Exposing Dark Sector with Z Factory

(Based on the preliminary result) With Lian-Tao Wang, Xiao-Ping Wang, Wei Xue

Jia Liu EFI, University of Chicago CEPC Theory Group Workshop, Beijing, 7 November, 2017

Motivation: dark sector probes at CEPC

- How to related with new physics
 - LEP Shines Light on DM (Fox et al 1103.0240)
 - Electroweak Precision Observable (Linear collider report 1504.01726)
 - Z invisible width (Carena et al hep-ph/ 0308053)
 - DM physics (many...)
 - Lepton flavor violation (see Qin Qin's talk)
- Dark sector at low energy ee collider e.g. BES-III, BaBar
 - Dark Higgstraulung to multi-leptons (Shuve et al 1710.07635)

Motivation: dark sector probes at CEPC

- How to related with new physics
 - LEP Shines Light on DM (Fox et al 1103.0240)
 - Electroweak Precision Observable (Linear collider report 1504.01726)
 - Z invisible width (Carena et al hep-ph/ 0308053)
 - DM physics (many...)
 - Lepton flavor violation (see Qin Qin's talk)
- Dark sector at low energy ee collider e.g. BES-III, BaBar
 - Dark Higgstraulung to multi-leptons (Shuve et al 1710.07635)

• LEP at Z pole

- $Z \to \gamma \gamma \gamma~$ by L3
- $Z
 ightarrow \gamma + {
 m inv}$ by L3, OPAL
- $\bullet \quad Z \to h Z^* \quad \text{by L3}$
- $Z \to H_1 H_2$ by L3
- LEP at higher energy
 - MSSM by LEP-II
 - Multiple photon + MET
 - Hadronic event with MET
 - Invisible Higgs
 - ...

Motivation: dark sector probes at CEPC

- Future Z factory (Giga/Tera)
 - Resonant prod ~59000pb, 10^9/10^12 Z
 - Direct search on dark sector via exotic Z decay
- LEP at Z pole
 - $Z \to \gamma \gamma \gamma$ by L3
 - + $Z
 ightarrow \gamma + {
 m inv}$ by L3, OPAL
 - $Z
 ightarrow hZ^*$ by L3
 - $\bullet \quad Z \to H_1 H_2 \;\; {\rm by} \, {\rm L3}$
- LEP at higher energy
 - MSSM by LEP-II
 - Multiple photon + MET
 - Hadronic event with MET
 - Invisible Higgs

Exotic Z decay at CEPC

- Dark sector models 1.
 - Higgs portal + DM
 - Vector portal + DM
 - Axion-like particle
 - Higher dimensional Operator
 - Comparing with existing collider and DM limits
- 2. Exotic Z decay topologies
 - Motivating topologies
 - Classifying by final state and resonances
 - Limits on BR
- 3. CEPC specialty: focus on invisible final state

Dark Sectors 2016 Workshop: Community Report

 $\mathcal{L} \supset \begin{cases} -\frac{\epsilon}{2\cos\theta_W} B_{\mu\nu} F'^{\mu\nu}, & \text{vector portal} \\ (\mu\phi + \lambda\phi^2) H^{\dagger}H, & \text{Higgs portal} \\ y_n LHN, & \text{neutrino portal} \\ \frac{a}{f_a} F_{\mu\nu} \widetilde{F}^{\mu\nu}, & \text{axion portal.} \end{cases}$

Marco's talk

Higgs portal + DM

• Lagrangian

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} S \partial^{\mu} S - \frac{\mu_S^2}{2} S^2 - \frac{\lambda_3}{6} S^3 - \frac{\lambda_4}{24} S^4 - \lambda_1 \left(H^{\dagger} H \right) S - \lambda_2 \left(H^{\dagger} H \right) S^2 + \bar{\chi} \left(i \partial \!\!\!/ - m_{\chi}^0 \right) \chi - y_{\chi} S \bar{\chi} \chi + |D_{\mu} H|^2 - \mu_H^2 \left(H^{\dagger} H \right) - \lambda_H \left(H^{\dagger} H \right)^2 .$$

• Scalar mixing

$$H = \frac{1}{\sqrt{2}} \left(v_H + h \right), \quad S = v_S + s \qquad \qquad \begin{pmatrix} \tilde{h} \\ \tilde{s} \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} h \\ s \end{pmatrix}$$

