HL-LHC and challenges for CEPC Electroweak Physics

Paolo Azzurri INFN Pisa

CEPC Workshop November 7th 2017 IHEP Beijing

outline

• global EW fit status

status and perspectives of

- W mass, width, decay couplings
- Z pole A, $\sin^2\theta_W$, couplings, $\alpha_{\rm QED}$
- EW gauge self couplings

^(o)Average of the ATLAS and CMS measurements assuming no correlation of the systematic uncertainties.

^(*)Average of the LEP and SLD A_{ℓ} measurements, used as two measurements in the fit.

 (∇) The theoretical top mass uncertainty of 0.5 GeV is excluded.

 $^{(\dagger)}$ In units of 10^{-5} .

 $^{(\triangle)}$ Rescaled due to α_s dependence.

Beijing 07/11/17

P. Azzurri - LHC & CEPC : EW Physics

 $(O_{fit} - O_{meas}) / \sigma_{meas}$

W boson mass : LHC Run1

ATLAS: arXiv:1701.07240 with 4.1-4.6/fb @7 TeV

fit to: $p_{T}I$ and m_{T}

- Lepton $p_T \rightarrow$ affected by pT(W) uncertainties (PDF/QCD)
- **Missing** $E_{T} \rightarrow$ affected by detector resolution effects
- m_T → compromise between TH and EXP

 $m_W = 80370 \pm 7 \text{ (stat.)} \pm 11 \text{ (exp. syst.)} \pm 14 \text{ (mod. syst.)} \text{ MeV} = 80370 \pm 19 \text{ MeV}$

ATLAS: arXiv:1701.07240 with 4.1-4.6/fb @7 TeV Wmass LHC Run1

stability per channels, fitted distributions and kinematic ranges

ALEPH

DELPHI

L3

OPAL

CDF

D0

ATLAS W⁺

ATLAS W

ATLAS W[±]

ATLAS

Measurement

Stat. Uncertainty

80300

80350

80400

----- Full Uncertainty

80250

80450 80500

m_w [MeV]

W mass at Run2-3 & HL-LHC

W boson mass : e⁺e⁻

ALEPH Eur.Phys.J.C47:309 (2006) : 683 /pb ~10k WW events ignoring low energy particles in the qqqq channel $m_W = 80440\pm43(stat.)\pm24(syst.)\pm9(FSI)\pm9(LEP)$ MeV $\Gamma_W = 2140\pm90(stat.)\pm45(syst.)\pm46(FSI)\pm7(LEP)$ MeV

mass of the W boson : e⁺e⁻

CEPC 5/ab@240GeV → 80M W-pairs: LEP2 x 2000 → Δm_w (stat)= 0.5 MeV → Δm_w (syst) ≤ X MeV ? Is ΔE_{beam} ~ 1MeV at E_{CM} =240 GeV possible ?

With Zy events ? ΔE_{beam} ~15MeV(stat) @LEP

Table 9: Summary of the systematic errors on m_W and Γ_W in the standard analysis averaged ove 183-209 GeV for all semileptonic channels. The column labelled $\ell\nu q\bar{q}$ lists the uncertainties in m_W used in combining the semileptonic channels.

	$\Delta m_{ m W}~({ m MeV}/c^2)$		$\Delta\Gamma_{\rm W}~({ m MeV})$					
Source	$e\nu q\bar{q}$	μu q $ar{q}$	au u q ar q	$\ell u q ar q$	$e\nu q \bar{q}$	μu q \bar{q}	$\tau u q \bar{q}$	$\ell \nu q \bar{q}$
$e + \mu$ momentum	3	8	-	4	5	4	-	4
$e+\mu$ momentum resoln	7	4	-	4	65	55	-	50
Jet energy scale/linearity	5	5	9	6	4	4	16	6
Jet energy resoln	4	2	8	4	20	18	36	22
Jet angle	5	5	4	5	2	2	3	2
Jet angle resoln	3	2	3	3	6	7	8	7
Jet boost	17	17	20	17	3	3	3	3
Fragmentation	10	10	15	11	22	23	37	25
Radiative corrections	3	2	3	3	3	2	2	2
LEP energy	9	9	10	9	7	7	10	8
Calibration ($e\nu q\bar{q}$ only)	10	-	-	4	20	-	-	9
Ref MC Statistics	3	3	5	2	7	7	10	5
Bkgnd contamination	3	1	6	2	5	4	19	7

lepton and jet uncertainties from (Z) calibration data

Beijing 07/11/17

mass & width of the W boson : e⁺e⁻

W decay BR

Winter 2005 - LEP Preliminary

Winter 2005 - LEP Preliminary

5/ab@240GeV → 80M W-pairs

→ ΔBR(qq) (stat) =[1] 10⁻⁴ (rel) → Δ $\alpha_s \approx (9 \pi/2) \Delta BR \approx 10^{-3}$

→ Δ BR(e/ μ / τ v)(stat)=[4]10⁻⁴ (rel)

Lept universality test at 2% level tau BR ~2.7 σ larger than e/mu \rightarrow CEPC @ 4 10⁻⁴ level

will need very good control of lepton id i.e. cross contaminations in signal channels ($\tau \rightarrow e,\mu$ in the e,μ channels and v.v.)

