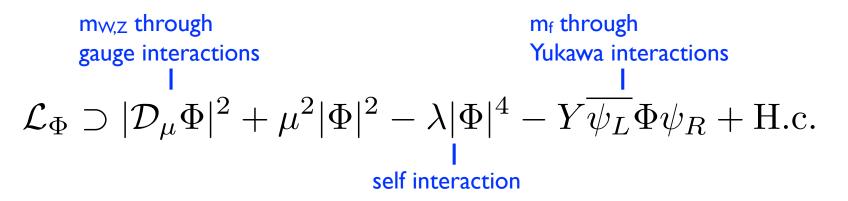


November 7, 2017 International Workshop on High Energy Circular Electron Positron Colliders @ IHEP

GEORGI-MACHACEK MODEL BEYOND TREE LEVEL

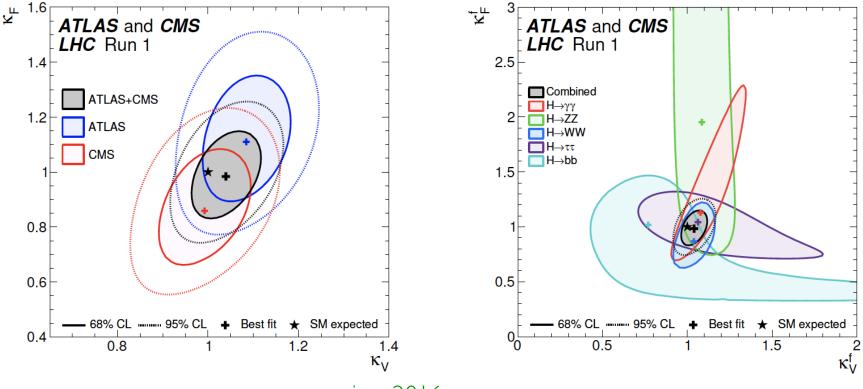
Cheng-Wei Chiang National Taiwan University


CWC, AL Kuo, K Yagyu, PLB774 (2017) 119 [1707.04176] CWC, AL Kuo, K Yagyu, [1712,xxxx]

OVERVIEW

- Higgs measurements
- Custodial Higgs models
- Georgi-Machacek (GM) model
- Renormalization of GM model
- Numerical results
- Summary

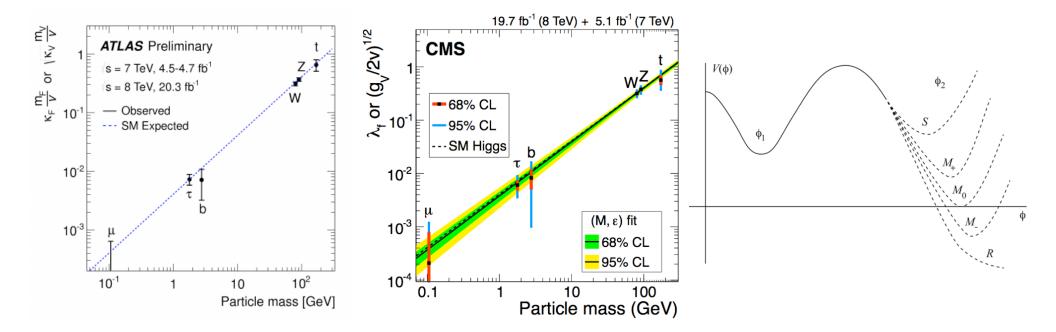
HIGGS PHYSICS PROGRAM


• Higgs mechanism in SM offers an elegant and minimal way to give mass to weak bosons and charged fermions:

- It also features in a self interaction that plays a role in the phase transition in the early Universe.
- After the discovery of 125-GeV Higgs boson, it has become an important program in particle physics to determine its interactions with SM particles (including itself).

HIGGS PHYSICS PROGRAM

Global fits of Higgs couplings (assuming universal scaling factors κ_{F,V}) from LHC Run-I
 quite consistent with SM



circa 2016 summer

Cheng-Wei Chiang (NTU)

HIGGS PHYSICS PROGRAM

- Precision coupling measurements are required!
 implications from SM expectations?
 - hint a non-standard structure in the Higgs sector?
 - an extended Higgs sector?
 - how EWSB exactly happens?

