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CEPC will significantly improve 
our knowledge of the S and T 
parameters. Both probe Higgs-
related physics, roughly:

Electroweak Precision at 
CEPC



Improving CEPC Baseline

From conference proceedings: MR, 1609.03018


Once the CEPC baseline is reached, improving precision on 
the top mass and on sin2𝞱 is next priority for (T, S).

Or, improve the Z width significantly (plausible!)



Associated New Physics 
Reach: Example of Stops

Higgs couplings 
(gluons and photons) 
probe left- and right-
handed stops roughly 
equally well. 


The T parameter 
probes left-handed 
stops.



Higgs Couplings
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Figure 4. Loop diagrams contributing to the correction to the Higgs coupling to gluons, via the operator

h†hGa
µ⌫G

aµ⌫ .

to gluons, via diagrams like those of Fig. 4. The leading order contribution could be computed easily
via the low energy Higgs theorem [60, 61]
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where we neglect D-terms. The low-energy theorem essentially upgrades the log(M
threshold

) terms
that appear when integrating out a heavy mass threshold to field-dependent terms, viewing M

threshold

as a function of a variable higgs VEV. The resulting expression is valid for m
˜t1,2 ⇠> mh/2, which we

will assume is always true. A loop of light stops will also generate a smaller contribution to the Higgs
diphoton coupling, which is anti-correlated to r˜tG
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using A�
W ⇡ 8.33 and A�

t ⇡ �1.84, the amplitudes of h ! �� in the SM, valid for mh = 125 GeV.
One could see that the more natural the stop parameter space is, the larger the modification is [58].
Except for the special case of colorless stop, the strongest limit on the stop always comes from the
measurement of hgg coupling.

Corrections to �(h ! Z�) play a similar role as those for �(h ! ��), but we find that they are nu-
merically less important. Similarly, corrections to the Higgs coupling to Z bosons play a subdominant
role because they compete with the large tree-level coupling.

2.5 Wavefunction Renormalization

Recently ref. [62] has emphasized that any new physics which couples to the Higgs will induce a wave-
function renormalization of the Higgs boson, arising from the dimension-six kinetic term @µ |h|2 @µ |h|2
(also see [63, 64]). This is an interesting observation, because it opens up the possibility of probing
naturalness even in scenarios where the quadratic divergence in the Higgs mass is canceled by particles
without Standard Model quantum numbers, which are otherwise hard to probe. We have generalized
the calculation of this correction from ref. [63] to allow for mixing between the two stops. We write
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Familiar low-energy theorem: beta function coefficients 
times X @ logM

@ log v Similar result for photons (except SM 
contribution dominated by W loop)
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Figure 5. Regions in the stop physical mass plane that are/will be excluded at 2� by EWPT with oblique

corrections (left column), Rb at FCC-ee (mid column) and Higgs couplings (right column) for di↵erent choices

of Xt/
q
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+m2
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: 0 (first row), 0.6 (2nd row), 1.0 (3rd row) and 1.4 (last row). We chose the mass eigenstate

with mt̃1
to be mostly left-handed while the mass eigenstate with mt̃2

to be mostly right-handed. For non-zero

choices of Xt, there are regions along the diagonal line which cannot be attained by diagonalizing a Hermitian

mass matrix [32]. Also notice that the vacuum instability bound constrains Xt/
q
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EWPT and Stop Mixing



“Blind Spot” for Stops

Notice that one should not use the results of g from the seven-parameter fits which allow all Higgs
couplings to vary freely [26], as this will underestimate the exclusion. In the particular scenario we
are considering, the variations of the Higgs couplings are much more constrained. For the ILC, we
used the numbers of the ILC 500 scenario with the machine running at 250 GeV and 500 GeV with
luminosities of 1150 fb�1 and 1600 fb�1 and the 1000 scenario with the machine running at 1 TeV in
addition to the 500 case with a luminosity of 2500 fb�1. For FCC-ee, the number assumes the machine
running at 240 GeV and 350 GeV with luminosities of 104 fb�1 and 2600 fb�1. From Fig. 5, one could
see that the FCC-ee scenario is the most sensitive case. Again at the special point Xt ⇠

q
m2

˜t1
+m2

˜t2
,

r˜tG ⇡ 0 from Eq. 2.13 and the bound vanishes.
The strongest limit on the stop parameters comes from the measurement of hgg coupling. This is

due to a combination of the large size of the correction and the high precision of the measurements of
this coupling at the Higgs factories.

6 The Light Stop Blind Spot

It is apparent from Fig. 5 that in the case X2

t ⇡ m2

˜t1
+m2

˜t2
, all of the precision loop observables we

consider have a significantly poorer reach than for other choices of Xt. This is a “blind spot” for
precision tests of light stops. In calling this choice of Xt a blind spot, we follow the terminology of
ref. [82], which coined the term for regions of neutralino parameter space that evade direct detection
experiments. The analogy is a close one: the neutralino blind spots exist when the lightest neutralino
has a vanishing tree-level coupling to the Higgs boson. The underlying reason for the blind spot in
stop detection is that the lightest stop mass eigenstate has a vanishing tree-level coupling to the Higgs
boson. In this case, the heavy stop can still contribute to precision observables, but its contributions
are relatively small due to the larger mass suppression. (While this draft was being finalized, the blind
spot region of parameter space was independently pointed out in ref. [65].)

To understand where the blind spot occurs, we can integrate out the heavy stop mass eigenstate
t̃h to determine an e↵ective quartic coupling of the light stop t̃l to the Higgs boson:

+
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h h
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This leads to the “blind spot” mixing for which the coupling of the light stop to the Higgs boson
vanishes:

X⇤
t =

⇣
m2

˜th
�m2

˜tl

⌘
1/2

. (6.3)

This is also apparent from Eq. 2.15. Alternatively, one could find this critical mixing by evaluating
the light stop mass eigenvalue and solving the equation @ logm

˜tl
/@ log v = 0 for Xt.
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The light stop mass eigenstate may be decoupled from the 
Higgs at tree level, at a certain critical mixing angle:
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If the light stop is decoupled 
from the Higgs, it’s irrelevant for 
naturalness! Then it’s the heavy 
stop that matters.Figure 8. Regions in the physical stop mass plane that precision measurements are sensitive to, with contours

of tunings, at future e+e� colliders (left: ILC; middle: CEPC; right: FCC-ee). Top row: bounds on stops with

no mixing, Xt = 0. Dashed vertical lines: 2� bounds on stop masses from S and T (mostly T ); solid lines: 2�

bounds on stop masses from Higgs coupling constraints. Blue dashed contours are the stop contributions to

the Higgs mass tuning. Lower row: bounds on stops in the blind spot X2
t = m2

t̃1
+m2

t̃2
. There are no Higgs

measurement constraints. For CEPC with possible improvements (purple dash-dotted line in the middle) or

FCC-ee (orange solid line), EWPT is only sensitive to a small region. The green dashed lines are the exclusion

contours from b ! s� for the choice µ = 200 GeV and a few di↵erent values of tan�. Each of these contours

is also labeled with corresponding tunings �µ and �A. There is also a region along the diagonal line which

cannot be attained by diagonalizing a Hermitian mass matrix [32].

7.2 Implications for Folded Stops

EWPT could be the most sensitive experimental probe in some hidden natural SUSY scenarios such as
“folded SUSY” [28]. In folded SUSY, the folded stops only carry electroweak charges and some beyond
SM color charge but no QCD charge. The most promising direct collider signal is W+ photons which
dominates for the “squirkonium” (the bound state of the folded squarks) near the ground state [84, 85].
It is a very challenging experimental signature. Among the Higgs coupling measurements, folded stops
could only modify the Higgs–photon coupling, the Higgs–photon–Z coupling, and (at a subleading
level) the Higgs–Z–Z coupling. Yet the Higgs–photon coupling measurements, even at future e+e�

colliders, have very limited sensitivities. Even FCC-ee Higgs measurements could only probe folded
stops up to 400 GeV, as illustrated in Fig. 9 (which updates the result in [32] to include CEPC). Notice
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b ! s�Green:
Purple: CEPC EWPT

(also see Craig, Farina, McCullough, Perelstein 1411.0676)



Folded SUSY
In folded SUSY, stops have no QCD color (makes life 
difficult at LHC). But still have electroweak interactions.  

