
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where for the SM µSM

f = 1 and µSM

f
inv

= 0. Given that a particular final state may come
from a variety of di↵erent production modes, we must also take into account the weighting
of the production modes, ⇠G,V,T , which give the relative strength of contributions to Higgs
production from gluon fusion (ggF), vector-boson fusion plus Higgs associated production
(VBF+Vh), and top-quark-pair production in association with a Higgs (tth), respectively.
Similarly, for a particular production channel with multiple final states, we weight the decay
modes (see Appendix C for more details).

[PM: Kfir stu↵... easiest way to hide is delta rg but it’s a lot of tuning so we
don’t care (or it’s impossible in which case we don’t keep this term)]

In the limit that all SM particles couple to the Higgs with their SM tree-level values
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which will give µf � 1 for many channels if they have a large contribution from gluon fusion.
This then implies a bound on N

ˆt, which can be translated into a bound on the mass of the
top-partner and a constraint on naturalness. This has been used to rule out top partners
with low masses, but as the mass increases, the e↵ects are more subtle than this limit because
additional contributions to rG become important. Moreover, most models a↵ect also other
Higgs-couplings. For instance, if the Higgs sector is extended or it gets non-renormalizable
contributions, there may be other shifts, rj, that must be taken into account. Nevertheless,
the dominant contribution from colored top partners will always be its contribution to rG.

Before investigating particular models, it is useful to see how best to alleviate a shift in rG
from its SM value. If gluon fusion was the only way the LHC produced the Higgs, it would be
straightforward to change the total width of the Higgs to o↵set this with a r

exo/inv

contribution
to attempt to hide this shift. However, this will not reduce the constraints significantly,
since with the recent increased integrated luminosity there are strong constraints now on all
production mechanisms except for htt̄. Instead, a shift in one or more couplings is needed
to o↵set the contribution of a colored top partner to rG.

From Eq. (3.14), in the limit that the top quark and top partner dominate the contribu-
tions to rG, we have

rG ⇠ rt(1 +N
ˆt) . (3.21)
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where �rG captures the presence of other colored BSM (non-top-partner) particles. For
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where �r� captures other color-neutral (non-top-partner) particles carrying electric charge.
It is now useful to define a new variable N

ˆt such that
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This serves also to eliminate the hh|Hii dependence of the top-partner contribution, as it is
common to both the top-quark and top partner. We can then re-express rG as

rG =
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. (3.14)

Finally, changing the couplings of the Higgs to SM particles a↵ects the partial widths
and hence the total width possibly as well. To parametrize the e↵ects of this shift we define

rh ⌘ 1 +
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j=G,�,V,b,⌧

(|rj|2 � 1)BSM

h!jj , (3.15)

where the SM branching ratios are given in e.g. [43]. While this is a redundant definition,
it is useful, because in addition to colored top partners there may also be new decay modes
for the Higgs, which would either be a contribution to the invisible width of the Higgs or
an exotic decay channel. The di↵erence between invisible and exotic will occur only in
discussing direct search constraints. In particular, it is much easier to constrain an invisible
decay rather than an arbitrary exotic decay. The total decay width of the Higgs, �

tot

, is
then given by

�
tot

= rh�
SM

tot

+ �
exo
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where �SM
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3.2 Higgs-precision constraints on top partners and how to avoid
them

With the definitions given in the previous sub-section, it is straightforward to understand
where the strongest constraints on top partners come from. To constrain top partners we
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use the signal strengths reported by ATLAS and CMS for particular final states of the Higgs
given by
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where for the SM µSM

f = 1 and µSM

f
inv

= 0. Given that a particular final state may come
from a variety of di↵erent production modes, we must also take into account the weighting
of the production modes, ⇠G,V,T , which give the relative strength of contributions to Higgs
production from gluon fusion (ggF), vector-boson fusion plus Higgs associated production
(VBF+Vh), and top-quark-pair production in association with a Higgs (tth), respectively.
Similarly, for a particular production channel with multiple final states, we weight the decay
modes (see Appendix C for more details).
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In the limit that all SM particles couple to the Higgs with their SM tree-level values
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h!gg + · · · , (3.20)

which will give µf � 1 for many channels if they have a large contribution from gluon fusion.
This then implies a bound on N

ˆt, which can be translated into a bound on the mass of the
top-partner and a constraint on naturalness. This has been used to rule out top partners
with low masses, but as the mass increases, the e↵ects are more subtle than this limit because
additional contributions to rG become important. Moreover, most models a↵ect also other
Higgs-couplings. For instance, if the Higgs sector is extended or it gets non-renormalizable
contributions, there may be other shifts, rj, that must be taken into account. Nevertheless,
the dominant contribution from colored top partners will always be its contribution to rG.

Before investigating particular models, it is useful to see how best to alleviate a shift in rG
from its SM value. If gluon fusion was the only way the LHC produced the Higgs, it would be
straightforward to change the total width of the Higgs to o↵set this with a r

exo/inv

contribution
to attempt to hide this shift. However, this will not reduce the constraints significantly,
since with the recent increased integrated luminosity there are strong constraints now on all
production mechanisms except for htt̄. Instead, a shift in one or more couplings is needed
to o↵set the contribution of a colored top partner to rG.

From Eq. (3.14), in the limit that the top quark and top partner dominate the contribu-
tions to rG, we have

rG ⇠ rt(1 +N
ˆt) . (3.21)
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where �rG captures the presence of other colored BSM (non-top-partner) particles. For
modifications to the e↵ective h�� coupling, we have
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=
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where �r� captures other color-neutral (non-top-partner) particles carrying electric charge.
It is now useful to define a new variable N

ˆt such that

N
ˆt ⌘

r
ˆtAˆt

rtAt

. (3.13)

This serves also to eliminate the hh|Hii dependence of the top-partner contribution, as it is
common to both the top-quark and top partner. We can then re-express rG as

rG =
rtAt(1 +N

ˆt) + rbAb + �rG
At +Ab

. (3.14)

Finally, changing the couplings of the Higgs to SM particles a↵ects the partial widths
and hence the total width possibly as well. To parametrize the e↵ects of this shift we define

rh ⌘ 1 +
X

j=G,�,V,b,⌧

(|rj|2 � 1)BSM

h!jj , (3.15)

where the SM branching ratios are given in e.g. [43]. While this is a redundant definition,
it is useful, because in addition to colored top partners there may also be new decay modes
for the Higgs, which would either be a contribution to the invisible width of the Higgs or
an exotic decay channel. The di↵erence between invisible and exotic will occur only in
discussing direct search constraints. In particular, it is much easier to constrain an invisible
decay rather than an arbitrary exotic decay. The total decay width of the Higgs, �

tot

, is
then given by
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= rh�
SM
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, (3.16)

where �SM
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are decay widths of the Higgs to SM particles, exotic final states,
and invisible final states, respectively. The relation can be re-parameterized as
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.

3.2 Higgs-precision constraints on top partners and how to avoid
them

With the definitions given in the previous sub-section, it is straightforward to understand
where the strongest constraints on top partners come from. To constrain top partners we
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use the signal strengths reported by ATLAS and CMS for particular final states of the Higgs
given by

µf ⌘ �BSM

prod
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h!ff

�SM

prod
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where for the SM µSM

f = 1 and µSM

f
inv

= 0. Given that a particular final state may come
from a variety of di↵erent production modes, we must also take into account the weighting
of the production modes, ⇠G,V,T , which give the relative strength of contributions to Higgs
production from gluon fusion (ggF), vector-boson fusion plus Higgs associated production
(VBF+Vh), and top-quark-pair production in association with a Higgs (tth), respectively.
Similarly, for a particular production channel with multiple final states, we weight the decay
modes (see Appendix C for more details).

