

CMS Experience with HGCAL

A. Belloni

University of Maryland on behalf of the CMS Collaboration

CEPC Workshop IHEP, Beijing November 6-8, 2017

The LHC Schedule

11/7/2017

- Radiation damage on PbWO₄ crystals and plastic scintillators forces replacement of endcap calorimeters
 - Barrel calorimeters will only require replacement of readout electronics

Challenges

CMS

4

- Radiation-induced reduction of signal yield
 - Radiation-hard silicon sensors in high-dose region; plastic scintillator in low-dose region
 Ich pumber of
- High number of simultaneous interactions
 - High granularity, longitudinal segmentation, precision timing allow for the separation of pile-up vertices

11/7/2017

The HGCAL Design

- Key parameters
 - 1.5<|η|<3.0
 - 600m² Si sensors
 - 500m² scintillator
 - 6M channels
- CE-E
 - Cu/CuW/Pb absorber
 - Silicon sensors
 - 28 layers; $25X_0$, ~1.3 λ
- CE-H

11/7/2017

- Steel absorber
- Silicon and scintillator
- 24 layers; ~8.5 λ

Mechanical Layout

Si-only layer Sensor thickness optimized vs radiation hardness

Mixed Si-scintillator layer Boundary optimized vs radiation hardness Scintillator too in cold volume (-30C)

CE-E Layer Design

JUVERSITA JANNERSITA 18 ZARYLAND

Silicon Sensors

n-on-p sensor

- Hexagonal sensor geometry
 - Largest tile-able polygon; maximize use of circular wafers
- Design goals
 - Sustain 1kV to mitigate radiation damage
 - Good S/N for MIP at the end of HL-LHC run period
 - Expected total dose and radiation fluence: ~100Mrad and ~10¹⁶ n_{eq}/cm²
- Current design
 - 8-inch sensor, 192 1cm² cells or 432 0.5cm² cells
 - Small-size calibration cells for single MIP sensitivity

SiPM-on-Tile Setup

- Photosensor (SiPM) mounted directly on tile
 - Direct collection of scintillator light
 - Tile wrapped with reflective cover
 - Central dimple in tile optimizes light collection
- Cosmic-ray runs with prototype assembly
 - CALICE AHCAL prototype (similar structure to CE-H)

FE Readout Electronics

- Requirements
 - Large dynamic range (0.4fC to 10pC)
 - Low power (<15mW/channel)
 - Timing information with 50ps accuracy
 - Low noise (2ke)
 - High radiation resistance
- Baseline
 - 130nm ASIC
 - ToA with 50ps binning
 - 12-bit ToT for 0.1-10pC; 11-bit ADC for 0-0.1pC
 - Buffers to accommodate 12.5µs L1 trigger latency
- Current status
 - SKIROC2-CMS ASIC designed for testbeam
 - HGROC_V1 submitted in July

CERN Test Beam - 2017

11/7/2017

11/7/2017

Energy Linearity

- Sum of fitted pulse amplitudes over all cells in all layers
 - Pedestal and common-mode noise subtracted
 - No weights applied: room for improvement
- Good energy measurement linearity

STIVERSIY.

- Ongoing analysis of 100-300GeV hadron beam results
- 11/7/2017 A. Belloni :: CMS Calorimetry R&D CEPC Workshop

Data vs. Simulation

- Transverse shower size: E7/E19
 - E7: highest energy cell + 6-cell ring
 - E19: highest energy cell + 2 rings
- Longitudinal shower profile: ELayer/Evis
 - ELayer: energy in given layer
 - Evis: total sum of energy in calorimeter
- Good agreement with simulation

11/7/2017

 Discrepancies under investigation

- CALICE-AHCAL prototype
 - 12 36x36cm² layers; 144 3x3cm² scintillator tiles; 74mm steel plates (~5 λ)
- 300GeV pion test beam
 - Online monitoring data with preliminary calibration
 - HGCAL and AHCAL integrated DAQ
 - Clear MIP peaks visible in shower

Cold Scintillators

- Pulse shape and timing unaffected by temperature
 - Tested down to -180C (scintillator in liquid nitrogen)

- Radiation damage does not preclude usage
 - Lower temperature slows annealing, without affecting permanent damage

Radiation Damage (1)

 $L(d) = L(0) \cdot exp(-d/D); d: dose, D: dose constant$ Dose Constant vs Dose Rate, 2016 Laser data, 20 fb⁻¹<Int. Lumi<41.3 fb⁻¹ 10^{1} R=Dose Rate red - L1, fit: D=2.6*R**0.45 blue - L7, fit: D=3.6*R**0.50 +/- 1 sigma band Dose Constant [Mrad] 10⁰ 10 **CE-H** Range 10^{-2} 10⁻² 10⁻³ 10^{-1} 10^{0} 10^{-4} Dose Rate [krad/hr] JINST 11 T10004

- Radiation damage (per unit of integrated dose) increases at low dose rates
 - Oxygen diffusion drives the doserate dependency

11/7/2017

Radiation Damage (2)

Days aft. irr.

