

CEPC Injector Linac beam dynamics

International Workshop on High Energy Circular Electron Positron Collider Nov 7th, 2017

C. Meng ,Y. Chi, G. Pei, J. Zhang, X. Li, D. Wang, S. Pei, J. Gao Institute of High Energy Physics, CAS, Beijing

Outline

- Introduction
 - Main parameters
 - Linac layout
- Positron source design
- Linac design
 - Electron linac
 - Positron linac
 - Error study
- Summary

Outline

- Introduction
 - Main parameters
 - Linac layout
- Positron source design
- Linac design
 - Electron linac
 - Positron linac
 - Error study
- Summary

Main parameters

- Linac design goal and principles
 - Simplicity
 - High Availability (necessary hot-standby backups, 10%-20%) and Reliability
 - Always providing beams that can **meet requirements** of Booster

Parameter	Symbol	Unit	Value
e⁻ /e⁺ beam energy	$E_{e^{-}}/E_{e^{+}}$	GeV	10
Repetition rate	f_{rep}	Hz	100
o- lot hunch population	Ne-/Ne+		>6.25×10 ⁹
e /e ⁻ bunch population		nC	>1.0
Energy spread (e ⁻ /e ⁺)	$\sigma_{\scriptscriptstyle E}$		<2×10 ⁻³
Emittance (e ⁻ /e ⁺)	\mathcal{E}_r	nm∙ rad	<300
e ⁻ beam energy on Target		GeV	4
e ⁻ bunch charge on Target		nC	10

Main parameters

- Parameters
 - Layout
 - Emittance and energy spread is too small, no need Damping Ring
 - Lower emittance requirement possibility
 Damping Ring for positron linac
 - Bunch charge
 - Positron bunch charge decide the layout of linac and is difficult to upgrade if not keep the potential
 - Enough allowance and high bunch charge requirement possibility or potential, designed 3 nC
 - One-bunch-per-pulse
 - Only *short-range Wakefield* need to be considered
 - Frequency
 - Collider: 650 MHz
 - Booster: 1300MHz
 - Linac: 2856.75MHz (s-band)
 - 2856.75MHz =3.25MHz × 879
 - 650 MHz =3.25MHz × 200MHz
 - 1300 MHz =3.25MHz×400MHz

b	Parameter	Symbol	Unit	Value
	e⁻ /e⁺ beam energy	E_{e}/E_{e^+}	GeV	10
	Repetition rate	$f_{\scriptscriptstyle rep}$	Hz	100
	o ⁻ /o ⁺ hunch nonulation	Ne-/Ne+		>6.25×10 ⁹
	e /e buildipopulation		nC	>1.0
	Energy spread (e ⁻ /e ⁺)	$\sigma_{\scriptscriptstyle E}$		<2×10 ⁻³
	Emittance (e ⁻ /e ⁺)	\mathcal{E}_r	nm∙ rad	<300
	e ⁻ beam energy on Target		GeV	4
	e ⁻ bunch charge on Target		nC	10

Layout of Linac (I)

- ESBS (Electron Source and Bunching System)
 - Electron energy: 50 MeV
 - Electron bunch charge: 3 nC for electron injection/ 11nC for positron production
- FAS (the First accelerating section)
 - Electron beam to 4 GeV
 - High charge mode/ Low charge mode
- PSPAS (Positron Source and Pre-Accelerating Section)
 - Positron beam production and capture
- SAS (the Second accelerating section)
 - Energy to 10 GeV
- Electron bypass
 - Transport line bypass scheme
 - Target bypass scheme

Layout of Linac (II)

Layout of Linac (III)

alternative

Outline

- Introduction
 - Main parameters
 - Linac layout
- Positron source design
- Linac design
 - Electron linac
 - Positron linac
 - Error study
- Summary

Layout of PSPAS

- Layout of positron source
 - Target:
 - W@15mm
 - Rms electron beam size:0.5mm
 - AMD
 - Length: 100mm
 - Aperture: 8mm→26mm
 - Capture & Pre-accelerating section
 - Length:2 m
 - Aperture:25 mm
 - Gradient: 22 MV/m
 - Chicane
 - Wasted electron separation
 - Bunch length compression
- Magnetic field of the positron source and pre-accelerating section