[PM: Kfir stu↵... easiest way to hide is delta rg but it’s a lot of tuning so we
don’t care (or it’s impossible in which case we don’t keep this term)]

In the limit that all SM particles couple to the Higgs with their SM tree-level values
(rj = 1), and assuming there are no exotic/invisible Higgs decays, the largest shift to Higgs
phenomenology in the large N

ˆt limit appears in rG,
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which will give µf � 1 for many channels if they have a large contribution from gluon fusion.
This then implies a bound on N

ˆt, which can be translated into a bound on the mass of the
top-partner and a constraint on naturalness. This has been used to rule out top partners
with low masses, but as the mass increases, the e↵ects are more subtle than this limit because
additional contributions to rG become important. Moreover, most models a↵ect also other
Higgs-couplings. For instance, if the Higgs sector is extended or it gets non-renormalizable
contributions, there may be other shifts, rj, that must be taken into account. Nevertheless,
the dominant contribution from colored top partners will always be its contribution to rG.

Before investigating particular models, it is useful to see how best to alleviate a shift in rG
from its SM value. If gluon fusion was the only way the LHC produced the Higgs, it would be
straightforward to change the total width of the Higgs to o↵set this with a r

exo/inv

contribution
to attempt to hide this shift. However, this will not reduce the constraints significantly,
since with the recent increased integrated luminosity there are strong constraints now on all
production mechanisms except for htt̄. Instead, a shift in one or more couplings is needed
to o↵set the contribution of a colored top partner to rG.

From Eq. (3.14), in the limit that the top quark and top partner dominate the contribu-
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where for the SM µSM

f = 1 and µSM

f
inv

= 0. Given that a particular final state may come
from a variety of di↵erent production modes, we must also take into account the weighting
of the production modes, ⇠G,V,T , which give the relative strength of contributions to Higgs
production from gluon fusion (ggF), vector-boson fusion plus Higgs associated production
(VBF+Vh), and top-quark-pair production in association with a Higgs (tth), respectively.
Similarly, for a particular production channel with multiple final states, we weight the decay
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Higgs-couplings. For instance, if the Higgs sector is extended or it gets non-renormalizable
contributions, there may be other shifts, rj, that must be taken into account. Nevertheless,
the dominant contribution from colored top partners will always be its contribution to rG.

Before investigating particular models, it is useful to see how best to alleviate a shift in rG
from its SM value. If gluon fusion was the only way the LHC produced the Higgs, it would be
straightforward to change the total width of the Higgs to o↵set this with a r
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contribution
to attempt to hide this shift. However, this will not reduce the constraints significantly,
since with the recent increased integrated luminosity there are strong constraints now on all
production mechanisms except for htt̄. Instead, a shift in one or more couplings is needed
to o↵set the contribution of a colored top partner to rG.

From Eq. (3.14), in the limit that the top quark and top partner dominate the contribu-
tions to rG, we have
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where �r� captures other color-neutral (non-top-partner) particles carrying electric charge.
It is now useful to define a new variable N
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This serves also to eliminate the hh|Hii dependence of the top-partner contribution, as it is
common to both the top-quark and top partner. We can then re-express rG as
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Finally, changing the couplings of the Higgs to SM particles a↵ects the partial widths
and hence the total width possibly as well. To parametrize the e↵ects of this shift we define
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for the Higgs, which would either be a contribution to the invisible width of the Higgs or
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discussing direct search constraints. In particular, it is much easier to constrain an invisible
decay rather than an arbitrary exotic decay. The total decay width of the Higgs, �

tot

, is
then given by

�
tot

= rh�
SM

tot

+ �
exo

+ �
inv

, (3.16)

where �SM

tot

, �
exo

, and �
inv

are decay widths of the Higgs to SM particles, exotic final states,
and invisible final states, respectively. The relation can be re-parameterized as

r
exo

⌘ �
exo

�SM

tot

=
rhBexo

1� B
exo

� B
inv

, r
inv

⌘ �
inv

�SM

tot

=
rhBinv

1� B
exo

� B
inv

, (3.17)

where the branching ratios are defined as B
inv

⌘ �
inv

/�
tot

and B
exo

⌘ �
exo

/�
tot

.

3.2 Higgs-precision constraints on top partners and how to avoid
them

With the definitions given in the previous sub-section, it is straightforward to understand
where the strongest constraints on top partners come from. To constrain top partners we

7

use the signal strengths reported by ATLAS and CMS for particular final states of the Higgs
given by

µf ⌘ �BSM

prod

⇥ BBSM

h!ff

�SM

prod

⇥ BSM

h!ff

, µf
inv

⌘ �BSM

prod

⇥ BBSM

h!ff

�SM

prod

, (3.18)

where for the SM µSM

f = 1 and µSM

f
inv

= 0. Given that a particular final state may come
from a variety of di↵erent production modes, we must also take into account the weighting
of the production modes, ⇠G,V,T , which give the relative strength of contributions to Higgs
production from gluon fusion (ggF), vector-boson fusion plus Higgs associated production
(VBF+Vh), and top-quark-pair production in association with a Higgs (tth), respectively.
Similarly, for a particular production channel with multiple final states, we weight the decay
modes (see Appendix C for more details).

[PM: Kfir stu↵... easiest way to hide is delta rg but it’s a lot of tuning so we
don’t care (or it’s impossible in which case we don’t keep this term)]

In the limit that all SM particles couple to the Higgs with their SM tree-level values
(rj = 1), and assuming there are no exotic/invisible Higgs decays, the largest shift to Higgs
phenomenology in the large N

ˆt limit appears in rG,

rG ⇠ (1 +N
ˆt) . (3.19)

In particular this dictates that in this limit

µf ⇠ �|rG|2⇠G + ⇠V + ⇠t
� 1

1 + (|rG|2 � 1)BSM

h!gg + · · · , (3.20)

which will give µf � 1 for many channels if they have a large contribution from gluon fusion.
This then implies a bound on N

ˆt, which can be translated into a bound on the mass of the
top-partner and a constraint on naturalness. This has been used to rule out top partners
with low masses, but as the mass increases, the e↵ects are more subtle than this limit because
additional contributions to rG become important. Moreover, most models a↵ect also other
Higgs-couplings. For instance, if the Higgs sector is extended or it gets non-renormalizable
contributions, there may be other shifts, rj, that must be taken into account. Nevertheless,
the dominant contribution from colored top partners will always be its contribution to rG.

Before investigating particular models, it is useful to see how best to alleviate a shift in rG
from its SM value. If gluon fusion was the only way the LHC produced the Higgs, it would be
straightforward to change the total width of the Higgs to o↵set this with a r

exo/inv

contribution
to attempt to hide this shift. However, this will not reduce the constraints significantly,
since with the recent increased integrated luminosity there are strong constraints now on all
production mechanisms except for htt̄. Instead, a shift in one or more couplings is needed
to o↵set the contribution of a colored top partner to rG.