AN EXTENDED HIGGS SECTOR

- Compared to fermion and gauge sectors, the scalar sector is less explored experimentally.
- Other than usual symmetries, no guiding principles in constructing the scalar sector:
 representations of scalar bosons
 numbers of scalar bosons
 extra symmetries (continuous/discrete)
 required by new physics (neutrino mass, DM, EWBG, SUSY, etc)

Study of predictions and constraints of models with an extended Higgs sector

HIGGS EXTENSIONS

Higgs extensions are subject to a stringent constraint

$$\rho \equiv \frac{M_W^2}{M_Z^2 \cos^2 \theta_W} = 1.00040 \pm 0.00024 \qquad \text{PDG 2014}$$

In models with an extended Higgs sector, at tree level

$$\rho_{\text{tree}} = \frac{\sum_{i} v_{i}^{2} \left[T_{i}(T_{i}+1) - Y_{i}^{2} \right]}{\sum_{i} 2Y_{i}^{2} v_{i}^{2}}$$

• If only one new SU(2)_L rep is added to the SM, $\rho_{tree} = 1$ gives the following possibilities:

(0,0) – real singlet, ⇒ interacting mainly with h_{SM}
(1/2,1/2) – doublet, ⇒ a popular choice (e.g., 2HDM)
(3,2) – septet, (25/2, 15/2), (48,28), (361/2,209/2), etc.

HIGGS EXTENSIONS

• Higgs extensions are subject to a stringent constraint

$$\rho \equiv \frac{M_W^2}{M_Z^2 \cos^2 \theta_W} = 1.00040 \pm 0.00024 \qquad \text{PDG 2014}$$

In models with an extended Higgs sector, at tree level

$$\rho_{\text{tree}} = \frac{\sum_{i} v_{i}^{2} \left[T_{i}(T_{i}+1) - Y_{i}^{2} \right]}{\sum_{i} 2Y_{i}^{2} v_{i}^{2}}$$

 One can also choose to add a custodial symmetric rep (n,n) (n ∈ N) under (SU(2)_L,SU(2)_R) with vacuum alignment.
 me generalized GM model Logan, Rentala 2015

HIGGS EXTENSIONS

Higgs extensions are subject to a stringent constraint

$$\rho \equiv \frac{M_W^2}{M_Z^2 \cos^2 \theta_W} = 1.00040 \pm 0.00024 \qquad \text{PDG 2014}$$

In models with an extended Higgs sector, at tree level

$$\rho_{\text{tree}} = \frac{\sum_{i} v_{i}^{2} \left[T_{i}(T_{i}+1) - Y_{i}^{2} \right]}{\sum_{i} 2Y_{i}^{2} v_{i}^{2}}$$

- Simplest CP-conserving custodial Higgs models:
 - real Higgs singlet model (rHSM): $\Phi_{SM} + S$
 - two Higgs doublet model (2HDM): $\Phi_{SM} + \Phi'$
 - GM model: $\Phi_{SM} + \Delta$

GEORGI-MACHACEK MODEL

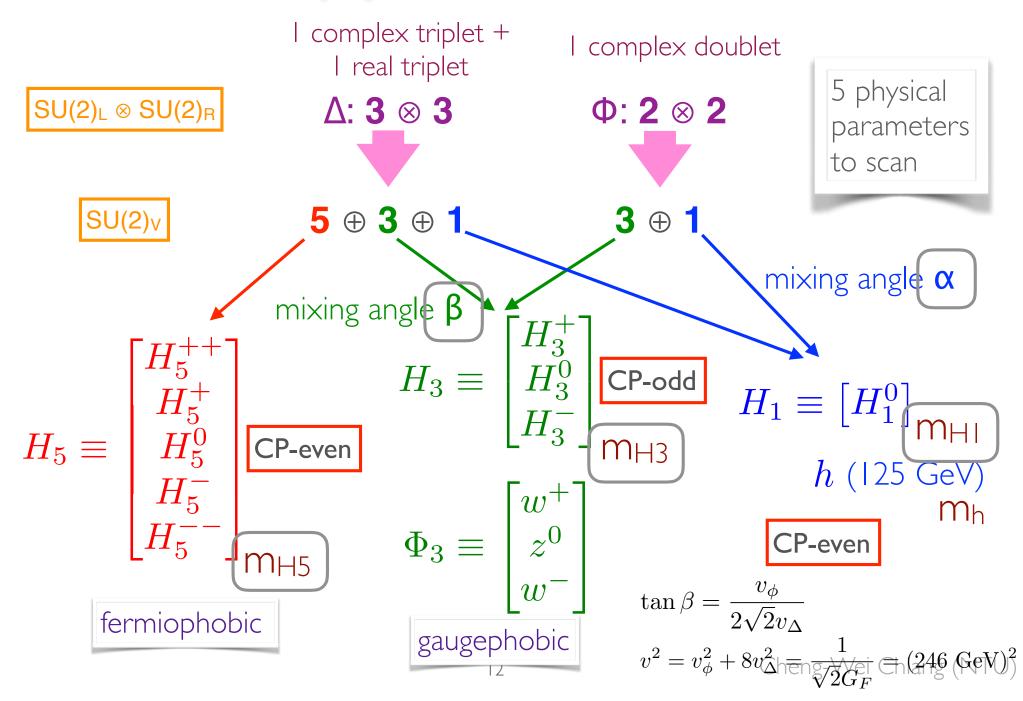
 The Higgs sector includes SM doublet field φ(2,1/2) and triplet fields χ(3,1) and ξ(3,0)
 Georgi, Machacek 1985 Chanowitz, Golden 1985