- Interactions and decays
 - s interacts with SM from scalar mixing

$$\begin{split} \Gamma(\tilde{s} \to \bar{\chi}\chi) &= \frac{y_{\chi}^2 \cos^2 \alpha}{8\pi} m_{\tilde{s}} \left(1 - \frac{4m_{\chi}^2}{m_{\tilde{s}}^2} \right)^{3/2} \\ \Gamma(\tilde{h} \to \tilde{s}\tilde{s}) &= \frac{\sin^2 \alpha \cos^2 \alpha}{32\pi} \sqrt{1 - \frac{4m_{\tilde{s}}^2}{m_{\tilde{h}}^2}} \left(1 + 2\frac{m_{\tilde{s}}^2}{m_{\tilde{h}}^2} \right)^2 \frac{m_{\tilde{h}}^3 \left(\cos \alpha v_H - \sin \alpha v_S\right)^2}{v_H^2 v_S^2} \end{split}$$

Vector portal + DM

• Vector Lagrangian

$$\mathcal{L}_{\text{boson}} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} W^{i}_{\mu\nu} W^{i\,\mu\nu} - \frac{1}{4} K_{\mu\nu} K^{\mu\nu} + \frac{\epsilon}{2c_W} B_{\mu\nu} K^{\mu\nu}$$

• Vector mixing

$$\begin{pmatrix} Z_{\mu}, \mathrm{SM} \\ A_{\mu}, \mathrm{SM} \\ K_{\mu} \end{pmatrix} = \begin{pmatrix} 1 + \frac{\epsilon^2 t_W^2}{2} \frac{m_{Z, \mathrm{SM}}^2 (m_{Z, \mathrm{SM}}^2 - 2m_K^2)}{\left(m_K^2 - m_{Z, \mathrm{SM}}^2\right)^2} & 0 & \frac{m_K^2}{-m_K^2 + m_{Z, \mathrm{SM}}^2} \epsilon t_W \\ \epsilon^2 t_W \frac{m_{Z, \mathrm{SM}}^2}{m_K^2 - m_{Z, \mathrm{SM}}^2} & 1 & \epsilon \\ \frac{m_K^2 - m_{Z, \mathrm{SM}}^2}{m_K^2 - m_{Z, \mathrm{SM}}^2} \epsilon t_W & 0 & 1 + \frac{\epsilon^2}{2c_W^2} \frac{\left(m_{Z, \mathrm{SM}}^4 c_W^2 - 2m_K^2 m_{Z, \mathrm{SM}}^2 + m_K^4\right)}{\left(m_K^2 - m_{Z, \mathrm{SM}}^2\right)^2} \end{pmatrix} \begin{pmatrix} \tilde{Z}_{\mu} \\ \tilde{A}_{\mu} \\ \tilde{K}_{\mu} \end{pmatrix}$$

Interactions and decays

$$\begin{aligned} \mathcal{L}_{\text{int}} &= \tilde{Z}_{\mu} \left(g J_{Z}^{\mu} - g_{D} \frac{m_{Z, \text{SM}}^{2} t_{W}}{m_{Z, \text{SM}}^{2} - m_{K}^{2}} \epsilon J_{D}^{\mu} + g \frac{m_{Z, \text{SM}}^{2} (m_{Z, \text{SM}}^{2} - 2m_{K}^{2}) t_{W}^{2}}{2(m_{K}^{2} - m_{Z, \text{SM}}^{2})^{2}} \epsilon^{2} J_{Z}^{\mu} - e \frac{m_{Z, \text{SM}}^{2} t_{W}}{m_{Z, \text{SM}}^{2} - m_{K}^{2}} \epsilon^{2} J_{\text{em}}^{\mu} \right) \\ &+ \tilde{K}_{\mu} \left(g_{D} J_{D}^{\mu} + g \frac{m_{K}^{2} t_{W}}{m_{Z, \text{SM}}^{2} - m_{K}^{2}} \epsilon J_{Z}^{\mu} + e \epsilon J_{\text{em}}^{\mu} + g_{D} \frac{(m_{Z, \text{SM}}^{4} c_{W}^{2} - 2m_{K}^{2} m_{Z, \text{SM}}^{2} + m_{K}^{4}) c_{W}^{-2}}{2(m_{Z, \text{SM}}^{2} - m_{K}^{2})^{2}} \epsilon^{2} J_{D}^{\mu} \right) \end{aligned}$$

Vector portal + DM

Complex Scalar DM Lagrangian

$$\mathcal{L}_S = (\partial_\mu S + ig_D K_\mu S)^* (\partial^\mu S + ig_D K^\mu S) - m_S^2 S^* S$$

• Connection to Z $\mathcal{L}_{S} \supset g_{D}^{2}S^{*}S\left(\tilde{K}_{\mu} + t_{W}\epsilon \frac{m_{Z, \text{ SM}}^{2}}{(m_{K}^{2} - m_{Z, \text{ SM}}^{2})}\tilde{Z}_{\mu}\right)^{2} \quad 10^{0}$ • Various constraints $10^{-1} \qquad \text{CEPC (Gigan)}$