From Eq. (3.14), in the limit that the top quark and top partner dominate the contribu-
tions to rG, we have

rG ⇠ rt(1 +N
ˆt) . (3.21)

8

where �rG captures the presence of other colored BSM (non-top-partner) particles. For
modifications to the e↵ective h�� coupling, we have

r� ⌘ c�
cSM�

=

P
j2(W,t,b,⌧) rjQ

2

jAj + r
ˆtQ

2

ˆt
A

ˆt + �r�P
j2(W,t,b,⌧) Q

2

jAj

, (3.12)

where �r� captures other color-neutral (non-top-partner) particles carrying electric charge.
It is now useful to define a new variable N

ˆt such that

N
ˆt ⌘

r
ˆtAˆt

rtAt

. (3.13)

This serves also to eliminate the hh|Hii dependence of the top-partner contribution, as it is
common to both the top-quark and top partner. We can then re-express rG as

rG =
rtAt(1 +N

ˆt) + rbAb + �rG
At +Ab

. (3.14)

Finally, changing the couplings of the Higgs to SM particles a↵ects the partial widths
and hence the total width possibly as well. To parametrize the e↵ects of this shift we define

rh ⌘ 1 +
X

j=G,�,V,b,⌧

(|rj|2 � 1)BSM

h!jj , (3.15)

where the SM branching ratios are given in e.g. [43]. While this is a redundant definition,
it is useful, because in addition to colored top partners there may also be new decay modes
for the Higgs, which would either be a contribution to the invisible width of the Higgs or
an exotic decay channel. The di↵erence between invisible and exotic will occur only in
discussing direct search constraints. In particular, it is much easier to constrain an invisible
decay rather than an arbitrary exotic decay. The total decay width of the Higgs, �

tot

, is
then given by

�
tot

= rh�
SM

tot

+ �
exo

+ �
inv

, (3.16)

where �SM

tot

, �
exo

, and �
inv

are decay widths of the Higgs to SM particles, exotic final states,
and invisible final states, respectively. The relation can be re-parameterized as

r
exo

⌘ �
exo

�SM

tot

=
rhBexo

1� B
exo

� B
inv

, r
inv

⌘ �
inv

�SM

tot

=
rhBinv

1� B
exo

� B
inv

, (3.17)

where the branching ratios are defined as B
inv

⌘ �
inv

/�
tot

and B
exo

⌘ �
exo

/�
tot

.

3.2 Higgs-precision constraints on top partners and how to avoid
them

With the definitions given in the previous sub-section, it is straightforward to understand
where the strongest constraints on top partners come from. To constrain top partners we

7

where �rG captures the presence of other colored BSM (non-top-partner) particles. For
modifications to the e↵ective h�� coupling, we have

r� ⌘ c�
cSM�

=

P
j2(W,t,b,⌧) rjQ

2

jAj + r
ˆtQ

2

ˆt
A

ˆt + �r�P
j2(W,t,b,⌧) Q

2

jAj

, (3.12)

where �r� captures other color-neutral (non-top-partner) particles carrying electric charge.
It is now useful to define a new variable N

ˆt such that

N
ˆt ⌘

r
ˆtAˆt

rtAt

. (3.13)

This serves also to eliminate the hh|Hii dependence of the top-partner contribution, as it is
common to both the top-quark and top partner. We can then re-express rG as

rG =
rtAt(1 +N

ˆt) + rbAb + �rG
At +Ab

. (3.14)

Finally, changing the couplings of the Higgs to SM particles a↵ects the partial widths
and hence the total width possibly as well. To parametrize the e↵ects of this shift we define

rh ⌘ 1 +
X

j=G,�,V,b,⌧

(|rj|2 � 1)BSM

h!jj , (3.15)

where the SM branching ratios are given in e.g. [43]. While this is a redundant definition,
it is useful, because in addition to colored top partners there may also be new decay modes
for the Higgs, which would either be a contribution to the invisible width of the Higgs or
an exotic decay channel. The di↵erence between invisible and exotic will occur only in
discussing direct search constraints. In particular, it is much easier to constrain an invisible
decay rather than an arbitrary exotic decay. The total decay width of the Higgs, �

tot

, is
then given by

�
tot

= rh�
SM

tot

+ �
exo

+ �
inv

, (3.16)

where �SM

tot

, �
exo

, and �
inv

are decay widths of the Higgs to SM particles, exotic final states,
and invisible final states, respectively. The relation can be re-parameterized as

r
exo

⌘ �
exo

�SM

tot

=
rhBexo

1� B
exo

� B
inv

, r
inv

⌘ �
inv

�SM

tot

=
rhBinv

1� B
exo

� B
inv

, (3.17)

where the branching ratios are defined as B
inv

⌘ �
inv

/�
tot

and B
exo

⌘ �
exo

/�
tot

.

3.2 Higgs-precision constraints on top partners and how to avoid
them

With the definitions given in the previous sub-section, it is straightforward to understand
where the strongest constraints on top partners come from. To constrain top partners we

7

rinv/rexo

rV

rV

rV

rV

rb

Notice the degeneracy …



PLAN OF ACTION

get experimental limits on rG= 

This sets limits on         which will in-turn set limits on top partner 
masses 

Check which couplings are most potent at hiding

use the signal strengths reported by ATLAS and CMS for particular final states of the Higgs
given by

µf ⌘ �BSM

prod

⇥ BBSM

h!ff

�SM

prod

⇥ BSM

h!ff

, µf
inv

⌘ �BSM

prod

⇥ BBSM

h!ff

�SM

prod

, (3.18)

where for the SM µSM

f = 1 and µSM

f
inv

= 0. Given that a particular final state may come
from a variety of di↵erent production modes, we must also take into account the weighting
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Figure 4: Excluded parameter space and expected sensitivities at the 2� CL of current and
future data for spin-0 (left), spin-1/2 (middle), and spin-1 (right) top-partners. We assume
that the two spin-0 top partners are degenerate in mass, m

˜t
1

= m
˜t
2

⌘ m
˜t. We assume that

top partners contribute only in the hgg and h�� loops, there are no modifications of the
Higgs couplings to other SM particles, and there are no exotic or invisible Higgs decays. The
parameter space excluded by current LHC and Tevatron data is shown in dark gray, while
the expected sensitivity of the current data is shown in light gray. Future LHC runs and the
proposed future colliders (ILC, CEPC, and FCC-ee/hh) are shown in various colors.

6.1.2 Comparison of Constraints between Spin-0, Spin-1/2, and Spin-1

To compare constraints on spin-0 particles with constraints on spin-1/2 and spin-1, we focus
on the degenerate direction for spin-0 (m

˜t
1

= m
˜t
2

), because our canonical spin-1/2 and spin-1
models only have a single top partner. Recall that along the high-mass spin-0 degenerate
direction, the contributions from the left-handed sbottom and from stopD-terms only matter
at a few-percent level. For the remainder of Section 6, we set gh˜b

1

˜b
1

= 0, but require that
the choice of stop-sector masses and mixing allow the left-handed sbottom to be real, see
Section 5.1 (note that we include D-term contributions in the stop-sector, i.e., large tan�).

