New Physics in multi-Higgs boson final states¹

in collaboration with: Wolfgang Kilian, Sichun Sun, Qi-Shu Yan, and Xiaoran Zhao

CEPC Workshop 2017, Beijing

¹arXiv:1702.03554 [hep-ph]

- Motivation
- Effective Field Theory (EFT) parameterization
- Analysis results of $pp \rightarrow hhh \rightarrow 2b2l^{\pm}4j + MET$
- New physics in $gg \rightarrow h$, $gg \rightarrow hh$, $gg \rightarrow hhh$
- Conclusion

- The processes with multi-Higgs final states are important to understand the Higgs potential and electroweak symmetry breaking (EWSB).
- Deviations from the SM in double and triple Higgs final-state processes are expected by various new physics models. EFT is a suitable tools to study the new physics effects.
- pp → hhh → 2b2I[±]4j + MET is not well studied in the literature. What is the discovery potential of triple Higgs signal via this channel?

In the SM, the Higgs potential can be written as:

$$V(H^{\dagger}H) = -\mu^2(H^{\dagger}H) + \frac{\lambda}{4}(H^{\dagger}H)^2,$$

After EWSB, we have the Higgs self-interation terms:

$$V_{
m self} = rac{\lambda}{4} v h^3 + rac{1}{16} \lambda h^4,$$

where $\lambda = 2m_h^2/v^2$.

We compare the cross section of $gg \to hhh$ at the LHC and a 100 TeV machine:

E _{cm}	14 TeV	100 TeV	
σ_{tot} (fb)	$4.1 imes 10^{-2}$	3.2	

If we can reduce the background and the integrated luminosity is high enough, it is possible to observe this process at a 100 TeV machine (SPPC).

EFT parameterization

A general way to parameterize the EFT Lagrangian is

$$\begin{aligned} \mathcal{L}_{EFT} &= \mathcal{L}_{SM} + \mathcal{L}_t + \mathcal{L}_h + \mathcal{L}_{ggh}, \\ \mathcal{L}_t &= -a_1 \frac{m_t}{\nu} \bar{t} t h - a_2 \frac{m_t}{2\nu^2} \bar{t} t h^2 - a_3 \frac{m_t}{6\nu^3} \bar{t} t h^3, \\ \mathcal{L}_h &= -\lambda_3 \frac{m_h^2}{2\nu} h^3 - \frac{\kappa_5}{2\nu} h \partial^\mu h \partial_\mu h - \lambda_4 \frac{m_h^2}{8\nu^2} h^4 - \frac{\kappa_6}{4\nu^2} h^2 \partial^\mu h \partial_\mu h, \\ \mathcal{L}_{ggh} &= \frac{g_s^2}{48\pi^2} \left(c_1 \frac{h}{\nu} + c_2 \frac{h^2}{2\nu^2} \right) G_{\mu\nu}^a G^{a\mu\nu} \end{aligned}$$

where $a_1 = \lambda_3 = \lambda_4 = 1$ and $a_2 = a_3 = \kappa_5 = \kappa_6 = c_1 = c_2 = 0$ in the SM.

	gg ightarrow h	gg ightarrow hh	gg ightarrow hhh
Parameters	a ₁ , c ₁	a ₁ , c ₁	a ₁ , c ₁
involved	-	a2, c2, λ_3 , κ_5	a2, c2, λ_3 , κ_5
	-	-	a3, λ_4 , κ_6

EFT parameterization

Scenario 1: Strong Interaction Light Higgs (SILH)
 [G. F. Giudice *et al.*, hep-ph/0703164]

$$\mathcal{L}_{\text{SILH}} = \frac{c_{H}}{2f^{2}} \partial^{\mu} \left(H^{\dagger}H\right) \partial_{\mu} \left(H^{\dagger}H\right) + \frac{c_{T}}{2f^{2}} \left(H^{\dagger}\overrightarrow{D^{\mu}}H\right) \left(H^{\dagger}\overrightarrow{D}_{\mu}H\right) - \frac{c_{6}\lambda}{f^{2}} \left(H^{\dagger}H\right)^{3} + \left(\frac{c_{y}y_{f}}{f^{2}}H^{\dagger}H\overline{f}_{L}Hf_{R} + \text{h.c.}\right) + \frac{c_{g}g_{S}^{2}}{16\pi^{2}f^{2}}\frac{y_{t}^{2}}{g_{\rho}^{2}}H^{\dagger}HG_{\mu\nu}^{a}G^{a\mu\nu} + \frac{ic_{W}g}{2m_{\rho}^{2}} \left(H^{\dagger}\sigma^{i}\overrightarrow{D^{\mu}}H\right) \left(D^{\nu}W_{\mu\nu}\right)^{i} + \frac{ic_{B}g'}{2m_{\rho}^{2}} \left(H^{\dagger}\overrightarrow{D^{\mu}}H\right) \left(\partial^{\nu}B_{\mu\nu}\right) + \frac{ic_{HW}g}{16\pi^{2}f^{2}} \left(D^{\mu}H\right)^{\dagger}\sigma^{i}\left(D^{\nu}H\right)W_{\mu\nu}^{i} + \frac{ic_{HB}g'}{16\pi^{2}f^{2}} \left(D^{\mu}H\right)^{\dagger}\left(D^{\nu}H\right)B_{\mu\nu} + \frac{c_{\gamma}g'^{2}}{16\pi^{2}f^{2}}\frac{g^{2}}{g_{\rho}^{2}}H^{\dagger}HB_{\mu\nu}B^{\mu\nu}.$$