• 6T→0.5T

Target design

- SuperKEKB positron linac commissioning (3.3 GeV)
 - 2014, N(e+)/N(e-)~20%
 - 2015, N(e+)/N(e-)~30% [designed 50%]
- CEPC positron
 - Positron bunch charge > 3 nC
 - Electron beam:
 - 4GeV (not optimization)
 - 10nC/bunch (maybe lower)
 - Electron beam: 4 kW
- Energy deposition
 - 0.784 GeV/e- @ FLUKA
 - 784 W \rightarrow water cooling
- Target
 - tungsten
 - 15 mm
 - Beam size: 0.5 mm

Capture accelerating tubes

- Positron yield(@ capture accelerating tube exit) within some energy range with different capture accelerating tube phase (or different input phase for pre-accelerating section) and different accelerating gradient
 - Deceleration mode (D1)
 - Acceleration mode (A1)
 - 22 MV/m (Considering energy and positron yield, lower accelerating gradient have acceptable positron yield decrease)

Dynamic results of PSPAS

- Pre-accelerating section
 - RF phase
- Norm. RMS. Emittance
 - 2700 mm-mrad \rightarrow 2400 mm-mrad
- Energy: >200 MeV
- Positron yield
 - Ne+/Ne- ~=0.55 [-6°, 14°, 235 MeV,265 MeV]

Parameters

	SLC	LEP (LIL)	KEKB/SUPER KEKB	FCC-ee (conv.)*	CEPC
Incident e- beam energy	33 GeV	200 MeV	3.3/3.3 GeV	4.46 GeV	4 GeV
e-/bunch [10 ¹⁰]	3-5	0.5 - 30 (20 ns pulse)	6.25/6.25	5.53	6.25
Bunch/pulse	1	1	2/2	2	1
Rep. rate	120 Hz	100 Hz	50 Hz/50 Hz	200 Hz	100Hz
Incident Beam power	~20 kW	1 kW (max)	3.3 kW	15 kW	4 kW
Beam size @ target	0.6 - 0.8 mm	< 2 mm	/>0.7 mm	0.5 mm	0.5 mm
Target thickness	6X0	2X0	/4X0	4.5X0	4.3X0
Target size	70 mm	5 mm	14 mm		10mm
Target	Moving	Fixed	Fixed/Fixed		Moving/Fixed
Deposited power	4.4 kW		/0.6 kW	2.7 kW	0.78kW
Capture system	AMD	$\lambda/4$ transformer	/AMD	AMD	AMD
Magnetic field	6.8T->0.5T	1 T->0.3T	/4.5T->0.4T	7.5T->0.5T	6T->0.5T
Aperture of 1st cavity	18 mm	25mm/18 mm	/30 mm	20 mm	25 mm
Gradient of 1st cavity	30-40 MV/m	~10 MV/m	/10 MV/m	30 MV/m	22 MV/m
length of 1st cavity	1m	3m	2m	3m	2m
Linac frequency	2855.98 MHz	2998.55 MHz	2855.98 MHz	2855.98 MHz	2856.75 MHz
e+ yield @ CS exit	~1.6 e+/e-	~0.003 e+/e- (linac exit)	/~0.5 e+/e-	~0.7 e+/e-	~0.55 e+/e-

Tungsten radiation length X0 is 0.35 cm.

