Full Silicon Detector for CEPC Detector Concept

Weiming Yao (LBNL) for Silicon Tracking Study Group*

International Workshop on High Energy Circular Electron Position Collider, November 6-8 2017, Ihep, Beijing

*http://cepc.ihep.ac.cn/~cepc/cepc_twiki/index.php/Pure_Silicon_Detector

*http://atlaswww.hep.anl.gov/hepsim/detectorinfo.php?id=sidcc3

Outline

- What's New.
- Silicon tracker designs and their performances.
- Detector simulation and reconstruction.
- Comparing with CEPC V4 performance.
- Conclusion

What's New

- We have updated two designs of full silicon tracker, inspired by ILC detectors.
 - CEPCSID: replacing TPC with extra silicon strip barrel and disks(Chengdong+Weiming)
 - SIDB: expanding the SID design to full tracking volume (Sergei+Argonne)
 - The rest of detectors are kept same as CEPCV4 and SID.
 - The B field is assumed to 3.0 T
 - The radius of tracking volume is increased up to 1.87 m
- Tracking performance studies
 - Single muon
 - $ZH \rightarrow \nu \nu \mu \mu, \nu \nu GG$
- Adaptation of Arbor PFA with full silicon tracking (Manqi+Dan)
- Results are summarized in CDR as part of options for CEPC tracker.

Full Silicon Tracker Concepts

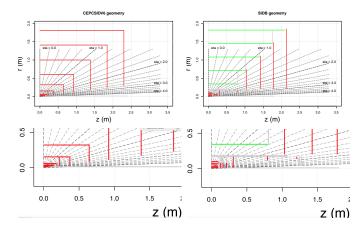


Figure: Full silicon tracker: CEPCSIDV6 and zoomed (left); SIDB and zoomed (right).

SIT Geometries

	CEPC-SID			SID-like				
Barrel	R		±z	Type	R		±z	Type
layer 0	0.153		0.368	D	0.344		0.793	s
layer 1	0.321		0.644	D	0.718		1.029	s
layer 2	0.603		0.920	D	1.082		1.391	s
layer 3	1.000		1.380	D	1.446		1.746	s
layer 4	1.410		1.840	D	1.820		2.107	s
layer 5	1.811		2.300	D				
Endcap	R_{in}	R_{out}	±z	Type	R_{in}	Rout	±z	Type
Disk 0	0.082	0.321	0.644	D	0.207	0.744	1.034	D
Disk 1	0.117	0.610	0.920	D	0.207	1.111	1.424	D
Disk 2	0.176	1.000	1.380	D	0.207	1.477	1.779	D
Disk 3	0.234	1.410	1.840	D	0.207	1.852	2.140	D
Disk 4	0.293	1.811	2.300	D				

Figure: The proposed geometry parameters for the outer strip barrel layers and disks, where D and S stand for double and single-strip layer.

Full Silicon Tracker in 3D

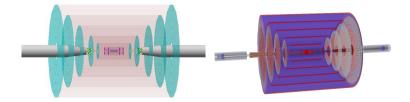


Figure: CEPCSIDV6 (left) and SIDB(right).

Expected Number of Hits and Radiation Length

• The number of hits and radiation length are comparable between two designs.

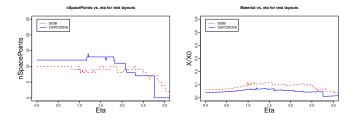


Figure: Expected nhits and radiation length as function of pseudo-rapidity

Excellent Resolutions

- The expected resolutions from toy simulation are comparable.
- Solid in Barrel $\theta = 80^{0}$; Dash in Endcap $\theta = 20^{0}$.

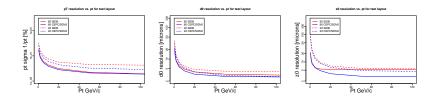


Figure: Resolutions for 1/pt, d0, and z0.