$$\Phi = \begin{pmatrix} v_{\phi} & \phi^+ \\ \phi & v_{\phi} \end{pmatrix}, \qquad \Delta = \begin{pmatrix} v_{\Delta} & \xi^+ & \chi^{++} \\ \chi & v_{\Delta} & \chi^+ \\ \chi^{--} & \xi & v_{\Delta} \end{pmatrix}$$

transformed under SU(2)_L×SU(2)_R as

 $\Phi \rightarrow U_L \Phi U_R^{\dagger}$ and $\Delta \rightarrow U_L \Delta U_R^{\dagger}$ with $U_{L,R} = \exp(-i \theta_{L,R}^a T^a)$ and T^a being corresponding SU(2) generators.

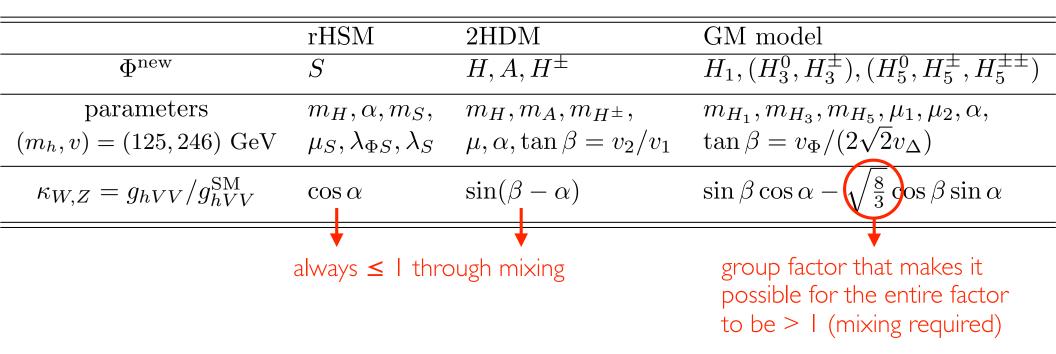
• Take $v_{\chi} = v_{\xi} \equiv v_{\Delta}$ (aligned VEV). $\implies SU(2)_L \times SU(2)_R \rightarrow custodial SU(2)_V$ $\implies \rho = 1$ at tree level


GEORGI-MACHACEK MODEL

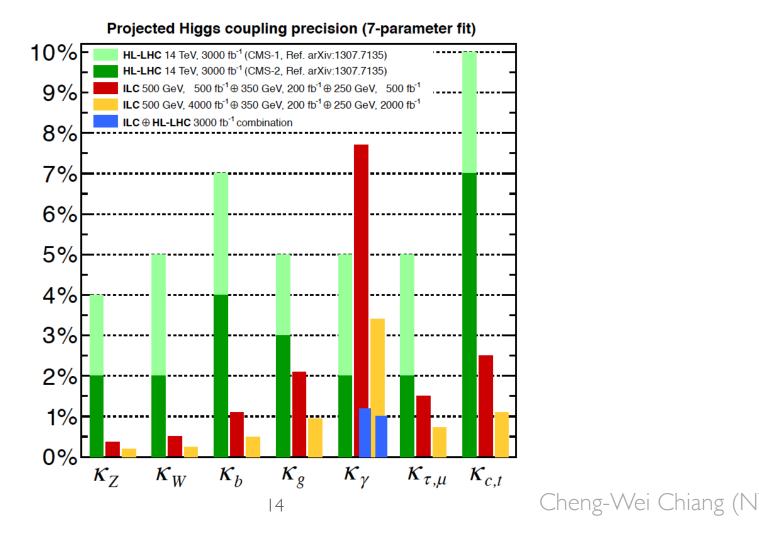
 The most general Higgs potential allowed by gauge and Lorentz symmetries and built in with custodial symmetry is