Vector portal + DM

 $\mathbf{2}$

Complex Scalar DM Lagrangian

 $\mathcal{L}_S = (\partial_\mu S + ig_D K_\mu S)^* (\partial^\mu S + ig_D K^\mu S) - m_S^2 S^* S + \lambda_1 S^* S \Phi^* \Phi + \lambda_2 S^* S H^{\dagger} H + (\mu_1 \Phi^* S S + h.c.) .$

Connection to Z

$$\mathcal{L}_S \supset g_D^2 S^* S\left(\tilde{K}_\mu + t_W \epsilon \frac{m_{Z, \,\mathrm{SM}}^2}{(m_K^2 - m_{Z, \,\mathrm{SM}}^2)} \tilde{Z}_\mu\right)$$

Various constraints

Axion-like particle

• Lagrangian

$$\mathcal{L}_{\rm ALP} = \frac{1}{4\Lambda_{aBB}} a B_{\mu\nu} \tilde{B}^{\mu\nu}$$

• Interactions and decays

$$\Gamma(Z \to \gamma a) = \frac{1}{64\pi} \frac{1}{\Lambda_{aBB}^2} \cos \theta_w^2 \sin \theta_w^2 m_a^3$$
$$\Gamma(a \to \gamma \gamma) = \frac{1}{64\pi} \frac{1}{\Lambda_{aBB}^2} \cos \theta_w^4 m_a^3$$

Axion-like particle

Lagrangian

$$\mathcal{L}_{\rm ALP} = \frac{1}{4\Lambda_{aBB}} a B_{\mu\nu} \tilde{B}^{\mu\nu}$$

Interactions and decays

$$\Gamma(Z \to \gamma a) = \frac{1}{64\pi} \frac{1}{\Lambda_{aBB}^2} \cos \theta_w^2 \sin \theta_w^2 m_a^3$$
$$\Gamma(a \to \gamma \gamma) = \frac{1}{64\pi} \frac{1}{\Lambda_{aBB}^2} \cos \theta_w^4 m_a^3$$

Various constraints

Higher dimensional operator

• UV model

$$\mathcal{L} = \bar{\chi}(i\partial \!\!\!/ - m_{\chi})\chi - \frac{1}{2}\delta m\bar{\chi}^{c}\chi + \bar{\psi}(iD \!\!\!/ - M_{\psi})\psi \chi_{p_{2}} + \frac{1}{2}\delta m\bar{\chi}^{c}\chi + \bar{\psi}(iD \!\!\!/ - M_{\psi})\psi \chi_{p_{2}} + \frac{1}{2}\delta m\bar{\chi}^{c}\chi + h.c.,$$

Interactions: Magnetic inelastic DN pi _____

$$O_{\rm MIDM} = \frac{1}{\Lambda_{\rm MIDM}} \bar{\chi}_2 \sigma^{\mu\nu} \chi_1 B_{\mu\nu} + h.c., \quad O_{\rm RayDM} = \frac{1}{\Lambda_{\rm RayDM}^3} \bar{\chi}_1 \chi_1 B^{\mu\nu} B_{\mu\nu}.$$

• Scale from mass in the loop

Higher dimensional operator

• Magnetic inelastic DM and Rayleigh DM

Exotic Z decay topologies

• Exotic Z decay final states

	<u> </u>	_ / '				
exotic decay	topologies	n_{res}	models			
$Z \to \not\!$	$Z \to \chi_1 \chi_2, \chi_2 \to \chi_1 \gamma$	0	$2A: \frac{1}{\Lambda} \bar{\chi_2} \sigma^{\mu\nu} \chi_1 B_{\mu\nu}$ (MIDM)			
	$Z \to \chi \bar{\chi} \gamma$	0	2B: $\frac{1}{\Lambda^3} \bar{\chi} \chi B_{\mu\nu} B^{\mu\nu}$ (RayDM)			
	$Z \to a\gamma \to (\not\!\!\!E)\gamma$	1	2C: $\frac{1}{\Lambda_{2C}} a B_{\mu\nu} \tilde{B}^{\mu\nu}$ (long-lived ALP)			
	$Z \to A'\gamma \to (\bar{\chi}\chi)\gamma$	1	2D: $\epsilon^{\mu\nu\rho\sigma}A'_{\mu}B_{\nu}\partial_{\rho}B_{\sigma}$ (WZ terms)			
	$Z \to \phi_d A', \phi_d \to (\gamma \gamma), A' \to (\bar{\chi} \chi)$	2	3A: Vector portal			
$Z \to \not\!\!\!E + \gamma \gamma$	$ \begin{array}{c} Z \to \phi_H \phi_A, \ \phi_H \to (\gamma \gamma), \ \phi_A \to \\ (\bar{\chi} \chi) \end{array} $	2	3B: 2HDM extension			
	$Z \to \chi_2 \chi_1, \chi_2 \to \chi_1 \phi, \phi \to (\gamma \gamma)$	1	3C: Inelastic DM			
	$Z \to \chi_2 \chi_2, \chi_2 \to \gamma \chi_1$	0	3D: MIDM			
$Z \to E + \ell^+ \ell^-$	$ \begin{array}{cccc} Z \to \phi_d A', \ A' \to (\ell^+ \ell^-), \ \phi_d \to \\ (\bar{\chi}\chi) \end{array} $	2	4A: Vector portal			
	$Z \to A'SS \to (\ell\ell)SS$	1	4B: Vector portal			
	$Z \to \phi(Z^*/\gamma^*) \to \phi \ell^+ \ell^-$	1	4C: Long-lived ALP, Higgs portal			
	$Z \to \chi_2 \chi_1 \to \chi_1 A' \chi_1 \to (\ell^+ \ell^-) \not\!$	1	4D: Vector portal and Inelastic DM			
	$Z \to \chi_2 \chi_1, \chi_2 \to \chi_1 \ell^+ \ell^-$	0	4E: MIDM, SUSY			
	$Z \to \overline{\chi} \chi \ell^+ \ell^-$	0	4F: RayDM, slepton, heavy lepton mixing			
$Z \to \not\!$	similar to $\not \!$					