In Fig. 4 we show the current constraints and expected sensitivities for degenerate spin-
0 (left), spin-1/2 (middle), and spin-1 (right) top-partners. The current constraints from
Tevatron and LHC data for these di↵erent spin-states are about 350 GeV, 700 GeV, and
2.2 TeV, respectively. The LHC Run 4 is expected to improve on these by a few hundred GeV,
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where �rG captures the presence of other colored BSM (non-top-partner) particles. For
modifications to the e↵ective h�� coupling, we have

r� ⌘ c�
cSM�

=

P
j2(W,t,b,⌧) rjQ

2

jAj + r
ˆtQ

2

ˆt
A

ˆt + �r�P
j2(W,t,b,⌧) Q

2

jAj

, (3.12)

where �r� captures other color-neutral (non-top-partner) particles carrying electric charge.
It is now useful to define a new variable N

ˆt such that

N
ˆt ⌘

r
ˆtAˆt

rtAt

. (3.13)

This serves also to eliminate the hh|Hii dependence of the top-partner contribution, as it is
common to both the top-quark and top partner. We can then re-express rG as

rG =
rtAt(1 +N

ˆt) + rbAb + �rG
At +Ab

. (3.14)

Finally, changing the couplings of the Higgs to SM particles a↵ects the partial widths
and hence the total width possibly as well. To parametrize the e↵ects of this shift we define

rh ⌘ 1 +
X

j=G,�,V,b,⌧

(|rj|2 � 1)BSM

h!jj , (3.15)

where the SM branching ratios are given in e.g. [43]. While this is a redundant definition,
it is useful, because in addition to colored top partners there may also be new decay modes
for the Higgs, which would either be a contribution to the invisible width of the Higgs or
an exotic decay channel. The di↵erence between invisible and exotic will occur only in
discussing direct search constraints. In particular, it is much easier to constrain an invisible
decay rather than an arbitrary exotic decay. The total decay width of the Higgs, �

tot

, is
then given by

�
tot

= rh�
SM

tot

+ �
exo

+ �
inv

, (3.16)

where �SM

tot

, �
exo

, and �
inv

are decay widths of the Higgs to SM particles, exotic final states,
and invisible final states, respectively. The relation can be re-parameterized as

r
exo

⌘ �
exo

�SM

tot

=
rhBexo

1� B
exo

� B
inv

, r
inv

⌘ �
inv

�SM

tot

=
rhBinv

1� B
exo

� B
inv

, (3.17)

where the branching ratios are defined as B
inv

⌘ �
inv

/�
tot

and B
exo

⌘ �
exo

/�
tot

.

3.2 Higgs-precision constraints on top partners and how to avoid
them

With the definitions given in the previous sub-section, it is straightforward to understand
where the strongest constraints on top partners come from. To constrain top partners we
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Figure 5: Excluded parameter space and expected sensitivities at the 2� C.L. on degenerate
spin-0 top partner masses, m

˜t
1

= m
˜t
2

⌘ m
˜t, from various joint-fits of current and future

data. We assume here that in addition to top partners contributing in the hgg and h��
loops, there is one additional modification to the couplings as indicated by the description
on the left axis; for example, for “t̃ & rt”, the top-partner contributes to the hgg and h��
loops and rt is allowed to vary from its SM value, while all other rj are fixed to their SM
value. Note that the current limit shaded in dark gray is naively stronger for “t̃ & rt” and
“t̃ & rb” than the expected sensitivity of the future LHC Run 3 and/or Run 4 data (see text
for details).

while the possible future ILC, CEPC, and FCC-ee/hh are expected to improve by another
few hundred GeV for spin-1/2 and by almost 2 TeV for spin-1. These projected sensitivities
probe similar parameter space to current direct searches, but of course with fewer model
assumptions. Due to the current data preferring rG > 1, the current constraints are weaker
(stronger) for spin-0 (spin-1

2

and spin-1) models compared to their expected sensitivities.
The constraints on spin-1 top partners are much stronger than for spin-0 and spin-1/2

states. The tuning from the spin-1 state alone is already significant given that the current
limit on the top-partner mass is already approaching 2 TeV. Moreover, as discussed in
Section 5.3, a contribution to the tuning should be included from the other scalars and
vectors that are required in spin-1 top-partner models. We will thus not consider spin-1 top
partners further, focusing instead on how best to hide spin-0 and spin-1/2 partners from
Higgs precision measurements.
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FERMIONIC TOP PARTNER
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Figure 6: Similar to Fig. 5, but here showing excluded parameter space and expected sensi-
tivities at the 2� C.L. on spin-1/2 top partner mass, mT , from various joint-fits of current
and future data.

6.2 Constraints on top-partners with modified SM Higgs cou-
plings

In addition to the top-partners contributing to the hgg and h�� loops, the Higgs couplings
to SM particles could also be modified from their SM values. In this section, we numerically
quantify which modifications are most e�cient at absorbing the top-partner-loop contribu-
tions. We allow for one Higgs coupling, ri 2 {rt, rb, r⌧ , rV , rexo, rinv, �r�}, to di↵er from its
SM value, while fixing all other couplings to their SM values. To obtain the 2� CL regions
for the top-partner masses, we adjust their masses, while marginalizing over ri, until their
contributions to hgg and h�� expressed in terms of the variable N

ˆt in Eq. (3.13) gives the
appropriate ��2.

The results for spin-0 and spin-1/2 scenarios are shown in Fig. 5 and Fig. 6, respectively.
Not surprisingly, the additional degree of freedom helps in reducing the current top-partner
bounds and projected sensitivities. As anticipated in Section 3, allowing for a non-SM htt̄
coupling is currently the best way to hide a top partner. Future LHC, ILC, and FCC-hh
data will measure htt̄ production precisely improve constraints on top parters.

For the spin-0 “t̃ & rt” and “t̃ & rb” scenario (see Fig. 5), the current data naively
excludes larger degenerate stop masses than the expected sensitivity of the data from the
LHC Run 3 and Run 4. This is because some of the current Higgs data prefers rt = 1.18
and rb = 0.89 that are far away from 1. Given Eq. (3.14), i.e.,

rG = 1.05rt(1 +N
ˆt) + (�0.05 + 0.07i)rb, (6.65)

a negative (N
˜t)

fit is favored to remove rt > 1 or rb < 1. We find that the 2� CL upper
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Can concrete models in literature capture all this freedom? 

Usually not. There are relations between various couplings.



SUSY:MSSM

The resulting constraints in the m
˜t
1

� m
˜t
2

plane are strongest in the degenerate limit
(m

˜t
1

= m
˜t
2

⌘ m
˜t) if Nˆt < 0.125. In this limit, Eq. (5.27) simplifies to

N
˜t =

m2

t

2m2

˜t

. (5.30)

As a result, smaller N
˜t leads to stronger constraints on m

˜t, while N˜t < 0 completely rules out
the degenerate direction. However, in the extreme non-degenerate limit where m

˜t
1

! 0 (or
m

˜t
2

! 0), the exclusions on the heavier stop m
˜t
2

(or m
˜t
1

) are given by 2mt. This exclusion
is (mostly) independent of (N

˜t)
fit;max, i.e., independent of experimental input and cannot be

ruled out by future Higgs precision measurements.
Our discussion thus far is su�cient to talk about the bounds on stops in any model. How-

ever, as stated above, there are at least two Higgs doublets instead of a single doublet as in
the SM, which will impact the phenomenology. Furthermore, in a concrete model such as the
MSSM, there will be a number of relationships that relate the top-sector with other sectors
through the particular structure of EWSB. We next discuss how the relations imposed by
concrete models a↵ect their ability to accommodate light stops with the guiding philosophy
of Section 3 in mind. We then outline the most promising model building directions for
natural spin-0 colored top partners.