Measuring Higgs decays to photons and the T parameter 
can help constrain folded SUSY stops.
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Figure 9. Projected constraints in the folded stop mass plane from a one-parameter fit to the Higgs–photon–

photon couplings from future experiments. Directly analogous to Fig. 7. Results from the ILC 250/500/1000

would be similar to CEPC; lower-energy ILC measurements provide even weaker constraints. These constraints

are subdominant to the constraints on left-handed folded stops arising from T -parameter measurements, which

are the same as those for ordinary stops in the left-hand column of Fig. 5.

that we have also taken into account of a precise determination of �(h ! ��)/�(h ! ZZ) at HL-LHC.
It has been demonstrated that combing this with Higgs measurements at future e+e� colliders could
result in a significant improvement of sensitivity to Higgs–photon–photon coupling [86, 87].

On the other hand, the reach of the electroweak precision we derived in this article (the left
column of Fig. 5) applies to folded stops as well as the usual stops. Except for the blind spot in the
parameter space, future EWPT could probe left-handed folded stops, via their correction to the T

parameter, up to 600 GeV (e.g. at the ILC) or even 1 TeV (e.g. at FCC-ee). CEPC’s preliminary
plans fall close to the ILC reach, but conceivable upgrades could achieve similar reach to FCC-ee.
These EWPT constraints would surpass the Higgsstrahlung constraints on folded SUSY estimated in
ref. [65]. Improved measurements of the W mass, then, may be one of the most promising routes
to obtaining stronger experimental constraints on folded SUSY. Therefore, with the help of future
electroweak precision measurements, we can test the fine tuning of folded SUSY at the few percent
level.
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The T-parameter bounds 
previously shown for stops are 
exactly the same for folded stops!  

Higgs factories have exciting 
potential for uncolored naturalness!

Higgs
to 𝛾𝛾



Dark Matter at CEPC
In drafting a CDR theory section reviewing work on dark 
matter / dark sectors at CEPC, JiJi Fan and I are classifying 
models in 4 categories:

1. Electroweak-interacting particles (e.g., but not limited 

to, SUSY neutralinos)

2. DM interacting with renormalizable gauge-invariant SM 

portals, |H|2, B𝝁𝞶, HL

3. DM interacting with BSM portals (e.g. leptonic Higgs 

portal)

4. Model-agnostic (photon+MET, EFT approach)


I will make a few remarks now about these; definitely not 
comprehensive.



1. Electroweak DM



Future Direct Detection
⬅  Z exchange

⬅ h exchange

⬅ W loop (wino)
⬅ W loop (higgsino)

SU(2) multiplets dominantly scattering through loops are a 
real challenge, beyond the next generation of experiments.

Snowmass: Cushman et al. 1310.8327



Tan Beta = 1 Physics
Neutral higgsinos mix; Majorana mass eigenstates

tan� = 1

exact at 

Off-diagonal Z coupling:

Higgs coupling (limit of 1 light higgs):

One mass eigenstate decouples from higgs at 

tan� = 1

Certain couplings turn off. (“Blind spot”)



Direct Detection & Tan Beta
Mostly-higgsino dark matter: measuring both spin-dependent 
and spin-independent scattering.

Blind spot where SI 
and SD both 
vanish: understand 
either as Z2 or 
custodial symmetry

SI SD

tan 𝛽 = 1:
SD vanishes;  
SI vanishes faster if 𝜇<0



Qian-Fei Xiang, Xiao-Jun Bi, Peng-
Fei Yin, Zhao-Huan Yu 1707.03094

Chengfeng Cai, Zhao-Huan Yu, 
Hong-Hao Zhang 1611.02186

Doublet/Triplet DM

Electroweak precision measurements, especially the S parameter, can 
play a useful role in covering direct detection’s blind spot.

Like higgsinos and winos, but bigger Yukawas. Custodial symmetry “blind 
spot” when y1 = y2.



e+e- → 𝞵+𝞵-

Studied by Keisuke Harigaya, 
Koji Ichikawa, Anirban Kundu, 
Shigeki Matsumoto, Satoshi 
Shirai 1504.03402


Includes beam polarization; 
needs an update for CEPC.

Roughly W and 
Y parameters; 
potentially beat 
Z pole due to 
higher energy



e+e- → W+W-

Lei Wu 1705.02534: study the pure (pseudo-Dirac) higgsino

Dashed lines: projected LHC search reach (Baer, Mustafayev, Tata 2014)

WW process also studied 
from the viewpoint of 
TGCs as effective 
operators, e.g.:

Ligong Bian, Jing Shu, 
Yongchao Zhang 
1507.02238



2. SM Portals

(More in Felix Yu’s talk after this)



Dark Photons in Radiative 
Return

Marek Karliner, Matthew Low, Jonathan L. 
Rosner, Lian-Tao Wang 1503.07209

Make a dark photon in 
association with an 
ordinary photon, and do a 
resonance search:



Dark Photons at CEPC
Blinov, Izaguirre, Shuve 1710.07635


did an LHC study

BaBar very constraining for m < 10 GeV. Target higher masses. 

Above is a recent LHC study. Would be interesting to do a CEPC study of 
this rare Z decay. Total number Zs comparable. The cleaner environment at 
CEPC can help.



3. Beyond-SM Portals



Leptophilic DM
Some portals don’t exist in the SM, at least renormalizably: e.g. a 
scalar coupling preferentially to leptons but not quarks. Can complete 
into a 2HDM with a leptonic Higgs.

(Brian Batell, Nicholas Lange, David McKeen, Maxim Pospelov, Adam 
Ritz 1606.04943)

These models can have DM 
signals but also signals from 
effects of other particles 
added, like second leptophilic 
Higgs.



Muon-philic DM
Qing-Hong Cao, Yang Li, Bin Yan, Ya Zhang, Zhen Zhang 
1604.07536

Assumes a 0.2% measurement of e+e- → 𝞵+𝞵- at 240 GeV.

Two new fields with Yukawa 
coupling to muons: 

Neutral component of S is DM.



4. Model-Independent



Model-Independent, EFTs

“Rayleigh dark matter”


Phrase bound in terms 
of an operator:

Zhao-Huan Yu, Qi-Shu Yan, Peng-
Fei Yin 1307.5740

(Not CEPC-specific)


(Earlier work: Birkedal, Matchev, 
Perelstein; many others)



General Thoughts
Lots of nice work being done on EFTs and operators. But, personally, I 
learn more from “simplified models”—theories with a small number of 
parameters that you can wrap your head around and understand 
which measurements to improve.


We’ve heard about some such work here, e.g. Shufang Su’s talk on 
2HDMs and Wei Su on MSSM.


The “what is the limiting factor in this measurement” plots are useful 
guides, for thinking about what to optimize, whether we want to talk 
about 350, etc.


Concrete things to do: 

Incorporate more 240 GeV physics in our thinking about EWPT, like 
e+e- → 𝞵+𝞵-, e+e- → W+W-, and so on.

More work on rare Z decays (but see Jia Liu’s talk, coming up).



Summary
• A variety of studies have been carried out for how CEPC can 

constrain new physics


• Much more to do. In some cases, studies exist for ILC or 
“generic” e+e- collider, but not CEPC.


• Dark matter / dark sectors: would like to see more studies that 
aim to show CEPC can either do better than LHC/direct 
detection/etc at discovery or complement their discovery with 
precision information.


• If you have a key message about DM / dark sectors that you 
want to go in the CDR, let me know so we can try to integrate 
with existing draft 



Backup



Indirect Observables
The same physics that is relevant for naturalness—couplings 
to the Higgs boson—can enter in loops to produce 
modifications of Standard Model electroweak observables.

S parameter:

T parameter:

Higgs decays:
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��2

chggh
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aµ⌫ + ch��h

†hFµ⌫F
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Stops: T Parameter
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Figure 1. Loop diagrams contributing to the T parameter operator
�
h†Dµh

�2
when the left-handed

stop/sbottom doublet Q̃3 and the right-handed stop t̃R = (ũc
3)

† are integrated out.

The Xt dependent part of the correction depends on the subtlety in the use of our e↵ective oblique
Lagrangian eq. 2.3 that we mentioned above: the strict relation between S and the coe�cient of
h†W iµ⌫�ihBµ⌫ applies only if we first rewrite all operators in a minimal basis [39, 46]. The third

loop diagram of Fig. 2 generates di↵erent operators like i@⌫Bµ⌫h
†

$
Dµh which may be rewritten using

integration by parts and equations of motion and also contribute to S. Note that a similar diagram
with a bubble topology connecting a gauge boson on one side and two Higgs bosons on the other
(which can be obtained by removing one of the vector bosons from the left most diagram in Fig. 2)
cannot be sensitive to the di↵erence in momenta of the Higgs bosons, and so never generates the
operators in question. The fact that integrating out heavy particles often generates operators that are
not present in the minimal basis was also recently emphasized in ref. [47, 48].