- Monitoring annealing of damaged scintillator
 - 1x1x5cm³ samples of plastic scintillator
 - Light yield with α -source
 - Low temperature slows annealing, but no difference in permanent damage

Summary

- HGCAL expected to run in very hostile environment
 - Radiation, pile-up
- Flexible system provides multiple measurements

 Energy, tracking, timing
- Active R&D program studies implementation of innovative solutions
 - Mechanics, electronics, reconstruction algorithms
- Steady progress along schedule
 - TDR scheduled for end of year

Backup

References

- <u>F. Pitters, "The CMS High-Granularity Calorimeter for Operation at the High-Luminosity LHC", TIPP 2017</u>
- <u>J. Borg, "Electronics and Triggering Challenges for the CMS High Granularity</u> <u>Calorimeter", TIPP 2017</u>
- <u>F. Romeo, "Construction and rst beam-tests of silicon-tungsten prototype modules</u> for the CMS High Granularity Calorimeter for HL-LHC", TIPP 2017
- J.-B. Sauvan, "The CMS High Granularity Calorimeter for the High Luminosity LHC", CHEF 2017
- <u>T. Quast, "Construction and beam-tests of silicon-tungsten prototype modules for</u> <u>the CMS High Granularity Calorimeter for HL-LHC", CHEF 2017</u>
- <u>E. Pree, "Large-Area Silicon Detectors for the CMS High Granularity Calorimeter", CHEF 2017</u>
- <u>F. Ricci-Tam, "Scintillator performance at low dose rates and low temperatures for the CMS High Granularity Calorimeter for HL-LHC", CHEF 2017</u>
- <u>A. Lobanov, "Electronics and Triggering Challenges for the CMS High Granularity</u> <u>Calorimeter", CHEF 2017</u>

• Luminosity leveled at 7.5.10³⁴ cm⁻²s⁻¹

CMS HL-LHC Upgrades

Trigger/HLT/DAQ

- Track information in Trigger (hardware)
- Trigger latency 12.5 µs output rate 750 kHz
- HLT output 7.5 kHz

Barrel calorimeter

- New EM FE/BE electronics; lower
- operating temperature (8°C)
- New HCAL BE electronics
 Muon systems
 - New DT & CSC FE/BE
 electronics
 - Complete RPC coverage
 - 1.5 < η < 2.4
 - GEMs GE1/1, GE2/1, ME0

New Endcap Calorimeters

 Rad. tolerant - increased transverse and longitudinal segmentation intrinsic precise timing capability

Beam radiation and luminosity Common systems & infrastructure

New Tracker

- Rad. tolerant increased granularity lighter
- 40 MHz selective readout (p_T≥2 GeV) in Outer Tracker for Trigger
- Extended coverage to $\eta \simeq 3.8$

11/7/2017

Radiation Considerations

Expected Performance

11/7/2017

Trigger Electronics

11/7/2017

STIVENSITL

Trigger Cells

- linear fit works in linear region (low-gain ADC up to 200)
- Residuals below 2% threshold
- For this SKIROC: transition point at high-gain ADC ~ 1600; 9 high-gain ADC counts ~ 1 low-gain ADC count
- 11/7/2017 A. Belloni :: CMS Calorimetry R&D CEPC Workshop

CMS HCAL Ageing

- The CMS Hadronic calorimeter uses plastic scintillator as active material
 - It is know that radiation breaks the plastic and creates "color centers" which absorb scintillation light
- The crucial question is: how long will it take the HCAL to become dark?
 - The lesson from 2012 data: shorter than it was originally thought
- R&D efforts aims at identifying a more radiation-tolerant material usable in HCAL upgrade
 - Time scale: Long-Shutdown 3 upgrades (2024-2026)

After an irradiation of 10krad, we see the light-yield reduction predicted for 1Mrad

How does a Scintillator work?