$$V(\Phi, \Delta) = \frac{1}{2}m_1^2 \operatorname{tr}[\Phi^{\dagger}\Phi] + \frac{1}{2}m_2^2 \operatorname{tr}[\Delta^{\dagger}\Delta] + \lambda_1 (\operatorname{tr}[\Phi^{\dagger}\Phi])^2 + \lambda_2 (\operatorname{tr}[\Delta^{\dagger}\Delta])^2 + \lambda_3 \operatorname{tr}[(\Delta^{\dagger}\Delta)^2] + \lambda_4 \operatorname{tr}[\Phi^{\dagger}\Phi] \operatorname{tr}[\Delta^{\dagger}\Delta] + \lambda_5 \operatorname{tr}\left[\Phi^{\dagger}\frac{\sigma^a}{2}\Phi\frac{\sigma^b}{2}\right] \operatorname{tr}\left[\Delta^{\dagger}T^a\Delta T^b\right] + \underbrace{\left[\Phi^{\dagger}\frac{\sigma^a}{2}\Phi\frac{\sigma^b}{2}\right]}_{\Phi} \left(P^{\dagger}\Delta P)_{ab} + \mu_2 \operatorname{tr}\left[\Delta^{\dagger}T^a\Delta T^b\right] (P^{\dagger}\Delta P)_{ab} \Phi = \begin{pmatrix}\phi^{0*} & \phi^+ \\ -(\phi^+)^* & \phi^0\end{pmatrix}, \ \Delta = \begin{pmatrix}(\chi^0)^* & \xi^+ & \chi^{++} \\ -(\chi^+)^* & \xi^0 & \chi^+ \\ (\chi^{++})^* & -(\xi^+)^* & \chi^0\end{pmatrix}, \ P = \frac{1}{\sqrt{2}}\begin{pmatrix}-1 & i & 0 \\ 0 & 0 & \sqrt{2} \\ 1 & i & 0\end{pmatrix}$$

- Decoupling limit: $m_2 \rightarrow \infty$ - v_{Δ} induced by v_{Φ} through μ_1


HIGGS SPECTRUM

CUSTODIAL HIGGS MODELS


- Couplings of h modified by exotic Higgs fields due to their EW charges, and mixing with Φ_{SM} .
- At tree level, their hVV couplings satisfy

 $\kappa_W = \kappa_Z$

EXPECTED COUPLING PRECISION

- All Higgs couplings will be determined by HL-LHC + ILC to O(1) or sub percent level.
 - need to know radiative corrections

RADIATIVE CORRECTIONS

- Radiative corrections can lead to at least two effects:
 - changes in the magnitudes of various couplings
 - deviations from tree-level relations among couplings
 due to various custodial symmetry breaking parameters
 (couplings, masses).

	rHSM	2HDM	GM model
Φ^{new}	S	H, A, H^{\pm}	$H_1, (H_3^0, H_3^{\pm}), (H_5^0, H_5^{\pm}, H_5^{\pm\pm})$
parameters	$m_H, \alpha, m_S,$	$m_H, m_A, m_{H^{\pm}},$	$m_{H_1}, m_{H_3}, m_{H_5}, \mu_1, \mu_2, \alpha,$
$(m_h, v) = (125, 246) \text{ GeV}$	$\mu_S, \lambda_{\Phi S}, \lambda_S$	$\mu, \alpha, \tan \beta = v_2/v_1$	$\tan\beta = v_{\Phi}/(2\sqrt{2}v_{\Delta})$
$\kappa_{W,Z} = g_{hVV}/g_{hVV}^{\rm SM}$	$\cos lpha$	$\sin(\beta - \alpha)$	$\sin\beta\cos\alpha - \sqrt{\frac{8}{3}}\cos\beta\sin\alpha$
$\delta\kappa_V$	$-\sinlpha\deltalpha$	$\cos(\beta - \alpha)(\delta\beta - \delta\alpha)$	$\frac{\partial \kappa_V}{\partial \alpha} \delta \alpha + \frac{\partial \kappa_V}{\partial \beta} \delta \beta + \frac{\partial \kappa_V}{\partial \rho} \delta \rho$

RENORMALIZATION OF GM MODEL

• Independent counter terms in the model:

gauge sector $m_W^2 \rightarrow m_W^2 + \delta m_W^2$, $m_Z^2 \rightarrow m_Z^2 + \delta m_Z^2$, $\alpha_{\rm em} \rightarrow \alpha_{\rm em} + \delta \alpha_{\rm em}$, $B_{\mu} \rightarrow \left(1 + \frac{1}{2}\delta Z_B\right) B_{\mu} ,$ $W^a_\mu \to \left(1 + \frac{1}{2}\delta Z_W\right) W^a_\mu$.