W B
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Figure 2. Loop diagrams contributing to the S parameter. The two diagrams at left generate the usual

operator h†W iµ⌫�ihBµ⌫ when the left-handed stop/sbottom doublet Q̃3 and the right-handed stop t̃R = (ũc
3)

†

are integrated out. The diagram at right generates the operators i@⌫Bµ⌫h
†

$
Dµh and iD⌫W i

µ⌫h
†�i

$
Dµh, which

also contribute to S after being rewritten in terms of the minimal basis of dimension-six operators.

Notice that the S parameter contribution from loops of stops and sbottoms is small and, for small
Xt, negative. The T parameter contribution is numerically somewhat larger and positive. In both
cases, the dominant contribution is due to the left-handed stops and sbottoms, with their right-handed
counterparts entering through mixing e↵ects. As a result, we expect that precision measurements of
the T parameter can set interesting constraints on left-handed stops. (For a recent study of existing
constraints, see ref. [49].)
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A Higgs quartic coupling! These are the same 
diagrams that lift the Higgs mass in the MSSM, except 
that we are reading off subleading momentum 
dependence: Dμ2/mstop2 ~ mZ2/mstop2. 

allowed. In particular, for non-zero Xt, the region around |m2

˜t1
�m2

˜t2
| ⇠ 0 may not be obtainable from

the diagonalization of a Hermitian stop mass matrix [32].
The sbottom sector has a similar mass matrix with mt replaced by mb, m ˜d3

replacing mũ3 , and
the appropriately modified D-terms. Generally we can neglect mixing in the sbottom sector because
mb ⌧ mt. The mass of the left-handed sbottom m2

˜b1
could be written in terms of the stop physical

masses and mixing angle as

m2

˜b1
= cos2 ✓

˜tm
2

˜t1
+ sin2 ✓

˜tm
2

˜t2
�m2

t �m2

W cos(2�). (2.2)

In the higgsino sector, there are two neutral Majorana fermions and one charged Dirac fermion,
with masses approximately equal to µ. The splittings originate from dimension five operators when
the bino and wino are integrated out, and are of order m2

Z/M1,2. We will ignore these splittings and
treat all higgsino masses as equal to µ for the purpose of calculating loop e↵ects.

2.2 Electroweak Precision: Oblique Corrections

The familiar S and T oblique parameters [33, 34] (see also [35–37]) correspond, in an e↵ective operator
language (reviewed in ref. [38, 39]), to adding to the Lagrangian

L
oblique

= S

✓
↵

4 sin ✓W cos ✓W v2

◆
h†W iµ⌫�ihBµ⌫ � T

✓
2↵

v2

◆ ��h†Dµh
��2 . (2.3)

Here h is the Standard Model Higgs doublet and v ⇡ 246 GeV; in the MSSM context it may be thought
of as the doublet that remains after integrating out the linear combination of Hu and Hd that does not
obtain a VEV. The often-discussed U parameter corresponds to a dimension-8 operator,

�
h†W iµ⌫h

�
2

,
and we can safely neglect it. In equating S and T with coe�cients in L

oblique

, we must first rewrite
the Lagrangian (using equations of motion and integration by parts) in terms of a minimal basis of

operators [40]. Other operators like i@⌫Bµ⌫h
†

$
Dµh will contribute to the S parameter if we leave the

result in terms of an overcomplete basis. We will see some examples below in which a straightforward
diagrammatic calculation leads to operators not present in the minimal basis.

Integrating out any SU(2)L multiplet containing states that are split by electroweak symmetry
breaking—for instance, the left-handed doublet of stops and sbottoms—will produce a contribution
to S. The masses must additionally be split by custodial symmetry-violating e↵ects to contribute to
T . In the case of the stop and sbottom sector we have both, and T is numerically dominant [41]. The
diagrams leading to a T -parameter are shown in Fig. 1. There are terms proportional to y4t , to y2tX

2

t ,
and to X4

t . These diagrams are very familiar from the loop corrections to the Higgs quartic coupling
that can lift the MSSM Higgs mass above the Z-mass [42–45]. The only di↵erence for T is that we
extract momentum-dependent terms to obtain the dimension-six operator. The result is:

T ⇡ m4

t

16⇡ sin2 ✓Wm2

Wm2

˜Q3

+O
 

m2

tX
2

t

4⇡m2

˜Q3
m2

ũ3

!
. (2.4)

The diagrams generating the S-parameter are shown in Fig. 2. Notice that in order for the first

diagram to contribute, it is important that the SU(2)L structure of the coupling is
⇣
h · Q̃

3

⌘⇣
h† · Q̃†

3

⌘

rather than (h†h)(Q̃†
3

Q̃
3

), as the latter would lead to a zero SU(2)L trace around the loop. As a result,
the F -term potential contributes / y2t and the SU(2)L D-term potential contributes / g2, but there
is no U(1)Y D-term contribution / g02. The leading correction is
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m2

t

m2
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+O
 

m2

tX
2

t
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˜Q3
m2

ũ3

!
. (2.5)
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The S Parameter
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operators in question. The fact that integrating out heavy particles often generates operators that are
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Dµh, which
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Notice that the S parameter contribution from loops of stops and sbottoms is small and, for small
Xt, negative. The T parameter contribution is numerically somewhat larger and positive. In both
cases, the dominant contribution is due to the left-handed stops and sbottoms, with their right-handed
counterparts entering through mixing e↵ects. As a result, we expect that precision measurements of
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The diagram on the right, at first glance, doesn’t seem to 
generate the right operator. In fact, it generates

i@⌫Bµ⌫h
†

$
Dµh

But if we work with a minimal basis of operators, equations of 
motion turn this into a linear combination including the S 
parameter.



Why Focus on S, T ?

parameter space, it depends on a combination Atµ tan�/m4

˜t
, and so results in a weaker constraint on

At when tan� is small. This has interesting implications for the heavy Higgs bosons of the 2HDM,
H0, A0, and H±, which should not be too heavy [17, 70] and may have interesting e↵ects of their own
on precision observables [58, 71]. As we will discuss in Sec. 7.1, it could be the main sensitive probe
to the “blind spot” region.

Charginos and neutralinos have relatively small e↵ects on the observables we have mentioned so
far. This is largely because they have dominantly vectorlike masses and sensitivity to SU(2)L breaking
through the Higgs is a small e↵ect. On the other hand, integrating out higgsinos or winos will always
generate the triple gauge coupling operator cWWW g✏ijkW

i
µ⌫W

j⌫
⇢ W k⇢µ. Unfortunately, the coe�cient

generated by integrating out an SU(2)L multiplet is small [72]:

cWWW =
g2

2880⇡2

X

rep R, mass M

(�1)F
T (R)

M2

, (2.20)

where T (R) is the Dynkin index of the representation and the sum is over Weyl fermions for which
F = 1 and complex scalars for which F = 0. (That the e↵ect of a complex scalar and that of a Weyl
fermion cancel for equal masses is a result of a supersymmetric Ward identity [73].) Expected bounds
from the ILC are expressed in terms of dimensionless coe�cients �� and �Z , which are both equal
to 6m2

W cWWW . The ILC can bound the coe�cient at 1� to be |��,Z | ⇠< 6 ⇥ 10�4 with 500 fb�1 atp
s = 500 TeV or half that with 1 ab�1 at

p
s = 800 GeV [23, 74]. Even for the bound assuming

higher energy and luminosity, this does not probe wino or higgsino (or left-handed stop) masses above
100 GeV.