Flavor tagging would allow to measure coupling to c & b-quarks (Vcs, Vcb,..)

LHC : A^{FB} and $sin^2\theta_{eff}$

CMS: PAS <u>SMP_16_007</u>: 18.8-19.6/fb @8TeV

$\begin{array}{c c} \bullet & \bullet \\ \hline \bullet & \bullet \\ 0 & 0.5 & 1 \\ \hline & & 0 \\ \hline & & 0.5 \\ \hline & & -1 \\ \hline & & 0.5 \\ \hline & $	→ Data → MC (stat) → MC (stat ⊕ sys)	Dilepton $p_{\rm T}$ reweighting QCD $\mu_{R/F}$ scale
without constraining PDFs	with constraining PDFs	POWHEG MiNLO Z+j va FSR model (PHOTOS vs P
0.23125 ± 0.00054	0.23125 ± 0.00032	UE tune
0.23054 ± 0.00064	0.23056 ± 0.00045	Electroweak ($\sin^2 \theta_{eff}^{lept} - \frac{1}{2}$
0.23102 ± 0.00057	0.23101 ± 0.00030	Total

Source	muons	electrons
MC statistics	0.00015	0.00033
Lepton momentum calibration	0.00008	0.00019
Lepton selection efficiency	0.00005	0.00004
Background subtraction	0.00003	0.00005
Pileup modeling	0.00003	0.00002
Total	0.00018	0.00039

model variation	Muons	Electrons
Dilepton $p_{\rm T}$ reweighting	0.00003	0.00003
QCD $\mu_{R/F}$ scale	0.00011	0.00013
POWHEG MiNLO Z+j vs NLO Z model	0.00009	0.00009
FSR model (PHOTOS vs PYTHIA)	0.00003	0.00005
UE tune	0.00003	0.00004
Electroweak ($\sin^2 heta_{ m eff}^{ m lept} - \sin^2 heta_{ m eff}^{ m u, d}$)	0.00001	0.00001
Total	0.00015	0.00017

 $\sin^2 \theta_{\text{eff}}^{\text{lept}} = 0.23101 \pm 0.00036(\text{stat}) \pm 0.00018(\text{syst}) \pm 0.00016(\text{theory}) \pm 0.00030(\text{pdf}) \\ \sin^2 \theta_{\text{eff}}^{\text{lept}} = 0.23101 \pm 0.00052.$

Channel

Electron

Combined

Muon

LHC : A^{FB} and $sin^2\theta_{eff}$

CMS: PAS <u>SMP_16_007</u>

ATLAS: <u>JHEP 1509 (2015) 49</u> 4.8/fb @7TeV

LHCb:JHEP 1511 (2015) 190 1/fb+2/fb @7+8 TeV

LEP+SLD still ~3 times better

LHCb high rapidity yields less A^{FB} dilution

CMS PAS FTR-17-001

HL- LHC : A^{FB} and $sin^2\theta_{eff}$

CEPC Z pole precision

10⁹-10¹¹ Z decays : LEP1 x 10²⁻⁴

continuous E_{CM} calibration (resonant depolarization) Z **mass** and **width** : 500 KeV (syst)

pre CDR IHEP_CEPC_DR_2015_01

Observable	LEP precision	CEPC precision	CEPC runs	$\int \mathcal{L}$ needed in CEPC
m_Z	2 MeV	0.5 MeV	Z lineshape	$> 150 {\rm ~fb}^{-1}$
m_W	33 MeV	3 MeV	ZH (WW) thresholds	$> 100 { m fb}^{-1}$
A^b_{FB}	1.7%	0.15%	Z pole	$> 150 {\rm ~fb^{-1}}$
$\sin^2 heta_W^{ ext{eff}}$	0.07%	0.01%	Z pole	$> 150 { m fb^{-1}}$
R_b	0.3%	0.08%	Z pole	$> 100 {\rm ~fb}^{-1}$
N_{ν} (direct)	1.7%	0.2%	ZH threshold	$> 100 { m fb}^{-1}$
$N_{ u}$ (indirect)	0.27%	0.1%	Z lineshape	$> 150 { m fb}^{-1}$
R_{μ}	0.2%	0.05%	Z pole	$> 100 { m fb^{-1}}$
$R_{ au}$	0.2%	0.05%	Z pole	$> 100 {\rm ~fb}^{-1}$