5.1.1 Concrete Model: MSSM

In this subsection, we restrict ourselves to the EWSB structure of the MSSM. After EWSB,
there are two CP-even Higgs bosons, and we identify the lightest of these as the 125 GeV
SM-like Higgs boson for the rest of our discussion. The Higgs couplings in a MSSM(-like)
model are described by two parameters: the rotation angle of the Higgs mass matrix, ↵,7

and the ratio of the two Higgs VEVs, tan �(⌘ v
2

/v
1

). The modifications of tree-level Higgs
couplings are

rt =
cos↵

sin �
, rb = r⌧ = � sin↵

cos �
, rV = sin(� � ↵), (5.31)

which can be recast into a more convenient form in terms of rt and tan �

rb = r⌧ =
q

1 + (1� r2t ) tan
2 �, rV =

rt tan2 � +
p

1 + (1� r2t ) tan
2 �

1 + tan2 �
. (5.32)

As discussed in Section 3, the most powerful way to hide top partners is to modify rt
directly. The 2HDM naturally allows for modifications of yt to non-SM values, and to hide
stops, we would require rt < 1 given N

˜t > 1. However, in the MSSM, Eq. (5.32) dictates
changes in rb, rV , and tan �, which are better constrained than rt itself. The tan � ! 0 limit
however removes the rt dependence of rb and rV , and fixes them to 1 allowing lower values
of rt without changing other Higgs observables. There is a lower limit of tan � = 2.2 in order
to retain perturbativity of Yukawa couplings at the GUT scale.8 Smaller values of tan�

7
In MSSM models �⇡/2  ↵  0 while in a general type-II 2HDM �⇡/2  ↵ < ⇡.

8
Perturbativity of top/bottom Yukawa couplings at the GUT scale yields the inequality 2.2  tan �  57.

14

Owing to the rich structure, dialing rt which is poorly measured 
leads to large changes in rb and rV which are well measured. 

Way out: small tanβ. However limited by RG perturbativity 
considerations. 

Future Work: extend Higgs section beyond 2HDM. 

MSSM contains a Type II, 2HDM and imposes relations 
between couplings.
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Figure 8: Excluded parameter space and expected sensitivities at 2� C.L. on degenerate
spin-0 top partner mass, m

˜t
1

= m
˜t
2

⌘ m
˜t, in the MSSM with various tan � of current and

future data. In the plots, we again show the (non-MSSM) “t̃ & rt” and “t̃ & rb” results from
Fig. 5 as a reference. Note that the anomalously strong limits in the “current data” fit (dark
gray) are due to the current data favoring a minimum with rt > 1 and rb < 1.

6.3.2 Spin-1/2 top partners with one Higgs doublet

In LH models with only a single Higgs doublet, such as the SU(3) SLH and SU(5) LLH
models, we have rt  1. As discussed in Section 5.2.1, since NT is negative-definite, rt < 1
does not help to hide the top partner compared to what is shown in Fig. 6, which marginalizes
over all values of rt. These theories thus prefer rt = 1, and Fig. 4 shows the resulting
constraints on the mass of the top partners up to 1.4 TeV at FCC-ee/hh.

6.3.3 Spin-1/2 top partners in type-II 2HDM

Similarly to the MSSM case in Section 6.3.1, we can now consider spin-1/2 top partners with
a Higgs sector given by a 2HDM model (such as the SU(4) SLH). We focus on a 2HDM
type-II model, since this allows for the weakest constraints on top partners as discussed
in Section 5.2.2. The results are given in Fig. 9 for various values of tan �. To simplify
comparisons with the cases in Section 6.2, we again show the results for “T & rb” and “T
& rt”. As for the MSSM case, we see that lower values of tan � help in hiding the spin-1/2
top partners.

6.3.4 Extended spin-1/2 top partner sectors

While the 2HDM presents one concrete way to reduce the sensitivity to spin-1/2 partners
from Higgs precision measurements, we can study further improvements by introducing mul-
tiple top partners, as discussed in Section 5.2.4. When ⇢  1 in Eq. (5.58), the sensitivity to
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Little Higgs theories do not require a 
2HDM. 
Single HDM however give negative 
definite top Yukawa deviation. 
Beneficial to add 2HDM structure to hide 
fermionic top partners. 
Type II proves to be the most capable.
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Figure 9: Excluded parameter space at 2� C.L. on spin-1/2 top-partner mass, mT , in type-II
2HDM with various tan � of current and future data (various colors). In the plots, we again
show the (non-2HDM) “T & rt” and “T & rb” scenarios from Fig. 6 for ease of comparison.

top partners remains unchanged, see Fig. 10 (left), but there is an extra fine-tuning penalty
for moving away from the diagonal degenerate region as measured by

�m2

h =
3

8⇡2


|⇢|m2

T
1

log

✓
⇤2

Strong

m2

T
1

◆
+ |1� ⇢|m2

T
2

log

✓
⇤2

Strong

m2

T
2

◆�
. (6.66)

However, ⇢ � 1 allows for a “stealth” scenario, as shown by the gray dashed line in Fig. 10
(right) for a fixed choice of ⇢. In this case, there is an accidental cancellation to the hgg
and h�� loop from the two top partners, which is not constrained by the Higgs precision
observables under consideration. However, it is probed by a complementary Higgs precision
measurement – the Zh cross section – at future lepton colliders, as we discuss in Appendix
A. Nevertheless, the current bounds on this scenario are weak and could thus provide a
promising direction for model building, perhaps one in which a symmetry allows for the
presence of the “stealth” region with minimal fine-tuning.

7 Conclusions

In this paper, we performed a model-agnostic investigation of the limits from Higgs-precision
data alone to probe naturalness from the presence of colored top partners. There are many
other complementary probes of naturalness, such as direct collider searches, electroweak
precision constraints and rare decays. However, while any given test may be avoided in
principle through model-building tricks that allow for a “natural” model, it is useful to
understand how well any given probe can test colored naturalness. Higgs precision tests are
quite robust even on their own, since the couplings involved are inherently tied to the very
question of naturalness itself.
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CAN WE INSTEAD MAKE  

Since the top has by far the largest SM coupling to the Higgs, the top-partner mass scale is
the most critical among the BSM masses. For a natural theory, all µi for the top partners
should be O(m

weak

), and masses heaver than this require tuning for successful EWSB.
On the other hand, lowering top partner masses as required by fine-tuning considerations

increase the visibility of the partners at colliders. Top partners that share the top’s color
and electric charge a↵ect the loop-induced hgg and h�� couplings. The qualitative behavior
can be immediately understood by considering the low-energy Higgs theorem [40,41], which
relates the mass of the particles to their contribution to these couplings. For a heavy particle
that receives some or all of its mass from the Higgs mechanism, the e↵ective coupling is
proportional to

v2

M2

ˆt

@M2

ˆt

@v2
h

v
Gµ⌫Gµ⌫ , (2.6)

where v is the Higgs vacuum expectation value (VEV), M2

ˆt
is the appropriately evaluated

mass-squared matrix for the top partner, and Gµ⌫ is the gluon field strength; a similar equa-
tion holds for the electromagnetic field-strength. When the partial derivative evaluates to
a constant, we can see the / 1/M2

ˆt
dependence. Therefore in a natural theory the contri-

butions are largest to Higgs observables for colored top partners. Alternatively, improving
Higgs precision measurements without seeing deviations from the SM expectations results
in a more fine-tuned theory, since it requires larger top-partner masses. Thus Higgs phe-
nomenology and naturalness are inexorably tied together for colored top partners, and it
provides an important constraint independent of direct searches.

3 Higgs Precision Constraints & Colored Top Partners

In this section, we describe our formalism and strategy to constrain colored top-partner
models through Higgs precision physics. We discuss the generic features of these models
that are most constrained by current data. Moreover, we identify those model features that
are best at hiding top partners from current Higgs precision data alone, thereby reducing
tension with naturalness. Finally, we describe how upcoming data from the LHC or a future
precision electron-positron collider will a↵ect these model features.

Higgs precision data can constrain BSM models mainly if these models modify the cou-
pling of the Higgs to SM particles or contain new decay modes for the Higgs. Modifications
to the Higgs couplings can a↵ect the Higgs partial widths and production modes, while new
decay modes a↵ect only the partial widths. Since new decay modes are not a generic pre-
diction of colored top-partner models, we will assume in this paper that the Higgs cannot
decay into the colored top partners. However, we will consider the possibility that new decay
modes can help hide colored top partners from Higgs precision measurements.