Similarly, any particles with SU(2)L quantum numbers contribute above threshold to the run-
ning of gauge couplings. At future very high energy proton–proton colliders this might be detected
with precision Drell-Yan measurements [75]. At an e+e� collider it would be di�cult, but if the
collider attains high luminosities at energies near 1 TeV it may be possible to probe running. There
is also a “below-threshold running e↵ect” arising from the operator cJJD

µW i
µ⌫D�W

i�⌫ , which has
coe�cient [72]

cJJ = � g2

960⇡2

X

rep R, mass M

aF
T (R)

M2

, (2.21)

where aF = 4 for Weyl fermions and 1 for complex scalars. By the equation of motion, DµW
iµ⌫ =

�gJ i⌫ , where J i⌫ is the SU(2)L current, so this operator is a current–current interaction that may be
thought of as a power-law (p2/M2) running of the gauge coupling below the scaleM . In the usual QED
calculation of vacuum polarization, one obtains an expression like

R
1

0

dx x(1�x) log(M2� p2x(1�x))
and expands for �p2 � M2 to obtain logarithmic running. This operator is simply the corresponding
result if we expand for M2 � p2. Again, it will be di�cult to obtain interesting constraints from this
operator simply because the number in the denominator is so large.

2.7 Comments on the Use of E↵ective Field Theory

In the remainder of the paper we will use formulas for S, T , and Rb originating in refs. [41, 52] and
presented in Appendix A. These include complete loop functions based on the original Peskin-Takeuchi
definitions of S and T in terms of gauge boson vacuum polarizations, allowing for arbitrary stop-sector
mixing. In particular, nontrivial functions of ratios like mtXt/m

2

ũ3
, if expanded in powers of the Higgs

VEV, may e↵ectively come from operators of dimension higher than 6 in an EFT treatment. In
this sense, the full loop functions include e↵ects of higher order than the operator analysis we have
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Any SU(2)L-charged particles, coupling to the Higgs or not, 
contribute at one loop to two other dimension-6 operators:
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cWWW g✏ijkW
i
µ⌫W

j⌫
⇢ W k⇢µ

cJJD
µW i

µ⌫D�W
i�⌫

Unfortunately, their perturbative coefficients are very small. 
(Could be lucky to have many new degrees of freedom?)

cU
�
h†�ihW iµ⌫

�2The U parameter is dimension 8:

“W parameter”

“TGC”
�� = �Z



Higgs Couplings
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Figure 4. Loop diagrams contributing to the correction to the Higgs coupling to gluons, via the operator

h†hGa
µ⌫G

aµ⌫ .

to gluons, via diagrams like those of Fig. 4. The leading order contribution could be computed easily
via the low energy Higgs theorem [60, 61]

r
˜t
G ⌘ c˜thgg

cSMhgg
⇡ 1

4

 
m2

t

m2

˜t1

+
m2

t

m2

˜t2

� m2

tX
2

t

m2

˜t1
m2

˜t2

!
, stop contribution to hgg coupling (2.13)

where we neglect D-terms. The low-energy theorem essentially upgrades the log(M
threshold

) terms
that appear when integrating out a heavy mass threshold to field-dependent terms, viewing M

threshold

as a function of a variable higgs VEV. The resulting expression is valid for m
˜t1,2 ⇠> mh/2, which we

will assume is always true. A loop of light stops will also generate a smaller contribution to the Higgs
diphoton coupling, which is anti-correlated to r˜tG

r
˜t
� ⌘ c˜th��

cSMh��
=

A�
˜t

(A�
W +A�

t )
SM

⇡ �0.28r
˜t
G, (2.14)

using A�
W ⇡ 8.33 and A�

t ⇡ �1.84, the amplitudes of h ! �� in the SM, valid for mh = 125 GeV.
One could see that the more natural the stop parameter space is, the larger the modification is [58].
Except for the special case of colorless stop, the strongest limit on the stop always comes from the
measurement of hgg coupling.

Corrections to �(h ! Z�) play a similar role as those for �(h ! ��), but we find that they are nu-
merically less important. Similarly, corrections to the Higgs coupling to Z bosons play a subdominant
role because they compete with the large tree-level coupling.

2.5 Wavefunction Renormalization

Recently ref. [62] has emphasized that any new physics which couples to the Higgs will induce a wave-
function renormalization of the Higgs boson, arising from the dimension-six kinetic term @µ |h|2 @µ |h|2
(also see [63, 64]). This is an interesting observation, because it opens up the possibility of probing
naturalness even in scenarios where the quadratic divergence in the Higgs mass is canceled by particles
without Standard Model quantum numbers, which are otherwise hard to probe. We have generalized
the calculation of this correction from ref. [63] to allow for mixing between the two stops. We write
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G ⌘ c˜thgg

cSMhgg
⇡ 1

4

 
m2

t

m2

˜t1

+
m2

t

m2

˜t2

� m2

tX
2

t

m2

˜t1
m2

˜t2

!
, stop contribution to hgg coupling (2.13)

where we neglect D-terms. The low-energy theorem essentially upgrades the log(M
threshold

) terms
that appear when integrating out a heavy mass threshold to field-dependent terms, viewing M

threshold

as a function of a variable higgs VEV. The resulting expression is valid for m
˜t1,2 ⇠> mh/2, which we

will assume is always true. A loop of light stops will also generate a smaller contribution to the Higgs
diphoton coupling, which is anti-correlated to r˜tG

r
˜t
� ⌘ c˜th��

cSMh��
=

A�
˜t

(A�
W +A�

t )
SM

⇡ �0.28r
˜t
G, (2.14)

using A�
W ⇡ 8.33 and A�

t ⇡ �1.84, the amplitudes of h ! �� in the SM, valid for mh = 125 GeV.
One could see that the more natural the stop parameter space is, the larger the modification is [58].
Except for the special case of colorless stop, the strongest limit on the stop always comes from the
measurement of hgg coupling.

Corrections to �(h ! Z�) play a similar role as those for �(h ! ��), but we find that they are nu-
merically less important. Similarly, corrections to the Higgs coupling to Z bosons play a subdominant
role because they compete with the large tree-level coupling.

2.5 Wavefunction Renormalization

Recently ref. [62] has emphasized that any new physics which couples to the Higgs will induce a wave-
function renormalization of the Higgs boson, arising from the dimension-six kinetic term @µ |h|2 @µ |h|2
(also see [63, 64]). This is an interesting observation, because it opens up the possibility of probing
naturalness even in scenarios where the quadratic divergence in the Higgs mass is canceled by particles
without Standard Model quantum numbers, which are otherwise hard to probe. We have generalized
the calculation of this correction from ref. [63] to allow for mixing between the two stops. We write

– 8 –

Familiar low-energy theorem: beta function coefficients 
times X @ logM

@ log v Similar result for photons (except SM 
contribution dominated by W loop)
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4.2 CEPC Electroweak Oblique Parameter Fit

Based on the latest estimates of the experimental capabilities of CEPC, we estimate the
precision that can be obtained in a fit of the electroweak parameters S and T [19, 20].
These parameters describe the gauge boson self-energies and are very sensitive to physics
beyond the SM, especially when the new physics addresses the Higgs sector. Thus, one
expects them to be affected in almost any TeV scale scenario. Table 4.5 presents the as-
sumed experimental uncertainties that enter into the fit. The numbers in boldface represent
measurements performed by CEPC. Other improvements between the current uncertain-
ties and those that will be available when CEPC runs will result from LHC measurements
of the top quark, lattice QCD calculations, and perturbative Standard Model calculations.
A thorough discussion of the prospects for these improvements and the rationale behind
the choices made in the table may be found in Ref. [21]. Readers seeking a more general
review of the status of electroweak precision should consult Ref. [22].

Present data CEPC fit
↵s(M2

Z) 0.1185 ± 0.0006 [23] ±1.0 ⇥ 10

�4 [24]
�↵(5)

had

(M2

Z) (276.5 ± 0.8) ⇥ 10

�4 [25] ±4.7 ⇥ 10

�5 [26]
mZ [GeV] 91.1875 ± 0.0021 [27] ±0.0005

mt [GeV] (pole) 173.34 ± 0.76

exp

[28] ±0.5
th

[26] ±0.2
exp

±0.5
th

[29, 30]
mh [GeV] 125.14 ± 0.24 [26] < ±0.1 [26]
mW [GeV] 80.385 ± 0.015

exp

[23]±0.004

th

[31] (±3

exp

± 1

th

) ⇥ 10

�3 [31]
sin

2 ✓`
e↵

(23153 ± 16) ⇥ 10

�5 [27] (±2.3
exp

± 1.5
th

) ⇥ 10

�5 [32]
�Z [GeV] 2.4952 ± 0.0023 [27] (±5

exp

± 0.8
th

) ⇥ 10

�4 [33]
Rb ⌘ �b/�had

0.21629 ± 0.00066 [27] ±1.7 ⇥ 10

�4

R` ⌘ �

had

/�` 20.767 ± 0.025 [27] ±0.007

Table 4.5 Inputs to the electroweak fit of the oblique parameters S and T . The oblique parameters and
the first five observables in the table float freely in the fit, and determine the values of the remaining five.
We find that Rb and R` have minimal effect on the fit of oblique parameters. We quote the precisions of
current and CEPC measurements as well as the current central values. Theory uncertainties are provided
only when they are nonnegligible and are not already incorporated in the quoted experimental uncertainty.
Boldface numbers represent measurements that will be performed at CEPC.