Z pole acceptance

- @LEP acceptance effects at 10⁻⁴ OK for cross sections at 10⁻³ level. Main effects were due to track losses, angle mis-measurements and knowledge of boundaries.
- @CEPC exploit a statistical uncertainty at some 10⁻⁵

Example from ALEPH, EPJC 14 (2000) 1

Table 13. Exclusive $\mu^+\mu^-$ selection: examples of relative systematic uncertainties (in %) for the 1994 (1995) peak points

Source	$\Delta\sigma/\sigma$ (%)
Acceptance	0.05
Momentum calibration	$0.006 \ (0.009)$
Momentum resolution	0.005
Photon energy	0.05
Radiative events	0.05
Muon identification	$\simeq 0.001 (0.02)$
Monte Carlo statistics	0.06
Total	0.10 (0.11)

@LEP detectors inner edge (**relevant boundary**) was known at the level of up to $20 \mu m$ The beam displacement (**vertical** and **horizontal**) becomes ineffective by choosing two fiducial regions (**loose and tight**) and **alternating them** in the two sides

@CEPC can use similar methods for cross sections measurements (e.g. different and alternating forward and backward fiducial regions), <u>but still need to identify and know</u> well the relevant boundaries (~5µm level)

couplings and R_b

couplings measurements require asymmetry and width ratios

$$A_{FB}(b) = \frac{\sigma_F - \sigma_B}{\sigma_{tot}} = \frac{3}{4} A_e A_b \text{ (LEP)} \longrightarrow \frac{g_{Vf}}{g_{Af}}$$

$$R_b = \frac{\Gamma(Z \rightarrow b\overline{b})}{\Gamma_{had}} \qquad A_b = A_{FB}^{pol}(b) = 0.921 \pm 0.021 \text{ (SLC)}$$

$$R_b = 0.21646 \pm 0.00065 \text{ (LEP + SLC)} \longrightarrow (g_{Af})^2 + (g_{Vf})^2$$

- R_b Very sensitive to rad. vertex corrections due to new particles
- Important to sort out LEP b-couplings issue
- Measurement exploits the presence of two b hadrons and b-tagging.
- Independent from b-tagging efficiency, but not from hemisphere correlations
- Higher b-tagging performance (vertex detectors) helps in reducing the correlation
- Correlations sources should be identified and studied with data (done at LEP)

 $\Delta R_b \approx 5 (5-20) \ 10^{-5} \text{ stat (syst)} \qquad \Delta R_c \approx 10 (50) \ 10^{-5} \text{ stat (syst)}$

Direct measurement of $\alpha_{\rm QED}$ (m_z²)

Patrick Janot: arXiv:1512:05544, JHEP 2016(2) 1

EW high precision will require higher order perturbative calculations : a **bottleneck** will be represented by the hadronic contributions to the vacuum polarization

Direct measurement with the forward-backward asymmetry

Optimal centre-of-mass energies $Vs_{-} = 87.9 \text{ GeV}$ and $Vs_{+} = 94.3 \text{ GeV}$

Two measurements with possible cancellation of some correlated syst effects

Туре	Source	Uncertainty
	E_{beam} calibration	1×10^{-5}
	$E_{\rm beam}$ spread	$< 10^{-7}$
Experimental	Acceptance and efficiency	negl.
	Charge inversion	negl.
	Backgrounds	negl.
	$m_{\rm Z}$ and $\Gamma_{\rm Z}$	1×10^{-6}
Parametric	$\sin^2 heta_{ m W}$	5×10^{-6}
	$G_{ m F}$	5×10^{-7}
	QED (ISR, FSR, IFI)	$< 10^{-6}$
Theoretical	Missing EW higher orders	few 10^{-4}
	New physics in the running	0.0
Total	Systematics	1.2×10^{-5}
(except missing EW higher orders)	Statistics	3×10^{-5}

W/Z/γ couplings LEP2/TeV/LHC

gauge cancellations

Run1 LHC ~ LEP2 HL-LHC ~ Run1 x 10^2 5/ab@240 ~ LEP2 x 2•10³

summary

- EW physics at the LHC is a challenging business
 - most promising advances with Run2-3 and HL will come in the context of VBF and VBS processes (& quartic couplings)
 - improvements on diboson & TGC limits should be at hand
 - hard work on systs can deliver W mass and sin²∂ with some improvement over current precision
- CEPC would deliver game changing precision for EW parameters
 - possible x 10-100 improvement factors to LEP1 & 2 precision
 - W mass and width to ~1 MeV (make a visit to the threshold if possible)
 - Z pole physics also very worth to be exploited