- An organic scintillator is typically composed of three parts
 - A polymer base (typically PVT, polystyrene, or Silicon-based materials)
 - A primary dopant (~1%)
 - A secondary dopant (~0.05%)
- Particles excite the base, the excitation of the base can migrate to the primary dopant, producing detectable light
 - In crystals, excitons transfer the energy; in liquids, solvent-solvent interactions and collisions
- The secondary dopant shifts the light to longer wavelengths, to make it more easily detected
 - Maximize the overlap with the wavelength range at which photodetectors are most efficient

Effects of radiation:

- Breaks polymer chains and create radicals that absorb UV light
- Damages fluors, reducing their ability to shift light to longer wavelengths

Some parameters to model radiation damage

- Presence of oxygen
- Total irradiation dose and dose rate
- Temperature of irradiation

R & D Directions and Plans

- Identify candidate materials offering improved radiation tolerance
 - Tune dopant concentration
 - Emit at a longer wavelength
- Irradiate materials in different environmental conditions, at different total doses and dose rates
 - Radioactive sources (Co-60, Cs-137)
 - LHC beam halo
- Measure light yield with different and complementary methods
 - Spectrofluorometers, cosmic rays, radioactive sources
- Map light-yield reduction as a function of multiple parameters
 - O₂ concentration; total dose; dose rate; temperature; dopant concentration...

UMD Co-60 source

Irradiated plastic scintillator vs. new

Spectrophotometry

- Very challenging measurement
 - Typical user needs accurate measurement of peak positions, not peak amplitude
- Tuned procedure until reached satisfactory level of repeatability
 - Repeated measurements during a day vary within <2%
 - Include uncertainty on machine conditions, placement of sample by operator, inhomogeneity among sample sides
- Possible to probe effect of radiation on dopants separately by varying excitation wavelength
 - E.g. blue scintillator: 285nm (excite primary), 350nm (cross primary/secondary), 400nm (excite exclusively secondary)

Promising technique to understand effect of radiation on material

 One can excite separately dopants

Cold / Warm Irradiation

Fransmittance

- Measurement details
 - Commercial EJ-200
 - 5.82Mrad at 80krad/hr, NIST
 - Irradiation at 23C vs. -30C
 - Samples annealed about 20 weeks at room temperature
- **Observations**

11/7/2017

- Peak at ~400nm (absorption maximum of secondary dopant) seems to indicate damage of secondary dopants
 - Less dopant to absorb light → higher transmittance
- Comparable transmittance above 410nm after annealing

Alpha Source Measurements

- Sensitive to complete chain of light-production
 - Source releases energy in the base, and the whole chain of dopants and energy transfers is exercised
 - Spectrophotometer cannot produce UV light to mimic baseto-primary transfer
 - Somewhat sensitive to bulk damage
 - Energy released at small depth; light transverses about 1cm of scintillator to reach PMT
- Provides complementary measurement to transmission and emission spectra
 - Closer to actual operation of scintillator in detector

Dose-rate Effect

Hatched area: systematic uncertainty

Clear demonstration of dose rate effect; emission spectra seemed to indicate the opposite, suggesting that there is an effect on the base that emission measurements are not sensitive to

The over-doped EJ-200 sample produces similar energy distributions

> [V×ns] Energy

11/7/2017

Base-Material Studies

- Green and blue fluors
- Normal concentration of fluors; over-doped primary (2x); overdoped secondary (2x)
- Polyvinyltoluene and polystyrene base (note: current HE scintillator is PS-based)
- Completed measurement of emission and absorption spectra to define initial properties
 - Started campaign of irradiations
- Plan to perform systematic study of radiation effect on PVT- and PSbased scintillators
 - Backup: over-doped samples

Co-60 Irradiation at NIST 7Mrad @ 500krad/hr

- Monitor evolution of ratio between integrals of emission spectra (irradiated vs. reference) to estimate annealing time
 - Emission measurement sensitive to (mostly) annealing of surface
 - Faster annealing time w.r.t. transmission measurements
 - Consistent with being sensitive to surface effect only
- 11/7/2017 A. Belloni :: CMS Calorimetry R&D CEPC Workshop

• Co-60 irradiation, 7Mrad @ 0500krad/hr

SHIVENSIY

- Polystyrene vs polyvinyltoluene blue scintillators
 - 1X1P: commercial version; 1X2P and 2X1P: over-doped versions (the concentration of the secondary or primary dopant is doubled)
- Pictures suggest that over-doping helps preserve the scintillator clear, and confirm that PVT seems to hold better than PS
 - Important note: the 1X1P and 1X2P samples annealed for about 12 hours longer than the 2X1P
- 11/7/2017 A. Belloni :: CMS Calorimetry R&D CEPC Workshop