We have included sin

2 ✓`
e↵

as an observable in the fit, although it will itself result from
a fit of several other parameters, including A0,b

FB

, A`, and A0,`
FB

. A detailed assessment of
each of these individual inputs has not yet been performed for CEPC, so we include only
the estimated precision that can be achieved on the combination sin

2 ✓`
e↵

. Similarly, other
observables like �

had

will ultimately play a role in CEPC precision tests, but we omit them
until future experimental studies provide precise uncertainty estimates.

We have performed a fit to the oblique parameters S and T under the assumption that
U = 0. Given that a weakly-coupled Higgs boson has been discovered, S and T result
from dimension six operators,

OS ⌘ h†W µ⌫hBµ⌫ , (4.4)

OT ⌘
��h†Dµh

��2 , (4.5)

Numbers in boldface: major CEPC inputs to the electroweak 
precision fit.
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whereas U would arise from a dimension eight operator [34]. This provides a strong
theoretical prior that U ⌧ S, T and justifies our focus on only two oblique parameters.
The fit presented here is a profile likelihood: the free parameters are varied to maximize
the likelihood for given S and T . This differs from marginalizing, when various values of
the free parameters are integrated with respect to some prior probability distribution. The
profile likelihood gives slightly more conservative bounds.

The result of the fit for S and T is depicted in Fig. 4.1. For ease of comparison of the
bounds, we have artificially displaced the input central values to agree with the predicted
values so that S = T = 0 will be the best-fit point. Both 68% C.L. and 95% C.L.
uncertainty contours are presented (i.e., ��2

= 2.30 and 6.18). Relative to the current
electroweak precision results (dominated by LEP and the SLC together with the improved
measurement of mW from hadron colliders), the results of CEPC will shrink the error bars
on S and T by a factor of about 3.

-0.2 -0.1 0.0 0.1 0.2
-0.2

-0.1

0.0

0.1

0.2

S

T

Electroweak Fit: S and T Oblique Parameters

Current (95%)
Current (68%)
CEPC (95%)
CEPC (68%)

Figure 4.1 CEPC constraints on the oblique parameters S and T , compared to the current constraints.

CEPC �Z(mZ) [GeV] mt [GeV]
Improved Error (±1

exp

± 0.8
th

) ⇥ 10�4 (±0.0001) ±0.03
exp

± 0.1
th

Table 4.6 Potential improvements for CEPC measurements. The Z width measurement (and the Z mass)
may be improved by better energy calibration. A precise top mass measurement requires a scan of the tt̄
threshold, and thus a larger collision energy than current CEPC plans.

It is possible that the current baseline plan for CEPC can be improved upon by high-
er luminosity runs, better calibration, or higher beam energy. Table 4.6 lists possible
improvements. The Z width measurement will require a high-precision calibration of the
beam energy, which is made possible at circular colliders by the technique of resonant spin
depolarization [27]. The same technique could also improve mZ’s precision. We consid-

Even with conservative estimates, CEPC will provide a 
substantial improvement over existing data.



Limiting Measurements
CEPC ELECTROWEAK OBLIQUE PARAMETER FIT 109

S = 0
mW HsolidL

sin2 qeff HDashedL
Gz HDottedL

mt HDot-DashedL

0.2 0.4 0.6 0.8 1.
-0.08

-0.06

-0.04

-0.02

0.

0.02

0.04

0.06

0.08

d

dnow

T

T = 0
mW HsolidL

sin2 qeff HDashedL
Gz HDottedL

mt HDot-DashedL

0.2 0.4 0.6 0.8 1.
-0.08

-0.06

-0.04

-0.02

0.

0.02

0.04

0.06

0.08

d

dnow

S

T = 0.03
T = 0.025

T = 0.023

dmW = 5 MeV, S = 0

0.01 0.1 1.0
0.1

1.0

2.0

dmt @GeVD

dm
z
@Me

V
D

T = 0.025

T = 0.012

T = 0.0085

T = 0.0082

dmW = 1 MeV, S = 0

0.01 0.1 1.0
0.1

1.0

2.0

dmt @GeVD

dm
z
@Me

V
D

S = 0.02

S = 0.0166

dsin2qeff = 10-5, T = 0

0.01 0.1 1.0
0.1

1.0

2.0

dmt @GeVD

dm
z
@Me

V
D

dmW = 1 MeV, dmt = 20 MeV

dmZ = 0.1 MeV, S = 0

0.2 0.4 0.6 0.8 1.
-0.01

-0.0075

-0.005

-0.0025

0.

0.0025

0.005

0.0075

0.01

dHDahadLêdnow

T

Figure 4.4 First row: allowed T (left) and S (right) at 95% C.L. as a function of error bar of one observable
(normalized with respect to its current value) with the precisions of all the other observables in the fit fixed
at current values. Second row: contours of allowed T at 95% C.L. in the (�mt, �mZ) plane for �mW = 5
MeV (left) and 1 MeV (right). Again the precisions of all other observables in the fit fixed at current values.
Last row: left plot: contours of allowed S at 95% C.L. in the (�mt, �mZ) plane for � sin2 ✓`

e↵

= 10�5 (left)
; right plot: allowed T at 95% C.L. as a function of the error bar of �↵(5)

had

normalized to its current value
fixing �mW = 1 MeV, �mt = 20 MeV and �mZ = 0.1 MeV. (From ref. [21].)

changing the error bar of only one or two observables at each step. For this section, we
will consider two limits with S = 0 or T = 0 and consider only the bound on T or S.

Among all electroweak observables, mW is the one that is most sensitive to the T
parameter and sin

2 ✓`
e↵

is the one most sensitive to the S parameter. This is demonstrated
by the plots in the first row of Fig. 4.4, where we presented the dependence of T setting
S = 0 (left panel) and S setting T = 0 (right panel) on four observables: mW , sin2 ✓`

e↵

, �Z

and mt. Keeping the other observables with the current precisions, the allowed T at 95%
C.L. will decrease by a factor of 3 if the mW error bar is reduced from the current value
15 MeV to 3 MeV, the CEPC projection, while the allowed S at 95% C.L. will decrease

If we only improved one input to fit at a time, hit limits:

W mass is priority for measuring T. 
sin2𝜃W is priority for measuring S
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Figure 5. First row: allowed T (left) and S (right) at 2� C.L. as a function of error bar of one observable

(normalized with respect to its current value) with the precisions of all the other observables in the fit fixed

at current values. Second row: contours of allowed T at 2 � C.L. in the (�mt, �mZ) plane for �mW = 5 MeV

(left) and 1 MeV (right). Again the precisions of all other observables in the fit fixed at current values. Last

row: left plot: contours of allowed S at 2� C.L. in the (�mt, �mZ) plane for � sin
2 ✓`

e↵

= 10�5 (left) ; right plot:

allowed T at 2� C.L. as a function of the error bar of �↵
(5)

had

normalized to its current value fixing �mW = 1

MeV, �mt = 20 MeV and �mZ = 0.1 MeV.
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At left: 5 MeV error on W mass. At right: 1 MeV error. 
Top/Z masses play much larger role once W error is very 
small. If error stuck at 5 MeV, limited improvement.
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Figure 5. First row: allowed T (left) and S (right) at 2� C.L. as a function of error bar of one observable

(normalized with respect to its current value) with the precisions of all the other observables in the fit fixed

at current values. Second row: contours of allowed T at 2 � C.L. in the (�mt, �mZ) plane for �mW = 5 MeV

(left) and 1 MeV (right). Again the precisions of all other observables in the fit fixed at current values. Last

row: left plot: contours of allowed S at 2� C.L. in the (�mt, �mZ) plane for � sin
2 ✓`

e↵

= 10�5 (left) ; right plot:

allowed T at 2� C.L. as a function of the error bar of �↵
(5)

had

normalized to its current value fixing �mW = 1

MeV, �mt = 20 MeV and �mZ = 0.1 MeV.