3.1 Definitions for non-Standard Model Higgs couplings

As we have emphasized in the introduction, a generic prediction of colored top partners is a
modification of a certain set of Higgs couplings. Since the SM Higgs fits the data well, we

5

where �rG captures the presence of other colored BSM (non-top-partner) particles. For
modifications to the e↵ective h�� coupling, we have

r� ⌘ c�
cSM�

=

P
j2(W,t,b,⌧) rjQ

2

jAj + r
ˆtQ

2

ˆt
A

ˆt + �r�P
j2(W,t,b,⌧) Q

2

jAj

, (3.12)

where �r� captures other color-neutral (non-top-partner) particles carrying electric charge.
It is now useful to define a new variable N

ˆt such that

N
ˆt ⌘

r
ˆtAˆt

rtAt

. (3.13)

This serves also to eliminate the hh|Hii dependence of the top-partner contribution, as it is
common to both the top-quark and top partner. We can then re-express rG as

rG =
rtAt(1 +N

ˆt) + rbAb + �rG
At +Ab

. (3.14)

Finally, changing the couplings of the Higgs to SM particles a↵ects the partial widths
and hence the total width possibly as well. To parametrize the e↵ects of this shift we define

rh ⌘ 1 +
X

j=G,�,V,b,⌧

(|rj|2 � 1)BSM

h!jj , (3.15)

where the SM branching ratios are given in e.g. [43]. While this is a redundant definition,
it is useful, because in addition to colored top partners there may also be new decay modes
for the Higgs, which would either be a contribution to the invisible width of the Higgs or
an exotic decay channel. The di↵erence between invisible and exotic will occur only in
discussing direct search constraints. In particular, it is much easier to constrain an invisible
decay rather than an arbitrary exotic decay. The total decay width of the Higgs, �

tot

, is
then given by

�
tot

= rh�
SM

tot

+ �
exo

+ �
inv

, (3.16)

where �SM

tot

, �
exo

, and �
inv

are decay widths of the Higgs to SM particles, exotic final states,
and invisible final states, respectively. The relation can be re-parameterized as

r
exo

⌘ �
exo

�SM

tot

=
rhBexo

1� B
exo

� B
inv

, r
inv

⌘ �
inv

�SM
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=
rhBinv

1� B
exo

� B
inv

, (3.17)

where the branching ratios are defined as B
inv

⌘ �
inv

/�
tot

and B
exo

⌘ �
exo

/�
tot

.

3.2 Higgs-precision constraints on top partners and how to avoid
them

With the definitions given in the previous sub-section, it is straightforward to understand
where the strongest constraints on top partners come from. To constrain top partners we

7

Vanish?



NATURAL SUSY

the 2HDM (or additional Higgs states if there are more). For simplicity, we will start with
the minimal 2HDM required for stops, which is a type-II model as in the MSSM. We will
comment below on changes that occur from extended Higgs sectors.

After EWSB the stop mass matrix in MSSM is given by6

✓
m2

Q +m2

t mtXt

mtX
⇤
t m2

U +m2

t

◆
, (5.24)

where mQ and mU are the soft SUSY breaking masses of the left- and right-handed stops,
respectively, and the o↵-diagonal mixing parameter is given by

Xt = At � µ cot � , (5.25)

where tan � ⌘ v
2

/v
1

is the ratio of the two Higgs VEVs, At is a soft-SUSY breaking parame-
ter, and µ is a supersymmetric mass term for the Higgs doublets (for a review see [72]). The
physical mass of the two stops, m

˜t
1

and m
˜t
2

, are the eigenvalues of this matrix, and they
satisfy the relation

|m2

˜t
1

�m2

˜t
2

| =
q
(m2

Q �m2

U)
2 + 4m2

tX
2

t . (5.26)

Since the stops are colored, they also run in loops and contribute to the hgg coupling (N
˜t

defined in Eq. (3.13)). Given the dependence of the masses of the stops on the Higgs, we can
use the low-energy Higgs theorem discussed in Section 2 to predict their impact on Higgs
phenomenology through [22, 24, 40,41,73,74]

N
˜t ⇡

1

4

 
m2

t

m2

˜t
1

+
m2

t

m2

˜t
2

� m2

tX
2

t

m2

˜t
1

m2

˜t
2

!
. (5.27)

Since this depends on both the physical masses and mixing, we will use the logic of [24]
to e↵ectively marginalize over the mixing. We can obtain first a lower limit on Xt from
Eq. (5.27),

|Xmin

t |2 =
m2

t

⇣
m2

˜t
1

+m2

˜t
2

⌘
� 4m2

˜t
1

m2

˜t
2

N
˜t

m2

t

, (5.28)

where r˜tG is the upper limit allowed from Higgs precision data. Additionally, requiring the
positivity of the physical stop masses in Eq. (5.26) gives an upper bound on Xt,

|Xmax

t | = |m2

˜t
1

�m2

˜t
2

|
2mt

. (5.29)

Thus given experimental input r˜tG, a set of physical stop masses m
˜t
1,2

are ruled out if the
consistency condition |Xmin

t |  |Xmax

t | is not satisfied.
6We neglect D-terms whose values are far smaller than m2

t .
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|Xmax

t | = |m2

˜t
1

�m2

˜t
2

|
2mt

. (5.29)

Thus given experimental input r˜tG, a set of physical stop masses m
˜t
1,2

are ruled out if the
consistency condition |Xmin

t |  |Xmax

t | is not satisfied.
6We neglect D-terms whose values are far smaller than m2

t .
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Figure 3: Excluded parameter space and expected sensitivities at the 2� CL of current (gray)
and future data (various colors) for spin-0 top-partners in the m

˜t
2

versus m
˜t
1

plane. In the

left plot, we assume tan � ' 1 and hb̃
1

b̃
1

coupling vanishes (Eq. (5.47)), while in the right
plot, tan � is large to maximize the D-term contributions in the stop and sbottom sector
(Eq. (5.48)). We assume that top partners are the only BSM contributions to the Higgs
couplings and can contribute to exotic Higgs decay through h ! t̃t̃ and, possibly, h ! b̃

1

b̃
1

.
The other Higgs couplings are fixed to their SM values. For both plots, we require m

˜b
1

to
be real in the allowed region.

Eq. (5.45).
As anticipated in Section 5.1, the lower bounds on the masses are strongest for m

˜t
1

= m
˜t
2

and weaker for split masses. The constraints and projections along the degenerate direction
for high masses arise dominantly from the presence of the two stops in the hgg and h��
loops. Comparing the two plots in this region, we see that the D-term contribution in the
stop mass matrix Eq. (5.25) and in the Higgs-stop-stop couplings Eqs. (5.29)–(5.31), as well
as including the sbottom contribution, only slightly extends the constraints and projections
at the O(1%) level. When one of the stops becomes lighter than half the Higgs mass,
constraints arise from h ! t̃t̃ (left plot) and from h ! t̃t̃ and h ! b̃

1

b̃
1

(right plot). If
one of the stops becomes heavy, the coupling of the Higgs to the lighter stop with mass
below mh/2 becomes small and the Higgs decay to the lighter stop vanishes. However, in
the presence of a light left-handed sbottom (corresponding to a light left-handed stop, t̃

1

),
the Higgs decay width to sbottoms is large; while the current data is unable to rule out the
m

˜t
2

< mh/2 region entirely, future LHC Run 3 data can su�ciently constrain exotic Higgs
decays to probe this region completely.
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TWO FERMIONIC TOP PARTNERS
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Figure 10: Excluded parameter space and expected sensitivities at the 2� C.L. of current
and future data (various colors) for two spin-1/2 top partners in the mT

2

versus mT
1

plane.
The left plot shows the case in which both spin-1/2 top partners contribute equally to
canceling the Higgs-mass contribution of the top-quark loop, i.e. ⇢ = 1/2, where ⇢ is defined
in Eq. (5.58). In the right plot, T

2

contributes with the same sign as the top-quark to the
Higgs mass, but both contributions are cancelled by T

1

, ⇢ = 3/2. The latter allows for a
“stealth” limit (black dotted line), in which Higgs precision measurements are not sensitive
to the presence of spin-1/2 top-partners.