Full Detector Simulation and Reconstruction

- Generated single muon in CEPC full silicon.
- Reconstructed using Marlin Silicon only.
- Modifying pattern recognition to use more silicon layers.

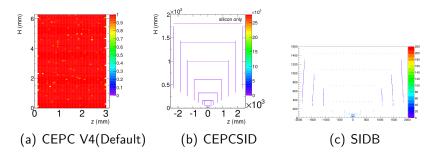


Figure: Hits r vs z from the track from the single muons.

Single Muon Track Efficiencies

• Requiring $P_T > 1.0$ GeV and $0.18 < \theta < 2.96$.

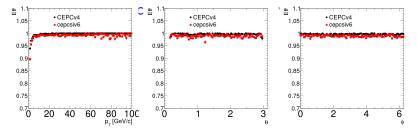


Figure: Efficiencies vs pt, theta and phi

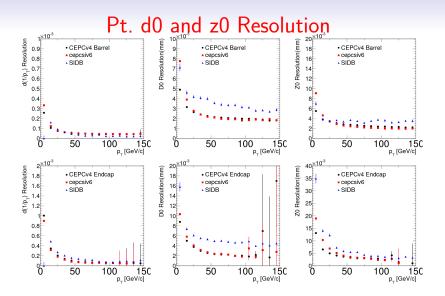
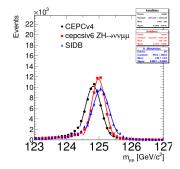



Figure: Pt, d0, z0 resolutions in Barrel(top) and Endcap(bottom).

$H \to \mu \mu$ Mass Resolution

- Generated some $ZH \to \nu \nu \mu \mu$ events to compare the di-muon mass resolution.
- CEPCSIDV6 has 20-25% better σ_m due to a better z resolution.

	CEPC V4	CEPCSID	SIDB
Δm (GeV)	0.2	0.0	0.0
σ_m (GeV)	0.25	0.21	0.26

Tracking Efficiencies in Jets

- Generated some $ZH \to \nu\nu G(gluon)G(gluon)$ events to measure tracking efficiencies in jets.
- The efficiencies are low for the full silicon tracking is due to the limitation of the current silicon tracking.

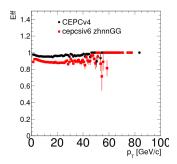


Figure: Tracking efficiencies as function of pt inside the jets.

Silicon Tracking Strategies

- Start with seed-triplet search in fixed solid angle sectors in given sets of seed-layer-triplets.
- A helix χ^2 -fit is applied to the seed triplets.
- Once the seeds found, a road search is followed in layers not used in the seeding.
- Leftover hits are assigned to the seed tracks, ordered with ascending $\chi^2/{\rm ndf.}$
- A refit with the Kalman filter is applied to the final Si-tracks.
- The same procedures are used in the forward tracking using hits in the endcap region.
- Two set of tracks are merged together at the end.

Issues of Inefficiencies

- Truth tracking runs perfectly, in principle, the hits are available.
- Digitization and clustering are based on true hit smearing, to be improved (Chengdong)
- Silicon tracking is seeded by set of layers, but only the best candidate saved for each seed, which causes some inefficiencies by picking a wrong hit nearby.
- Petal has a trapezoid shape, which requires a special care to check the hits in fiducial or not.
- Clustering merging in the dense jets will be important, requiring a realistic digitization and clustering.
- Minimizing the materia budget inside the detector will improve resolution and reduce the secondary interactions.

Conclusion

- The concepts of full silicon tracker have been implemented and seem working.
- Its single particle performances are comparable to CEPC V4, meeting the physics requirements.
- There are rooms for improvement and new ideas from LHC upgraded detectors.
- The results are summarized in CDR as one of tracking options for CEPC.
- Silicon usages (double strip layer counted twice):

Area m^2	Pixel	Strip	Total	
CEPC V4	1.3	154.2	155.6	
CEPCSID	1.3	307.3	308.6	
CEPCSID/CEPC	1.0	2.0	1.96	