– 16 –

Again, all the ingredients help, but first must achieve 
sufficient precision on crucial numbers like mW and sin2𝜃W.



A Wish List

• Measure mW to better than 5 MeV (now 15 MeV) and 
sin2𝜃W to better than 2×10-5 (now 16×10-5)

• Measure mZ to 500 keV precision (now 2 MeV)

• Measure mt to 100 MeV precision (now ~0.8 GeV*) 

• Have precise enough theory to make use of these 
results: at least 3-loop calculations (Ayres Freitas’s talk)

Of course, we want the best measurements possible of 
many quantities. But here are reasonable goals to probe 
loops of ~TeV particles. CEPC will deliver what’s in bold.
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er the possibility that this width and mass can be measured to an experimental precision
comparable to the theoretical uncertainty of about 0.1 MeV. The top mass improvement
requires a significant experimental effort. It will either rely on input from another collider
like the ILC with higher beam energy, or a significant boost in the CEPC energy to scan
the top pair production threshold. Such an energy upgrade would significantly improve
the ultimate bound attained on the T parameter. We show the result of such improvements
in Fig. 4.2. The figure illustrates first the effect of improving �Z together with mZ (which
improves the bounds on S and T comparably), and then the effect of additionally improv-
ing the top mass (which constrains T somewhat more strongly than S). From this plot
it is apparent that upgrades to the initial CEPC plan potentially offer significant physics
benefits and deserve further consideration.
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-0.04

-0.02

0.00

0.02
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Electroweak Fit: S and T Oblique Parameters
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Improved ΓZ, mt (68%)

Figure 4.2 CEPC constraints on the oblique parameters S and T , for the baseline scenario and two
possible improvements. At left we show the current bound, the CEPC baseline, and one improved scenario.
At right we zoom in and show the CEPC baseline and two different improved scenarios. Notice that the
axes of this plot have zoomed in by a factor of 5 compared to those of Fig. 4.1. For clarity we show only
68% C.L. (��2 = 2.30) constraints.

Table 4.7 summarize the physics reach by quoting the 68% C.L. bound on S assuming
that T is zero, and vice versa. These are one-parameter fits (corresponding to ��2

= 1).

Parameter Current CEPC baseline Improved �Z (and mZ) Also improved mt

S 3.6 ⇥ 10�2 9.3 ⇥ 10�3 9.3 ⇥ 10�3 7.1 ⇥ 10�3

T 3.1 ⇥ 10�2 9.0 ⇥ 10�3 6.7 ⇥ 10�3 4.6 ⇥ 10�3

Table 4.7 Current and CEPC projected one-parameter bounds on S and T (in each case, assuming that
the other is zero).

4.2.1 The Precision Challenge for Theorists

The estimates of CEPC prospects above assumed an improvement in theoretical uncer-
tainties relative to the current status. Theory uncertainties quoted for mW , sin

2 ✓`
e↵

, and
�Z in the “CEPC fit” column of Table 4.5 are based on the size of estimated four-loop
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whereas U would arise from a dimension eight operator [34]. This provides a strong
theoretical prior that U ⌧ S, T and justifies our focus on only two oblique parameters.
The fit presented here is a profile likelihood: the free parameters are varied to maximize
the likelihood for given S and T . This differs from marginalizing, when various values of
the free parameters are integrated with respect to some prior probability distribution. The
profile likelihood gives slightly more conservative bounds.

The result of the fit for S and T is depicted in Fig. 4.1. For ease of comparison of the
bounds, we have artificially displaced the input central values to agree with the predicted
values so that S = T = 0 will be the best-fit point. Both 68% C.L. and 95% C.L.
uncertainty contours are presented (i.e., ��2

= 2.30 and 6.18). Relative to the current
electroweak precision results (dominated by LEP and the SLC together with the improved
measurement of mW from hadron colliders), the results of CEPC will shrink the error bars
on S and T by a factor of about 3.

Figure 4.1 CEPC constraints on the oblique parameters S and T , compared to the current constraints.

CEPC �Z(mZ) [GeV] mt [GeV]
Improved Error (±1

exp

± 0.8
th

) ⇥ 10�4 (±0.0001) ±0.03
exp

± 0.1
th

Table 4.6 Potential improvements for CEPC measurements. The Z width measurement (and the Z mass)
may be improved by better energy calibration. A precise top mass measurement requires a scan of the tt̄
threshold, and thus a larger collision energy than current CEPC plans.

It is possible that the current baseline plan for CEPC can be improved upon by high-
er luminosity runs, better calibration, or higher beam energy. Table 4.6 lists possible
improvements. The Z width measurement will require a high-precision calibration of the
beam energy, which is made possible at circular colliders by the technique of resonant spin
depolarization [27]. The same technique could also improve mZ’s precision. We consid-

Improving the Z width 
measurement requires a 
better energy calibration. 
Improving the top mass 
measurement requires an 
e+e- collider threshold 
scan. (Beyond CEPC 
energy plans.)
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er the possibility that this width and mass can be measured to an experimental precision
comparable to the theoretical uncertainty of about 0.1 MeV. The top mass improvement
requires a significant experimental effort. It will either rely on input from another collider
like the ILC with higher beam energy, or a significant boost in the CEPC energy to scan
the top pair production threshold. Such an energy upgrade would significantly improve
the ultimate bound attained on the T parameter. We show the result of such improvements
in Fig. 4.2. The figure illustrates first the effect of improving �Z together with mZ (which
improves the bounds on S and T comparably), and then the effect of additionally improv-
ing the top mass (which constrains T somewhat more strongly than S). From this plot
it is apparent that upgrades to the initial CEPC plan potentially offer significant physics
benefits and deserve further consideration.

Figure 4.2 CEPC constraints on the oblique parameters S and T , for the baseline scenario and two
possible improvements. At left we show the current bound, the CEPC baseline, and one improved scenario.
At right we zoom in and show the CEPC baseline and two different improved scenarios. Notice that the
axes of this plot have zoomed in by a factor of 5 compared to those of Fig. 4.1. For clarity we show only
68% C.L. (��2 = 2.30) constraints.

Table 4.7 summarize the physics reach by quoting the 68% C.L. bound on S assuming
that T is zero, and vice versa. These are one-parameter fits (corresponding to ��2

= 1).

Parameter Current CEPC baseline Improved �Z (and mZ) Also improved mt

S 3.6 ⇥ 10�2 9.3 ⇥ 10�3 9.3 ⇥ 10�3 7.1 ⇥ 10�3

T 3.1 ⇥ 10�2 9.0 ⇥ 10�3 6.7 ⇥ 10�3 4.6 ⇥ 10�3

Table 4.7 Current and CEPC projected one-parameter bounds on S and T (in each case, assuming that
the other is zero).

4.2.1 The Precision Challenge for Theorists

The estimates of CEPC prospects above assumed an improvement in theoretical uncer-
tainties relative to the current status. Theory uncertainties quoted for mW , sin

2 ✓`
e↵

, and
�Z in the “CEPC fit” column of Table 4.5 are based on the size of estimated four-loop

Results at Δ𝜒2 =1
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er the possibility that this width and mass can be measured to an experimental precision
comparable to the theoretical uncertainty of about 0.1 MeV. The top mass improvement
requires a significant experimental effort. It will either rely on input from another collider
like the ILC with higher beam energy, or a significant boost in the CEPC energy to scan
the top pair production threshold. Such an energy upgrade would significantly improve
the ultimate bound attained on the T parameter. We show the result of such improvements
in Fig. 4.2. The figure illustrates first the effect of improving �Z together with mZ (which
improves the bounds on S and T comparably), and then the effect of additionally improv-
ing the top mass (which constrains T somewhat more strongly than S). From this plot
it is apparent that upgrades to the initial CEPC plan potentially offer significant physics
benefits and deserve further consideration.
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Figure 4.2 CEPC constraints on the oblique parameters S and T , for the baseline scenario and two
possible improvements. At left we show the current bound, the CEPC baseline, and one improved scenario.
At right we zoom in and show the CEPC baseline and two different improved scenarios. Notice that the
axes of this plot have zoomed in by a factor of 5 compared to those of Fig. 4.1. For clarity we show only
68% C.L. (��2 = 2.30) constraints.