Outline

- Introduction
 - Main parameters
 - Linac layout
- Positron source design
- Linac design
 - Electron linac
 - Positron linac
 - Error study

• Summary

Short-Range Wakefield

0.01

• k. Yokoya and K. bane's Wakefield model 10 ×10¹² • periodic linac structure 2 ×10¹⁴ 8 1.5 V (V/C/m) W (V/C) 6 0.5 2 0 0 0.002 0.004 0.006 0.008 0.01 0.002 0.004 0.006 0.008 0 0 $W_{L}(s) = \frac{Z_{0}c}{\pi} \exp\left(\frac{\pi s}{4s_{00}}\right) \operatorname{erfc}\left(\sqrt{\frac{\pi s}{4s_{00}}}\right)$ $W_{x}(s) = \frac{4Z_{0}cs_{00}}{\pi a^{4}} \left[1 - \left(1 + \sqrt{\frac{s}{s_{00}}}\right) \exp\left(-\sqrt{\frac{s}{s_{00}}}\right)\right]$ $W_{x}(s) = \frac{4Z_{0}cs_{00}}{\pi a^{4}} \left[1 - \left(1 + \sqrt{\frac{s}{s_{00}}}\right) \exp\left(-\sqrt{\frac{s}{s_{00}}}\right)\right]$ Z (m) Z (m) The short-range wake is obtained by Inverse Fourier transforming: For short *s* (1) can be rewritten in the following simpler way: $S_{00} = 0.169 \frac{a^{1.79} g^{0.38}}{I^{1.17}}$ $W_L(s) \approx \frac{Z_0 c}{\pi a^2} \exp\left(-\sqrt{\frac{s}{s_{ab}}}\right)$

$$W_{L}(s) = \frac{cZ_{0}}{\pi a^{2}} \left[1 + W_{L1}\sqrt{\zeta} + W_{L2}\zeta + W_{L3}\zeta\sqrt{\zeta} \right]$$
$$W_{T}(s) = \frac{cZ_{0}}{\pi a^{4}} s \left[2 + W_{T1}\sqrt{\zeta} + W_{T2}\zeta + W_{T3}\zeta\sqrt{\zeta} \right]$$

$$W_{L1} = -1.614r^{0.122}, \qquad W_{L2} = +1.012r^{0.169}, \qquad W_{L3} = -0.231r^{0.111}$$
$$W_{T1} = -2.781r^{0.217}, \qquad W_{T2} = +1.637r^{0.511}, \qquad W_{T3} = -0.364r^{0.793}$$
$$\zeta = \frac{Ls}{a^2} \qquad r = \frac{a/\lambda}{0.15}.$$

k. Yokoya and K. bane, "The longitudinal high-frequency impedance of a periodic accelerating structure", Proceedings of the 1999 IEEE Particle Accelerator Conference Vol. 3 pag. 1725, New York, March 1999

Electron linac

- Focusing structure: *Triplet*
 - Long drift length for accelerating tubes
 - Beam size in Acc. tubes is small and controllable
 - Same beam envelopes at X/Y planes
 - 1 triplet+4 Acc. tubes \rightarrow 1 triplet+8 Acc. tubes
- Operation mode :
 - High charge mode (positron production)
 - 4GeV & 10 nC
 - Low charge mode (electron injection)
 - 10 GeV & 3 nC

- High charge mode
 - 10 nC && 4 GeV
 - Energy spread (rms): 0.8%
 - Emittance growth (challenge with errors and correction)

- Low charge mode
 - 3 nC && 10 GeV without bypass
 - Energy spread (rms): 0.15%
 - Emittance (rms): 5 nm
- Bypass scheme
 - electron transport line bypass
 - Simplicity
 - A bit higher cost, more magnets
 - target bypass
 - Moveable target: alignment & mechanics
 - Low energy part for positron linac is week
 focusing for high energy electron, e.g.
 quadrupoles and correctors

Energy spread (e ⁻ /e ⁺)	$\sigma_{\scriptscriptstyle E}$		<2×10 ⁻³
Emittance (e ⁻ /e ⁺)	\mathcal{E}_r	mm∙ mrad	<0.3

Z (m)

Electron linac

Z (m)

Positron linac

- Because of the larger emittance of positron beam, the lattice design of shared linac is focused on positron beam, especially the transverse focusing structure.
- Transverse focusing structure
 - FODO, nesting on Acc. tubes
 - Triplet
- Positron linac
 - Controlled $\pmb{\beta}$ function
 - Large emittance
 - Need smaller β
 - Longer period length
 - Reduce quadrupole number
 - Cause larger β
 - Triplet number
 - Further optimization