$$\begin{split} m_X^2 &\to m_X^2 + \delta m_X^2 \ , \\ & (X = H_5, H_3, H_1, h) \\ \mu_i &\to \mu_i + \delta \mu_i \ , (i = 1, 2) \\ v_\Delta &\to v_\Delta + \delta v_\Delta \ , \\ \nu &\to 0 + \delta \nu \ , \ (\nu = v_\xi - v_\chi) \\ \alpha &\to \alpha + \delta \alpha \ . \end{split}$$

scalar sector

Cheng-Wei Chiang (NTU)

RENORMALIZATION CONDITIONS

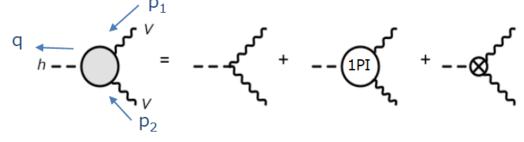
 In addition to the renormalization conditions in the SM to get physical G_F, m_Z, and α_{EM} , the GM model allows one additional condition, which we take to make

$$\alpha_{\rm em}T = \frac{\Pi_{ZZ}^{1\rm PI}(0) - \Pi_{ZZ}^{1\rm PI}(0)\big|_{\rm SM}}{m_Z^2} - \frac{\Pi_{WW}^{1\rm PI}(0) - \Pi_{WW}^{1\rm PI}(0)\big|_{\rm SM}}{m_W^2} + \frac{\delta\rho}{m_W^2}$$

equal to 0 or its experimental value.

- $\delta\rho = \frac{8v_{\Delta}\delta\nu}{r^2}$ • Use on-shell conditions to fix other counter terms.
- Observe gauge dependence in mixed 2-point functions. fixed by use of pinch technique in the physical $f \rightarrow f f$ Cornwall 1982, 1989; Papavassiliou 1990; processes due to pinch terms Degrassi, Sirlin 1992; Papavassiliou, Pilaftsis 1998 unlike 2HDM, one needs to sum up H₃-G, H₃-H₃, and G-G diagrams in GM model to see the gauge dependence cancellation Cheng-Wei Chiang (NTU)

hvv couplings


- In general, the renormalized $hV_{\mu}V_{\nu}$ vertices can be decomposed as

$$\hat{\Gamma}^{\mu\nu} = \hat{\Gamma}_1 g^{\mu\nu} + \hat{\Gamma}_2 p_1^{\mu} p_2^{\nu} + \hat{\Gamma}_3 \epsilon^{\mu\nu\rho\sigma} p_{1\rho} p_{2\sigma}$$

where the last two form factors start to appear at 1-loop level from 1-particle irreducible (1PI) diagram contributions, while the first form factor

$$\hat{\Gamma}_1 = \frac{2m_V^2}{v}\kappa_V + \Gamma^{1\mathrm{PI}} + \delta\Gamma$$

has contributions from the tree-level coupling, 1PI diagrams, and counter terms.

KZ, AND KW

 hVV scaling factors at 1-loop with momentum dependence are defined as:

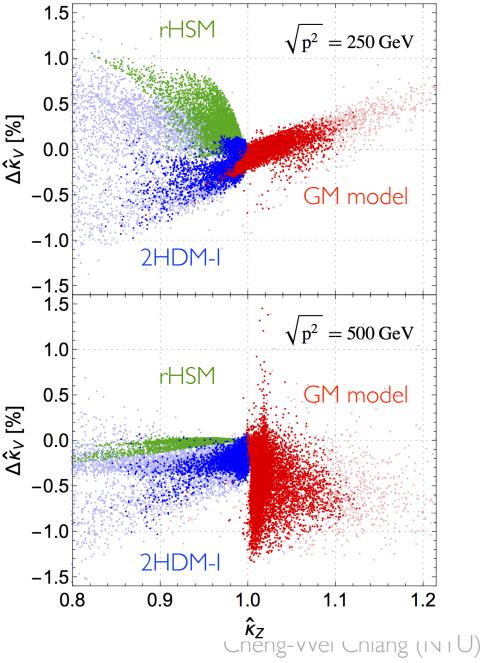
$$\hat{\kappa}_V(p^2) \equiv \frac{\hat{\Gamma}_1(m_V^2, p^2, m_h^2)_{\rm NP}}{\hat{\Gamma}_1(m_V^2, p^2, m_h^2)_{\rm SM}}$$

• At 1 σ , $\kappa_{W,Z}$ are (will be) determined to be

Radiative corrections in SM:

 $\frac{g_{hVV}^{1-\text{loop}}}{g_{hVV}^{\text{tree}}} \simeq \begin{cases} -1.2 \ (+1.0) \ \% \ (hZZ) \ , \\ +0.4 \ (+1.3) \ \% \ (hWW) \ , \end{cases}$