Table 4.7 summarize the physics reach by quoting the 68% C.L. bound on S assuming
that T is zero, and vice versa. These are one-parameter fits (corresponding to ��2

= 1).

Parameter Current CEPC baseline Improved �Z (and mZ) Also improved mt

S 3.6 ⇥ 10�2 9.3 ⇥ 10�3 9.3 ⇥ 10�3 7.1 ⇥ 10�3

T 3.1 ⇥ 10�2 9.0 ⇥ 10�3 6.7 ⇥ 10�3 4.6 ⇥ 10�3

Table 4.7 Current and CEPC projected one-parameter bounds on S and T (in each case, assuming that
the other is zero).

4.2.1 The Precision Challenge for Theorists

The estimates of CEPC prospects above assumed an improvement in theoretical uncer-
tainties relative to the current status. Theory uncertainties quoted for mW , sin

2 ✓`
e↵

, and
�Z in the “CEPC fit” column of Table 4.5 are based on the size of estimated four-loop

The CEPC would provide 
order-of-magnitude 
improvement over the 
current results from LEP, 
Tevatron, and LHC.
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Figure 4.6 Loop diagrams contributing to the T parameter operator
�
h†Dµh

�
2 when the left-handed

stop/sbottom doublet Q̃
3

and the right-handed stop t̃R = (ũc
3

)
† are integrated out.

Again, the right-handed stops contribute only via mixing effects.
Loops of stops and higgsinos modify other observables that will be measured as part of

the CEPC electroweak precision programme, such as the Z partial decay width to b quarks
(Rb), but these turn out to give weak constraints. The coupling of Higgs bosons to pho-
tons and gluons are also modified by loops of stops, and these give important constraints
summarized in the Higgs section of the CDR. In Fig. 4.7 we show the expected reach of
CEPC electroweak precision constraints on the S and T parameter and of CEPC Higgs
coupling measurements on stop masses. The two measurements are comparably strong
and will probe stop masses near the TeV scale.
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Figure 4.7 CEPC electroweak precision constraints on stops. Here we present the unmixed case, Xt = 0.
The horizontal and vertical axes gives the mass of the left- and right-handed stops. The region to the left of
the orange lines will be excluded by CEPC constraints on the S and T parameters. The solid, dashed, and
dotted orange lines correspond to the three scenarios from Fig. 4.2. The region below and to the left of the
purple curve is expected to be excluded by CEPC measurements of Higgs boson branching ratios. We see
that electroweak precision tests and Higgs precision measurements are complementary and have comparable
strength. Dashed blue lines display contours of fine-tuning, which will be probed at the few percent level.

No mixing: 

Similar mass reach via 
T-parameter and Higgs 
couplings. Pushes 
tuning to the few % 
level. 

Definitively close LHC 
loopholes (hidden, 
stealthy, compressed 
stops).
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Figure 7. Projected constraints in the stop mass plane from a one-parameter fit to the Higgs data from future

experiments. The purple shaded region along the diagonal is excluded because the smallest |Xt| consistent
with the data at 2� is larger than the maximum |Xt| compatible with the mass eigenvalues, as explained in

detail in ref. [32]. The blue shaded region requires tuning Xt to a part in 10 to fit the data. The dot-dashed

red contours quantify fine-tuning in the Higgs mass from the quadratic sensitivity to stop soft terms.

a one-parameter fit to all projected � and � ⇥ Br measurements, which slightly improves the reach.
Specifically, the approach taken in Ref. [32] was based on bounds that allowed other parameters to
float, whereas here we extract stronger bounds by assuming that stops are the only contribution to
the new physics. We also provide, for the first time, an estimate of the reach of CEPC. The combined
ILC 250, 500, and 1000 GeV runs would have a very similar reach to CEPC.

From this plot we see that any future Higgs factory would mostly or entirely rule out regions of
10% fine tuning, but will leave gaps with 5% fine tuning. These gaps occur due to the blind spot
discussed above. As we have noted above, measurements of b ! s� can help to constrain the blind
spot region. However, bounds from b ! s� depend not only on the stop mass matrix but also on µ

and tan�. To provide a perspective on the implications of these bounds for fine-tuning, we should
assess the tree-level tuning arising from µ and from mA.

The precise measurement of Higgs couplings to fermions is sensitive to the mass scale of the heavy
Higgs bosons A0, H0, H± that are present in the MSSM and its extensions. Mixing among the Higgs
bosons will always modify the coupling of the light Higgs to fermions at order m2

h/m
2

A. (We will
collectively denote the masses of all of these particles as mA, although there may be some splitting
between H0 and A0.) The coe�cient is somewhat model dependent. We can estimate the bound on
these couplings by focusing on b, which is well-measured and approximately equal to

b ⌘ ySUSY

hbb

ySMhbb
⇡ 1 + 2

m2

h

m2

A

(7.3)

at large tan� in models where the dominant new quartic coupling beyond the MSSM arises from
nondecoupling D-terms [58, 71, 83]. Models with new quartics arising from F -terms have a somewhat
di↵erent structure, but would yield a similar bound on mA up to order-one factors (especially since
tan� in theories like the NMSSM cannot be very large). Doing a one-parameter fit with only b
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The purple region can be 
excluded for any mixing angle. 
(Because large mixing forces 
the mass eigenvalues away 
from the diagonal.)  

Blue region is excluded unless 
mixing angle is tuned by a 
factor of 10.

(also see J. Fan, MR arXiv:1401.7671)
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“Blind Spot” for Stops

Notice that one should not use the results of g from the seven-parameter fits which allow all Higgs
couplings to vary freely [26], as this will underestimate the exclusion. In the particular scenario we
are considering, the variations of the Higgs couplings are much more constrained. For the ILC, we
used the numbers of the ILC 500 scenario with the machine running at 250 GeV and 500 GeV with
luminosities of 1150 fb�1 and 1600 fb�1 and the 1000 scenario with the machine running at 1 TeV in
addition to the 500 case with a luminosity of 2500 fb�1. For FCC-ee, the number assumes the machine
running at 240 GeV and 350 GeV with luminosities of 104 fb�1 and 2600 fb�1. From Fig. 5, one could
see that the FCC-ee scenario is the most sensitive case. Again at the special point Xt ⇠

q
m2

˜t1
+m2

˜t2
,

r˜tG ⇡ 0 from Eq. 2.13 and the bound vanishes.
The strongest limit on the stop parameters comes from the measurement of hgg coupling. This is

due to a combination of the large size of the correction and the high precision of the measurements of
this coupling at the Higgs factories.

6 The Light Stop Blind Spot

It is apparent from Fig. 5 that in the case X2

t ⇡ m2

˜t1
+m2

˜t2
, all of the precision loop observables we

consider have a significantly poorer reach than for other choices of Xt. This is a “blind spot” for
precision tests of light stops. In calling this choice of Xt a blind spot, we follow the terminology of
ref. [82], which coined the term for regions of neutralino parameter space that evade direct detection
experiments. The analogy is a close one: the neutralino blind spots exist when the lightest neutralino
has a vanishing tree-level coupling to the Higgs boson. The underlying reason for the blind spot in
stop detection is that the lightest stop mass eigenstate has a vanishing tree-level coupling to the Higgs
boson. In this case, the heavy stop can still contribute to precision observables, but its contributions
are relatively small due to the larger mass suppression. (While this draft was being finalized, the blind
spot region of parameter space was independently pointed out in ref. [65].)

To understand where the blind spot occurs, we can integrate out the heavy stop mass eigenstate
t̃h to determine an e↵ective quartic coupling of the light stop t̃l to the Higgs boson:

+

t̃l t̃l

h h

y2t t̃l

t̃h

t̃l

h h

ytXt ytXt (6.1)

This leads to an e↵ective coupling:

L
e↵

=

 
y2t �

y2tX
2

t

m2

˜th
�m2

˜tl

!
|Hu|2

��t̃l
��2 . (6.2)

This leads to the “blind spot” mixing for which the coupling of the light stop to the Higgs boson
vanishes:

X⇤
t =

⇣
m2

˜th
�m2

˜tl

⌘
1/2

. (6.3)

This is also apparent from Eq. 2.15. Alternatively, one could find this critical mixing by evaluating
the light stop mass eigenvalue and solving the equation @ logm

˜tl
/@ log v = 0 for Xt.
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The light stop mass eigenstate may be decoupled from the 
Higgs at tree level, at a certain critical mixing angle:

Notice that one should not use the results of g from the seven-parameter fits which allow all Higgs
couplings to vary freely [26], as this will underestimate the exclusion. In the particular scenario we
are considering, the variations of the Higgs couplings are much more constrained. For the ILC, we
used the numbers of the ILC 500 scenario with the machine running at 250 GeV and 500 GeV with
luminosities of 1150 fb�1 and 1600 fb�1 and the 1000 scenario with the machine running at 1 TeV in
addition to the 500 case with a luminosity of 2500 fb�1. For FCC-ee, the number assumes the machine
running at 240 GeV and 350 GeV with luminosities of 104 fb�1 and 2600 fb�1. From Fig. 5, one could
see that the FCC-ee scenario is the most sensitive case. Again at the special point Xt ⇠

q
m2

˜t1
+m2

˜t2
,

r˜tG ⇡ 0 from Eq. 2.13 and the bound vanishes.
The strongest limit on the stop parameters comes from the measurement of hgg coupling. This is

due to a combination of the large size of the correction and the high precision of the measurements of
this coupling at the Higgs factories.