We find that with Higgs precision measurements alone, the HL-LHC can constrain spin-
0 and spin-1/2 top partners almost to O(500) GeV in theories where there is only one
spin-1/2 top partner or there is minimal mixing between the states. With proposed future
lepton and hadron colliders this can be extended to the TeV scale. Spin-1 top partners are
generically excluded to the multi-TeV regime. However, we have also identified a number of
“blind-spots” where top partners can still be light even if future colliders are realized. In
particular, if there is a hierarchy between multiple top partners from mixing of the states,
the standard probe using gluon-fusion can be avoided. However, there are still bounds from
Higgs precision measurements that are complementary to what is probed by gluon fusion.
For instance, in the case of spin-0 top partners, in the extreme limit where one eigenvalue
becomes lighter than mh/2, constraints from gluon-fusion Higgs production can still be
avoided but there are strong bounds instead from the new contribution to the total width of
the Higgs. Nevertheless, there still exist particular points in parameter space that can avoid
all Higgs precision measurements, similar to the light-sbottom window [91,92]. While these
blind-spots were known for spin-0 cases, we have extended them to lower masses and included
decays, and demonstrated that they can also occur in fermionic top partner models as well.
This provides an interesting model building direction, since minimal fermionic top-partner
models, such as in Little Higgs theories, are generically in more tension with Higgs precision

33

5.2.2 Concrete Models: Little Higgs models with two Higgs doublets

[RE: check] If the Higgs sector is extended to a 2HDM, as in the SU(4) SLH model, then
rt > 1 is possible. This can help hide the top partner, especially within a type-II 2HDM
model. In contrast to the SUSY case, we can explore also other types of 2HDM, but their their
ability to weaken constraints on top partners is quite limited. For type-III, this limitation is
due to the restriction rt = rb, so that a precise measurement of hbb̄, which restricts rb, also
indirectly constrains rt. For type-IV, a similar limitation arises from rt = r⌧ . For type-I,
both limitations exist.

5.2.3 Top-partners with Additional Resonances

[RE: check] One could include in the spin-1/2 top-partner models additional “resonances”
in analogy with the ⇢-meson in QCD. This could increase the e↵ective form factor that
controls rt in a complete theory [82], thereby weakening constraints on top partners.

5.2.4 Multiple Fermionic Top Partners[PM: FIX TITLE AND SECTION]

As discussed in the previous subsection, the 2HDM structure of a spin-1/2 top-partner model
is not typically su�cient to hide the e↵ects of NT . A promising direction is to add additional
fermionic top partners to a model. The Lagrangian in Eq. (5.33) can be extended trivially
to multiple top partners with degenerate top partner masses and couplings.9 Let us now
investigate the e↵ects of non-degeneracy in masses and couplings in the case of two spin-1/2
top partners. For this case, a general mass matrix to the same order in 1/f is given by

M =

0

@
M

1

� (a
11

/f)H2 �(a
12

/f)H2 �(a
13

/f)H2

�(a
21

/f)H2 M
2

� (a
22

/f)H2 �(a
23

/f)H2

a
31

H a
32

H a
33

H(1 + (a0
33

/f 2)H2)

1

A , (5.38)

where the a’s (and a0) are dimensionless coe�cients from the expansion of some sigma-fields
in a complete model. The cancellation of Higgs mass loops requires the relation

2(M
1

a
11

+M
2

a
22

) = f(a2
31

+ a2
32

+ a2
33

) , (5.39)

and consequently the total contribution from top partners to hgg is given by

NT ⌘ yT
1

+ yT
2

= �m2

t

✓
⇢

mT
1

2

+
1� ⇢

mT
2

2

◆
, (5.40)

where ⇢ ⌘ (2M
1

a
11

� fa2
31

)/a2
33

defines the “fraction” of the cancellation coming from the
T
1

loop. It is interesting to note that for ⇢ > 1, T
2

and the SM t yield the same-sign
contribution to the quadratic divergence of Higgs mass, which is cancelled entirely by T

1

.

9If N top partners have identical masses and couplings, NyT needs to be kept invariant to cancel the
Higgs mass loop and the same factor occurs inside the gluon fusion loop and therefore all our arguments in
the previous section remain valid.
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ZH PROBES

• Colored Top Partners acting like neutral Top Partners 

• Fall back on neutral Top Partner probes 

• e+ e-  -> Zh
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Figure 2: Feynman diagrams corresponding to e+e� ! hZ at a lepton collider. The Higgs

wavefunction correction diagram discussed in [51] is shown in (a), and all possible countert-

erm diagrams are shown in (d) with the understanding that in the calculation of one-loop

counterterms only the stop and left-handed bottom squarks are included. One-loop Z/�

wavefunction correction diagrams (b,e) and vertex correction (c,f) diagrams are also shown.

Diagrams involving left-handed bottom squarks are not shown, but also contribute.

with eBR the physical mass of eBL is very close to emL, and hence whenever emL . 120 GeV we

will assume that other bounds from direct searches are satisfied by additional mixings in the

sbottom sector which raise the physical mass of both sbottoms.

In order to renormalize the theory for the calculation of virtual corrections, a minimum

basis of three input parameters must be chosen, and then counterterms are defined for those

parameters and the SM field strengths. Due to the ease of implementation in the FeynArts,

FormCalc, and LoopTools suite of packages [45, 46] we opt for the complete on-mass-

shell renormalization scheme [47–50] and hence choose electroweak inputs of (MZ , MW , ↵EM )

following the prescription of [47].

The full set of counterterms includes the field strength counterterms, particle mass coun-

terterms (including the Higgs mass counterterm, which we consider to be independent unlike

in the MSSM), a counterterm for the EM coupling at low energies, and a counterterm for the

Higgs vev. All other counterterms are then defined through combinations of this set. Due to

their weak charges and couplings to the Higgs, the squarks enter into the counterterms for

the weak sector.

Some of the NLO diagrams contributing to e+e� ! hZ are shown in Fig. 2. It has been

analytically checked that the full NLO correction is finite and gauge invariant. As a further

check, setting stop couplings to gauge bosons to zero in our NLO calculation reproduces

the results of [51], where gauge-singlet scalars t̃
0

were considered.5 In the case of t̃
0

, the

e↵ect arises entirely from the quartic coupling �2

t |H|2|t̃
0

|2, which induces an irreducible phys-

5For proper comparison, At must be set to 0 in the stop case, since it has no counterpart in the case of t̃0;

– 11 –

Two powers of  
coupling

Fig. from Craig, et.al arXiv:1411.0676

Refer Craig et.al. arXiv:1305.5251

http://arxiv.org/abs/arXiv:1411.0676


GGF VS ZH SUSY: 
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Figure 11: Expected sensitivities at the 2� C.L. of FCC-ee for spin-0 models with additional
constraints from ��Zh. In the left plot, we assume tan � ' 1 and hb̃

1

b̃
1

coupling vanishes
(Eq. (5.47)), while in the right plot, tan � is large to maximize the D-term contributions in
the stop and sbottom sector (Eq. (5.48)).