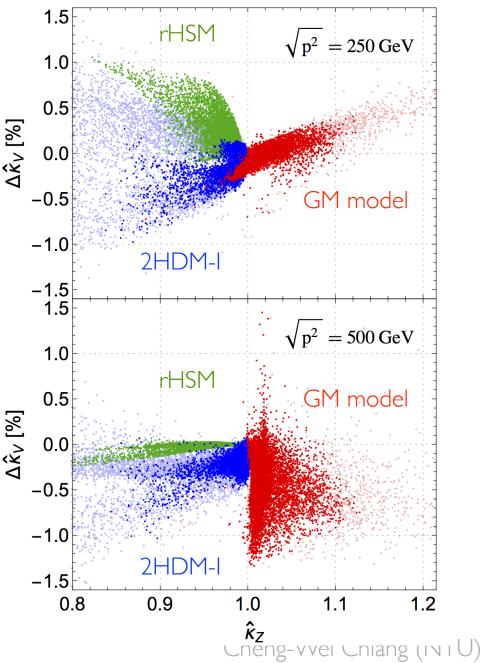
LHC Run-I	$\kappa_Z = [0.94, 1.13]$	$\kappa_W = [0.78, 1.00]$
HL-LHC	$\Delta \kappa_Z = 2 - 4\%$	$\Delta\kappa_W=2-5\%$ 14 TeV, 3000/fb
ILC	$\Delta \kappa_Z = 0.58\%$	$\Delta\kappa_W=0.81\%$ 500 GeV, 500/fb \oplus 350 GeV, 200/fb


1606.02266 [hep-ex] ⊕ 250 GeV, 500/fb
1310.8361 [hep-ex]
1506.05992 [hep-ex]

for
$$\sqrt{p^2} = 250 \ (500) \ \text{GeV}$$

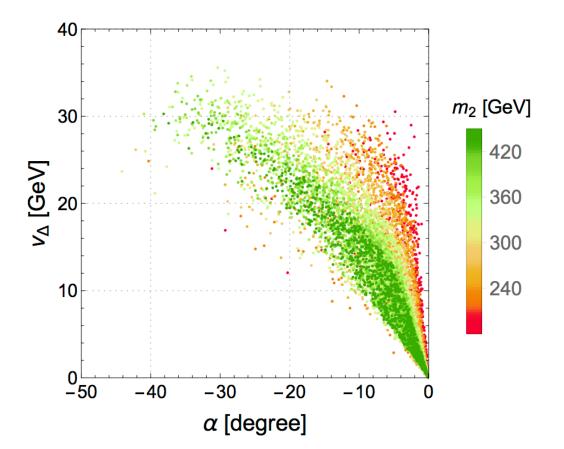
1-LOOP RESULTS

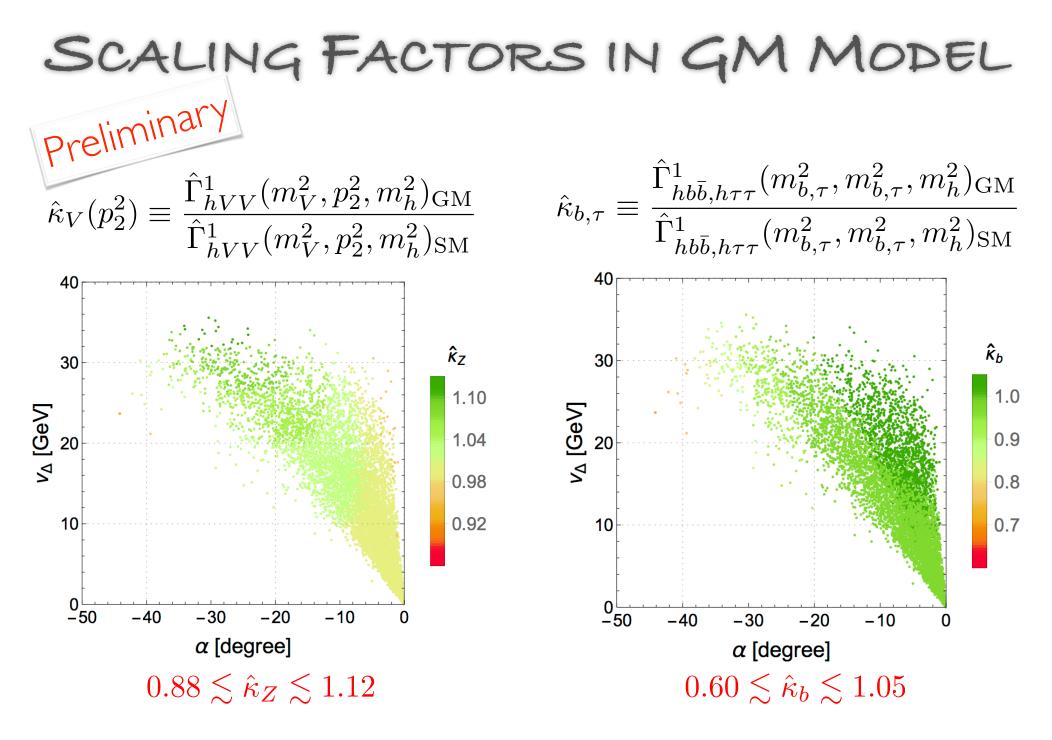
- Lighter dots satisfy theoretical constraints (unitarity, stability, perturbativity, and oblique parameters [S and T]).
- Darker dots further satisfy Higgs data from LHC Run-I.
- Other types of 2HDM are expected to have a similar result as 2HDM-I.
- It is possible to discriminate among the SM, rHSM, 2HDMs and GM model.