6 The Light Stop Blind Spot

It is apparent from Fig. 5 that in the case X2

t ⇡ m2

˜t1
+m2

˜t2
, all of the precision loop observables we

consider have a significantly poorer reach than for other choices of Xt. This is a “blind spot” for
precision tests of light stops. In calling this choice of Xt a blind spot, we follow the terminology of
ref. [82], which coined the term for regions of neutralino parameter space that evade direct detection
experiments. The analogy is a close one: the neutralino blind spots exist when the lightest neutralino
has a vanishing tree-level coupling to the Higgs boson. The underlying reason for the blind spot in
stop detection is that the lightest stop mass eigenstate has a vanishing tree-level coupling to the Higgs
boson. In this case, the heavy stop can still contribute to precision observables, but its contributions
are relatively small due to the larger mass suppression. (While this draft was being finalized, the blind
spot region of parameter space was independently pointed out in ref. [65].)

To understand where the blind spot occurs, we can integrate out the heavy stop mass eigenstate
t̃h to determine an e↵ective quartic coupling of the light stop t̃l to the Higgs boson:

+

t̃l t̃l

h h

y2t t̃l

t̃h

t̃l

h h

ytXt ytXt (6.1)

This leads to an e↵ective coupling:

L
e↵

=

 
y2t �

y2tX
2

t

m2

˜th
�m2

˜tl

!
|Hu|2

��t̃l
��2 . (6.2)

This leads to the “blind spot” mixing for which the coupling of the light stop to the Higgs boson
vanishes:

X⇤
t =

⇣
m2

˜th
�m2

˜tl

⌘
1/2

. (6.3)

This is also apparent from Eq. 2.15. Alternatively, one could find this critical mixing by evaluating
the light stop mass eigenvalue and solving the equation @ logm

˜tl
/@ log v = 0 for Xt.

– 15 –

If the light stop is decoupled 
from the Higgs, it’s irrelevant for 
naturalness! Then it’s the heavy 
stop that matters.Figure 8. Regions in the physical stop mass plane that precision measurements are sensitive to, with contours

of tunings, at future e+e� colliders (left: ILC; middle: CEPC; right: FCC-ee). Top row: bounds on stops with

no mixing, Xt = 0. Dashed vertical lines: 2� bounds on stop masses from S and T (mostly T ); solid lines: 2�

bounds on stop masses from Higgs coupling constraints. Blue dashed contours are the stop contributions to

the Higgs mass tuning. Lower row: bounds on stops in the blind spot X2
t = m2

t̃1
+m2

t̃2
. There are no Higgs

measurement constraints. For CEPC with possible improvements (purple dash-dotted line in the middle) or

FCC-ee (orange solid line), EWPT is only sensitive to a small region. The green dashed lines are the exclusion

contours from b ! s� for the choice µ = 200 GeV and a few di↵erent values of tan�. Each of these contours

is also labeled with corresponding tunings �µ and �A. There is also a region along the diagonal line which

cannot be attained by diagonalizing a Hermitian mass matrix [32].

7.2 Implications for Folded Stops

EWPT could be the most sensitive experimental probe in some hidden natural SUSY scenarios such as
“folded SUSY” [28]. In folded SUSY, the folded stops only carry electroweak charges and some beyond
SM color charge but no QCD charge. The most promising direct collider signal is W+ photons which
dominates for the “squirkonium” (the bound state of the folded squarks) near the ground state [84, 85].
It is a very challenging experimental signature. Among the Higgs coupling measurements, folded stops
could only modify the Higgs–photon coupling, the Higgs–photon–Z coupling, and (at a subleading
level) the Higgs–Z–Z coupling. Yet the Higgs–photon coupling measurements, even at future e+e�

colliders, have very limited sensitivities. Even FCC-ee Higgs measurements could only probe folded
stops up to 400 GeV, as illustrated in Fig. 9 (which updates the result in [32] to include CEPC). Notice
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b ! s�Green:
Purple: CEPC EWPT



Folded SUSY
In folded SUSY, stops have no QCD color (makes life 
difficult at LHC). But still have electroweak interactions.  

Measuring Higgs decays to photons and the T parameter 
can help constrain folded SUSY stops.
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Figure 9. Projected constraints in the folded stop mass plane from a one-parameter fit to the Higgs–photon–

photon couplings from future experiments. Directly analogous to Fig. 7. Results from the ILC 250/500/1000

would be similar to CEPC; lower-energy ILC measurements provide even weaker constraints. These constraints

are subdominant to the constraints on left-handed folded stops arising from T -parameter measurements, which

are the same as those for ordinary stops in the left-hand column of Fig. 5.

that we have also taken into account of a precise determination of �(h ! ��)/�(h ! ZZ) at HL-LHC.
It has been demonstrated that combing this with Higgs measurements at future e+e� colliders could
result in a significant improvement of sensitivity to Higgs–photon–photon coupling [86, 87].

On the other hand, the reach of the electroweak precision we derived in this article (the left
column of Fig. 5) applies to folded stops as well as the usual stops. Except for the blind spot in the
parameter space, future EWPT could probe left-handed folded stops, via their correction to the T

parameter, up to 600 GeV (e.g. at the ILC) or even 1 TeV (e.g. at FCC-ee). CEPC’s preliminary
plans fall close to the ILC reach, but conceivable upgrades could achieve similar reach to FCC-ee.
These EWPT constraints would surpass the Higgsstrahlung constraints on folded SUSY estimated in
ref. [65]. Improved measurements of the W mass, then, may be one of the most promising routes
to obtaining stronger experimental constraints on folded SUSY. Therefore, with the help of future
electroweak precision measurements, we can test the fine tuning of folded SUSY at the few percent
level.
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The T-parameter bounds 
previously shown for stops are 
exactly the same for folded stops!  

Another way the CEPC has exciting 
potential for uncolored naturalness!

Higgs
to 𝛾𝛾



Composite Higgs

V (h) ⇠ a�2

16⇡2
cos(h/f) +

b�2

16⇡2
sin

2
(h/f)

Tuning in Higgs VEV for a light Higgs. Specifically: for Higgs 
as a pseudo-Goldstone, expect a potential something like

This has v ~ f unless:
�2 cos(h/f)� (1 + ✏) sin2(h/f) ) hhi2 ⇡ 2✏f2

We tune v << f by making ϵ << 1. 

(Exception: “little Higgs” with extended symmetry structure. 
Pay a big price in complexity.)

(see Contino 1005.4269 for a review)



Composite Higgs
Constraints: S-parameter S ⇡ 4⇡v2

m2
⇢

, m(NDA)
⇢ ⇠ 4⇡fp

N

Higgs couplings: a =
gV V H

gSMV V h

=

s

1� v2

f2

Currently bounds from S and Higgs couplings translate to 
roughly

m⇢
>⇠ 3 TeV, f >⇠ max(

r
N

3

⇥ 400 GeV, 550 GeV)

CEPC would bring the ZZh coupling measurement to the 
0.2% level, probing f ~ 4 TeV and achieving a factor of ~ 
300 tuning in the Higgs VEV



Higgs vs. EWPT
Whether the (S, T) fit or Higgs coupling measurements are 
more sensitive to new physics depends on the model. Two 
well-motivated examples:

(from 1411.1054 Fan, MR, Wang)

Composite Higgs: probe scale f via ZH, S-parameter 
Left-handed stops: probe mass via Hgg, T-parameter