CEPC and FCC-ee [71, 72, 93]), we observe additional constraints in the non-degenerate
region when tan � ! 1. As seen in Fig. 11, less additional parameter space is constrained
when tan � is large. If we were to increase the statistics of the future lepton colliders and
improve the measurement on ��Zh to 0.1%, we start to probe more of the non-degenerate
region in both cases. With 0.1% of data, we can also robustly rule out m

˜t
1

 150GeV
in both cases. However, one should note that this is tied to the ansatz that t̃

1

is mostly
left-handed in our setup, which fixes the b̃

1

mass. This is also the reason why the limits are
not symmetric under the interchange of t̃

1

and t̃
2

. It would be interesting to study fully the
large-mixing region of small stop- and sbottom-masses in the MSSM to find robust lower
bounds.

For fermionic top partners, which we consider to be part of an EFT, we do not implement
a full one-loop analysis, as there can be additional dimension-six operators generated at the
UV scale that could also contribute to the Higgstrahlung cross-section. However, we can still
make a conservative estimate of the contribution to the Zh cross section from the top-partners
using WFR in the EFT with the assumption that there are no large cancellations between
the loop-e↵ects and higher-dimension operators. With this assumption, the deviation in the
Zh cross-section, from the the finite contributions to Higgs WFR in the multiple fermionic
top partner model in Section 5.2.4, is given by,

��Zh = �m2

t

8⇡2


⇢2

m2

T
1

+
(1� ⇢)2

m2

T
2

�
. (A.70)
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GGF+ZH  -  FERMIONIC TPS

Caveat: Depends on UV completion
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Figure 12: Expected sensitivities at the 2� C.L. of FCC-ee for two spin-1/2 top-partner
model with additional constraints from ��Zh. The projected sensitivity from FCC-ee is
taken from Fig. 10.

We find that the stealth region in the right panel of Fig. 10 can be covered to the TeV
scale by the measurement of ��Zh from future lepton colliders as shown in Fig. 12. This is a
conservative estimate, and the e↵ects would in general be larger unless there was a symmetry
or additional tuning of di↵erent contributions at the UV scale.

Finally, we briefly comment on di-Higgs production, which also is quadratically sensitive
to the Higgs-top-partner coupling. Similar to gg ! h, colored top partners contribute
to the double Higgs production process, gg ! hh, at the loop-level [97]. It contains two
Higgs vertices, which can spoil this cancellation, and naively we would expect some coverage
of the “blind-spots” by measuring the deviation of �(gg ! hh) from its SM prediction.
However, even at future colliders, the total cross section for double-Higgs production is
much smaller than single-Higgs production making this a di�cult measurement without
much discriminating power.

At a 100 TeV hadron collider, with 30 ab�1 of data, we can measure this cross section
to 1.6% accuracy [98]. However, even so, it is notoriously hard to di↵erentiate between
new colored particles in the loop and a change in the triple Higgs coupling [99]. We leave
for future work a calculation of the constraints that includes a shape analysis of the m2

hh

spectrum near the light top-partner mass threshold.
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SUMMARY

• Independent probe of TPs through ggf 

• Even after dialing other signal strengths, limits reach over a TeV  

• Certain chance cancellations possible 

• Supplemented by limits from Zh 



y’all should build a collider this big 



VECTOR TOP PARTERS

• Again require a SUSY theory 

• Vectors cannot be charged as a 

• Observation:SU(5) has gauge bosons transforming as (3,2) under 
the SU(3)x SU(2) subgroups 

• top is the gaugino => top-partner is a vector

Hd = (0, (vd+h)/
p
2)T , note the emphasis on Hd not Hu as in a spin-0 model. The relevant

Lagrangian is

L � 1

2
ĝ2
5

h2 ~Q2 +
1

2
ĝ2
5

h2W 0+W 0� + ĝ
5

htRt
⇤
R + h.c. , (5.43)

where ĝ
5

htRt
⇤
R is identified with top Yukawa and hence rt = ĝ

5

⇡
p
1 + tan2 � > 1. Again,

~Q are top partners (heavy gauge bosons transforming like the SM left handed top) and W 0

are heavy gauge boson of a SU(2) doublet. The EM charge and number of colors for ~Q and

W 0 are (Q ~Q, N
~Q
c ) = (2/3, 3) and (QW 0 , NW 0

c ) = (1, 1), respectively. The h2 ~Q2 interaction
modifies both hgg and h�� couplings, while h2W 0+W 0� a↵ects only the latter. In principle,
m ~Q and mW 0 are uncorrelated. However, they should be around the same energy scale due
to the their common origin. For simplicity, we enforce m ~Q = mW 0 in our fits. For N ~Q in
Eq. (3.13), we obtain,

N ~Q = � 1

cos �

21

4

m2

t

m2

Q

(5.44)

where tan � is the usual MSSM VEV ratio and rt = ĝ
5

⇠ 1/cos �. The large 21/4 prefactor
in Eq. (5.44) comes from inherent di↵erence in the spin-1 loop function compared to other
top-partner cases. Therefore the same amount of Higgs data results in stricter limits on
vector top partners compared to other top partners. While novel, this model requires a
plethora of additional particles resulting in tuning penalties as well as large deviations in
Higgs phenomenology. For this reason we do not investigate further extensions.

6 Results and Discussions

In this section, we present the exclusion limits for various top-partner scenarios and their
extensions. We derive current and prospective bounds on top-partner masses by first con-
sidering the minimal case in which the top partners only contribute in the loops of hgg and
h��, and no other Higgs couplings are modified from their SM values. We then additionally
modify other Higgs couplings from their SM values, and evaluate which modifications are
most e↵ective at hiding the top partners from Higgs precision studies. We also consider
concrete models and discuss model extensions that provide the best hiding power allowing
for the most natural models possible with respect to Higgs constraints.

As discussed in Section 4, we use the existing results from the LHC and Tevatron to
derive the current constraints, and we derive projected sensitivities based on projected Higgs
coupling measurements from future LHC and electron-positron collider data sets.

6.1 Constraints on top partners that only a↵ect hgg, h�� loops

We begin by assuming that the top partners are the only BSM contributions to the Higgs
couplings rG and r�, while the other Higgs couplings are fixed to their SM values, i.e.,
rt = rb = r⌧ = rV = 1 and r

inv/exo

= �r� = �rG = 0. The �2-function in Eq. (4.22) is
then only a function of N

ˆt given in Eq. (3.13). Performing the global fit to the various
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FUTURE COLLIDERS DATA

ILC CEPC FCC-ee FCC-hh
�
�h

1.8% 1.9% 1% –
�rb 0.7% 0.92% 0.42% –
�rc 1.2 % 1.2% 0.71% –
�rG 1% 1.1% 0.8% –
�rW 0.42% 0.87% 0.19% –
�r⌧ 0.9% 1% 0.54% –
�rZ 0.32% 0.18% 0.15% –
�r� 3.4% 3.3% 1.5% –
�rµ 9.2% 6.1% 6.2% –
�rt 3% – 13% 1%
B

inv

0.29% 0.2% 0.19% –

Table 5: Constraints on sensitivities for ILC (250 GeV, 2 ab�1 � 350 GeV, 200 fb�1 �
550 GeV, 4 ab�1) [71], CEPC (240 GeV, 10 ab�1) [72], FCC-ee (240 GeV, 10 ab�1 � 350
GeV, 2.6 ab�1) from [48,93], and FCC-hh (100 TeV, 30 ab�1) [48]. Note that since most of
sensitivities of FCC-hh are still under study (except for rt) [48], we use the corresponding
values from FCC-ee for our projections. B

inv

in the last row are the upper limits with 95%
CL.
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