CWC, Kuo, and Yagyu 2017

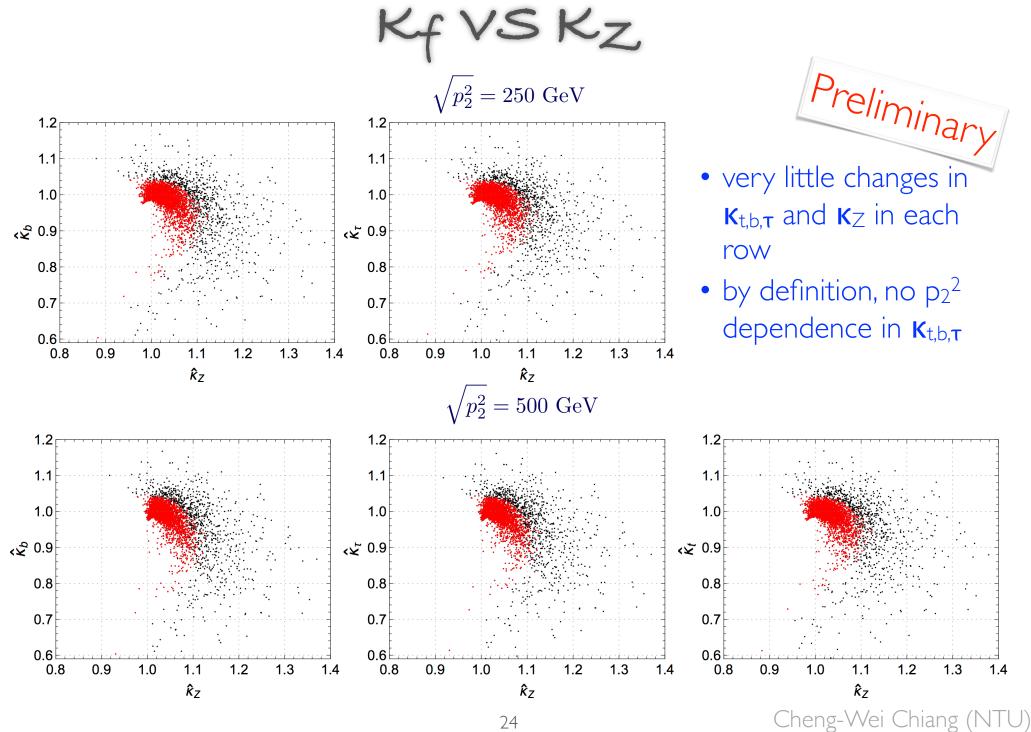
 $\Delta \hat{\kappa}_V \equiv \hat{\kappa}_W - \hat{\kappa}_Z$

1-LOOP RESULTS


- Same parameter sets in the two plots, only different in p.
- Green dots change little after imposing the Higgs data, while 2HDM and GM dots shrink significantly.
- GM prefers $\kappa_Z \in [0.88, 1.12]$, while the others have $\kappa_Z \in [0.8, 1.0]$.
- $\Delta \kappa_V$ may be observable.
- 250-GeV ILC is better than 500-GeV in distinguishing rHSM and 2HDM-I.