Two particular cases:

MCHM4:
$$c_H = 1$$
, $c_y = 0$, $c_6 = 1$
MCHM5: $c_H = 1$, $c_y = 1$, $c_6 = 0$

EFT parameterization

Scenario 2: Higgs inflation

[F. L. Bezrukov and M. Shaposhnikov, arXiv:0710.3755 [hep-th]]

$$S_{Jordan} = \int d^4x \sqrt{-g} \Biggl\{ -\frac{M^2+\xi h^2}{2}R + \frac{(\partial h)^2}{2} - \frac{1}{2}m_h h^2 - \frac{\lambda}{4}h^4 \Biggr\}$$

One can define

$$\hat{g}_{\mu
u}=\Omega^2 g_{\mu
u}$$
 $\Omega^2=1+\xi h^2/M_{ ext{Planck}}^2$ $d\chi=\sqrt{rac{\Omega^2+6\xi^2h^2/M_{ ext{Planck}}^2}{\Omega^4}}dh$

And then the Lagrangian can be rewritten as Einstein frame

$$\begin{split} S_E &= \int d^4 x \sqrt{-\hat{g}} \bigg\{ -\frac{M_{\mathsf{Planck}}^2}{2} \hat{R} + \frac{\partial_\mu h \partial^\mu h}{2\Omega^2} + \frac{3\xi}{M_{\mathsf{Planck}}^2} \frac{h^2 \partial_\mu h \partial^\mu h}{\Omega^4} \\ &- (1 - \frac{2\xi h^2}{M_{\mathsf{Planck}}^2}) \left[\frac{\lambda}{4} h(\chi)^4 + \frac{1}{2} m_h h(\chi)^2 \right] \bigg\} \,. \end{split}$$

The Analysis results of $pp \rightarrow hhh \rightarrow 2b2l^{\pm}4j + MET$

Parton level:

The Analysis results of $pp \rightarrow hhh \rightarrow 2b2l^{\pm}4j + MET$

Hadron level:

The Analysis results of $pp \rightarrow hhh \rightarrow 2b2l^{\pm}4j + MET$

Detector level:

Here we switch on two operators

$$\begin{aligned} \mathcal{O}_1 &= \frac{x_1}{2v^2} \partial^{\mu}(H^{\dagger}H) \partial_{\mu}(H^{\dagger}H), \\ \mathcal{O}_2 &= \frac{x_2}{3v^2} (H^{\dagger}H)^3, \end{aligned}$$

And define $\hat{x} = x_1 \zeta^2$ and $\hat{r} = -x_2 \zeta^2 \frac{2v^2}{3m_h^2}$, where $\zeta = (1 + x_1)^{-1/2}$ [H. J. He *et al.*, arXiv:1506.03302 [hep-ph]]

Our operators	Operators above	Relations
$-\frac{m_t}{v}a_1\overline{t}th$	$-\frac{m_t}{v}\zeta \overline{t}th$	$a_1 = \zeta$
$-\lambda_3 \frac{m_h^2}{2\nu} h^3$	$-rac{\zeta}{2v}(1+\hat{r})m_h^2h^3$	$\lambda_3=\zeta(1+\hat{r})$
$-\lambda_4 \frac{m_h^2}{8 v^2} h^4$	$-rac{\zeta^2}{8v^2}(1+6\hat{r})m_h^2h^4$	$\lambda_4=\zeta^2(1+6\hat{r})$
$-\frac{1}{2\nu}\kappa_5h(\partial h)^2$	$\frac{1}{v}\hat{x}\zeta h(\partial h)^2$	$\kappa_5 = -2\hat{x}\zeta$
$-\frac{\kappa_6}{4v^2}h^2(\partial h)^2$	$\frac{\hat{x}}{2v^2}\zeta^2h^2(\partial h)^2$	$\kappa_6 = -2 \hat{x} \zeta^2$

The processes $gg \rightarrow h$ and $gg \rightarrow hh$ give a strong constraint on a_1 and c_1 (assuming 30 ab⁻¹ luminosity for 100 TeV)

 $gg \rightarrow hh$ can constrain the a_2 , λ_3 and κ_5 within 10% at a 100 TeV machine.