Positron linac

- Bunch length is large for positron beam and energy spread cannot meet the requirement of Booster
 - Bunch length compressor: chicane
 - Higher energy: smaller beam size and reduce beam loss
 - Lower energy: smaller chicane
 - Chicane
 - Energy: ~ 2GeV
 - RF phase: 80 degree
 - Bending angle: 6 degree
 - Rectangular magnet:
 - achromatic structure
 - *R*₅₆=-57.3 mm

- Positron linac
 - 3 nC && 10 GeV
 - Energy spread (rms): 0.12%
 - Emittance (rms): 120 nm

Energy spread (e ⁻ /e ⁺)	$\sigma_{\scriptscriptstyle E}$		<2×10 ⁻³
Emittance (e ⁻ /e ⁺)	\mathcal{E}_r	mm∙ mrad	<0.3

Positron linac

Error study

Vibration

- Simulation condition
 - 10k particles
 - 100 seeds
 - Dynamic errors:
 - Quadrupole transverse vibration
 - $2 \mu m_{\gamma} 5 \mu m_{\gamma} 10 \mu m$
 - Uniform distribution

- Simulation results
 - If rms beam obit jitter <0.1 mm, the dynamic vibration <2 μ m
 - If rms beam obit (dynamic) <0.2 mm, the dynamic vibration <5 μm
 - Normal value

Error study

Misalignment errors with correction

- Positron linac
 - 500 seeds with correction
 - One-to-one correction scheme for each period
 - Errors:
 - Gaussian distribution, 3σ truncated
- Beam orbit
 - RMS value< 0.3 mm
 - Rms value< 0.1 mm (high energy part)

Error description	Unit	Value
Translational error	mm	0.1
Rotation error	mrad	0.2
Magnetic element field error	%	0.1
BPM uncertainty	mm	0.1

Error study

Misalignment errors with correction

- Electron linac
 - First orbit correction + multi-particles simulation
 - Low charge
 - Beam orbit can be controlled well
 - High charge
 - Misalignments of Acc. Tubes
 - BPM noisy
 - Wakefield
 - In operation, the orbit and emittance growth can be controlled better.
 Correction is based on multi-particles orbit
 - Meet the requirements for positron production

300

200

200

250

300

250

Energy jitter

- Simulation condition
 - 5000 seeds
 - Accelerating tubes
 - phase errors and amp errors
 - 4 in 1 KLY, 4 accelerating tubes in one group
 - 3σ--Gaussian 15 Probability (%) 5 01 0 -0.6 -0.4 -0.2 0.2 0.4 0.6 0 $\Delta\delta$ (%)

- Energy spread < 0.2%
 - Phase errors: 0.5 degree (rms)
 - Amp errors: 0.5% (rms)
- Energy jitter: 0.2%

Parameter	Symbol	Unit	Goal	Status
e⁻ /e⁺ beam energy	E_{e}/E_{e^+}	GeV	10	10/10
Repetition rate	f _{rep}	Hz	100	100
e ⁻ /e ⁺ bunch population	Ne-/Ne+		>6.25×10 ⁹	$1.9 imes 10^{10}$ $1.9 imes 10^{10}$
	Ne-/Ne+	nC	>1.0	>3.0/3.0*
Energy spread (e ⁻ /e ⁺)	$\sigma_{\scriptscriptstyle E}$		<2×10 ⁻³	$1.5 imes 10^{-3}$ $1.2 imes 10^{-3}$
Emittance (e ⁻ /e ⁺)		mm∙ mrad	<0.3	0.005/0.12**
e ⁻ beam energy on Target		GeV	4	4
e ⁻ bunch charge on Target		nC	10	10

* Enough allowance and high bunch charge requirement possibility or potential
 ** Without errors

- The physics design of CEPC Linac have been proposed and the simulated beam dynamics results can meet the requirements of Booster.
- The general design of positron source have been proposed.
- There are no issue that defies solution for CEPC linac.
- Further optimization are undergoing.