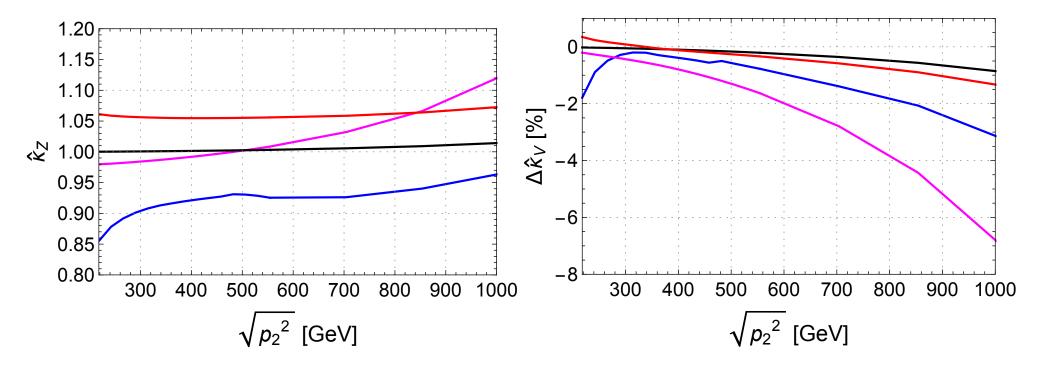


 $\Delta \hat{\kappa}_V \equiv \hat{\kappa}_W - \hat{\kappa}_Z$


ALLOWED SPACE IN GM MODEL Preliminary

scanned parameter ranges $-650 \le \mu_1 \le 0 \text{ GeV}$ $-400 \le \mu_2 \le 50 \text{ GeV}$ $180 \le m_2 \le 450 \text{ GeV}$ $-0628 \le \lambda_2 \le 1.57$ $-1.57 \le \lambda_3 \le 1.88$ $-2.09 \le \lambda_4 \le 2.09$ $-8.38 \le \lambda_5 \le 8.38$

Cheng-Wei Chiang (NTU)

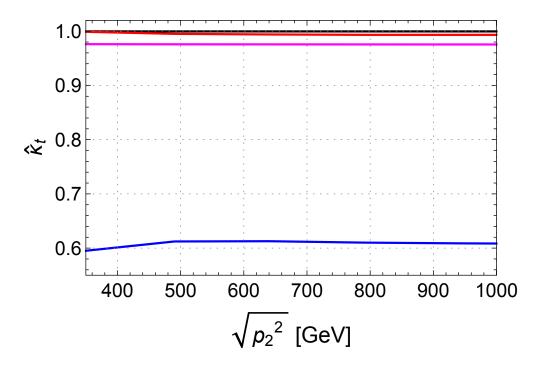

KF CORRELATIONS Preliminary 1.2 1.2 1.1 1.1 1.0 1.0 ∢ي 0.9 ∢خ` 0.9 0.8 0.8 0.7 0.7 0.6∟ 0.6 0.6^È 0.7 0.7 0.8 0.9 1.0 1.1 1.2 0.8 0.9 1.0 1.1 1.2 ĥ ĥ

strong correlations among the hff scaling factors with a range of \sim [0.6, 1.2]

MOMENTUM DEPENDENCE

• Examples of a few benchmark points:

xamples of a few benchmark points:					Preliminary			
V	۲۵ (GeV)	α	m _{H1} (GeV)	m _{H3} (GeV)	m _{H5} (GeV)	μ1 (GeV)	μ ₂ (GeV)	
	24.57	-17.21°	609	601	572	-614	-60	
	0.34	-0.27°	556	562	573	-7	-298	
	2.08	-0.56°	496	519	562	-34	-32	
	24.99	-51.68°	389	404	574	-179	-276	



Cheng-Wei Chiang (NTU)

MOMENTUM DEPENDENCE

• Examples of a few benchmark points:

xamples of a few benchmark points:					Preliminary			
	va (GeV)	α	m _{H1} (GeV)	m _{H3} (GeV)	m _{H5} (GeV)	μ1 (GeV)	μ ₂ (GeV)	
	24.57	-17.21°	609	601	572	-614	-60	
	0.34	-0.27°	556	562	573	-7	-298	
	2.08	-0.56°	496	519	562	-34	-32	
	24.99	-51.68°	389	404	574	-179	-276	

Cheng-Wei Chiang (NTU)

- We have been doing 1-loop radiative corrections to the Higgs couplings in the GM model, and made a comparison among the three simplest custodial Higgs models (rHSM, 2HDM-I and GM).
- Theoretical (unitarity, stability, perturbativity, and oblique parameters) and experimental (Higgs signal strengths) constraints have been imposed to find viable parameter spaces.
- We have presented numerical results for the hVV couplings in the rHSM, 2HDM-I and GM models at 250-GeV and 500-GeV ILC, showing power to discriminate among the models.
- We have presented preliminary results of hff couplings in the GM model, showing their correlations among themselves and with hVV and the momentum dependence of these couplings.
- Radiative corrections to the hhh coupling are in progress.
- More phenomenological analyses will follow.

Thank You!