The upper bounds of the parameters a_3 , λ_4 and κ_6 can be obtained from $gg \rightarrow hhh$.

Parameters	Constraints
a ₁	1%
a ₂	10%
a ₃	40%
λ_3	10%
λ_4	[-13, 20]
κ_5	10%
κ_6	[-2.3, 1.5]
<i>c</i> ₁	$\leq 1.0\%$
<i>c</i> ₂	[-0.1, 0.4]

- The channel $pp \rightarrow hhh \rightarrow 2b2l^{\pm}4j + MET$ is studied at 100 TeV.
- We use the EFT method to discuss the new physics effects.
- The bounds on Yukawa couplings, trilinear and quartic self-coupling of Higgs via multi-Higgs final states are obtained at 100 TeV hadron collider.
- Our study can be applied to constrain the new physics model such as SILH and Higgs inflation.

Backup slides

Process	σ (14 <i>TeV</i>) (fb)	err.[th]	err.[exp]
gg ightarrow h	$4.968 imes10^4$	$+7.5\% \\ -9.0\%$	$\pm 1\%$
gg ightarrow hh	45.05	+7.3% -8.4%	< 120 <i>fb</i>
gg ightarrow hhh	0.0892	+8.0% -6.8%	—
	σ (100 <i>TeV</i>) (fb)	err.[th]	err. [exp]
gg ightarrow h	$8.02 imes10^5$	+7.5% -9.0%	$\pm 0.1\%$
$\sigma \sigma \rightarrow h h$	1740	+5.7%	+5%
88 -7 1111	1749	-6.6%	10

Decay channel	Branching ratio	
$HHH ightarrow bar{b}bar{b}W^+W^-$	22.34%	
$HHH ightarrow bar{b}bar{b}bar{b}$	20.30%	
$HHH ightarrow bar{b}W^+W^-W^+W^-$	8.20%	
$HHH ightarrow bar{b}bar{b} au^+ au^-$	7.16%	
$HHH ightarrow bar{b}bar{b}gg$	6.54%	
$HHH ightarrow bar{b}bar{b}ZZ$	2.69%	
$HHH \rightarrow W^+W^-W^+W^-W^+W^-$	1.00%	
$HHH ightarrow W^+W^-W^+W^- au^+ au^-$	0.96%	
$HHH ightarrow W^+W^-W^+W^-gg$	0.88%	
$HHH \rightarrow W^+W^-W^+W^-ZZ$	0.36%	
$HHH ightarrow bar{b}bar{b}\gamma\gamma$	0.29%	

Parameter relationships of SILH, MCHM4 and MCHM5

	SILH	MCHM4	MCHM5
a ₁	$(1-rac{3}{2}c_y\xi)(1-rac{1}{2}c_y\xi)^{-1}(1+c_H\xi)^{-1/2}$	$1-rac{1}{2}\xi$	$1-rac{3}{2}\xi$
a ₂	$-3c_y\xi(1-rac{1}{2}c_y\xi)^{-1}(1+c_H\xi)^{-1}$	0	-3ξ
a ₃	$-3c_y\xi(1-rac{1}{2}c_y\xi)^{-1}(1+c_H\xi)^{-3/2}$	0	-3ξ
<i>c</i> ₁	$rac{1}{4}c_g\xirac{y_t^2}{g_ ho^2}$	$\frac{1}{4}\xi \frac{y_t^2}{g_{ ho}^2}$	$\frac{1}{4}\xi \frac{y_t^2}{g_{ ho}^2}$
<i>c</i> ₂	<i>c</i> ₁	<i>c</i> 1	<i>c</i> 1
κ_5	$-2c_H\xi(1+c_H\xi)^{-3/2}$	-2ξ	-2ξ
κ_6	$-2c_H\xi(1+c_H\xi)^{-2}$	-2ξ	-2ξ
λ_3	$(1+rac{5}{2}c_6\xi)(1+rac{3}{2}c_6\xi)^{-1}(1+c_H\xi)^{-1/2}$	$1+rac{\xi}{2}$	$1 - \frac{1}{2}\xi$
λ_4	$(1+rac{15}{2}c_6\xi)(1+rac{3}{2}c_6\xi)^{-1}(1+c_H\xi)^{-1}$	$1+5\xi$	$1-\xi$

MCHM analysis

MCHM analysis