1

 $Z \to n_{\not\!E} \not\!E + n_{\gamma} \gamma + n_{\ell^+ \ell^-} \ell^+ \ell^- + n_{\bar{q}q} \bar{q}q$

Exotic Z decay topologies

• Exotic Z decay final states

 $Z \to n_{\not\!E} \not\!E + n_{\gamma} \gamma + n_{\ell^+ \ell^-} \ell^+ \ell^- + n_{\bar{q}q} \bar{q}q$

exotic decay	topologies	n_{res}	models		
$Z \to \not\!$	$Z \to \chi_1 \chi_2, \chi_2 \to \chi_1 \gamma$	0	$2A: \frac{1}{\Lambda} \bar{\chi}_2 \sigma^{\mu\nu} \chi_1 B_{\mu\nu} \text{ (MIDM)}$		
	$Z \to \chi \bar{\chi} \gamma$	0	2B: $\frac{1}{\Lambda^3} \bar{\chi} \chi B_{\mu\nu} B^{\mu\nu}$ (RayDM)		
	$Z \to a\gamma \to (\not\!\!\!E)\gamma$	1	2C: $\frac{1}{\Lambda_{2C}} a B_{\mu\nu} \tilde{B}^{\mu\nu}$ (long-lived ALP)		
	$Z \to A'\gamma \to (\bar{\chi}\chi)\gamma$	1	$2 \frac{1}{1 - \frac{1}{\mu \nu \rho \mu \nu \sigma}} \frac{1}{\mu \nu \rho \mu \nu \sigma} \frac{1}{(1 - \frac{1}{\mu \nu \sigma})} \frac{1}$		
$Z \to \not\!\!\! E + \gamma \gamma$	$Z \to \phi_d A' , \phi_d \to (\gamma \gamma), A' \to (\bar{\chi} \chi)$	2	3 V: Vector portal $Z \to \phi_d A' \to (JJ)(JJ)$	2	6A: Vector portal
	$Z \to \phi_H \phi_A, \ \phi_H \to (\gamma \gamma), \ \phi_A \to (\bar{\chi} \chi)$	2	$Z \to (JJ)(JJ) \qquad Z \to \phi_H \phi_A \to (JJ)(JJ)$	2	6B: 2HDM
			$Z \to G_0 G_0, \ G_0 \to (bb)$	2	6C: Hidden Valley
	$Z \to \chi_2 \chi_1, \chi_2 \to \chi_1 \phi, \phi \to (\gamma \gamma)$	1	3 : InZlating $\gamma \gamma \gamma M$ $Z \to \phi \gamma \to (\gamma \gamma) \gamma$	1	7A: ALP, Higgs portal
	$Z \to \chi_2 \chi_2, \chi_2 \to \gamma \chi_1$	0	3D: MIDM		
$Z \to \mathbb{E} + \ell^+ \ell^-$	$Z \to \phi_d A', \ A' \to (\ell^+ \ell^-), \ \phi_d \to (\bar{\chi}\chi)$	2	4A: Vector portal		
	$Z \to A'SS \to (\ell\ell)SS$	1	4B: Vector portal		
	$Z \to \phi(Z^*/\gamma^*) \to \phi \ell^+ \ell^-$	1	4C: Long-lived ALP, Higgs portal		
	$Z \to \chi_2 \chi_1 \to \chi_1 A' \chi_1 \to (\ell^+ \ell^-) \not\!$	1	4D: Vector portal and Inelastic DM		
$Z \to \chi_2 \chi_1, \chi_2 \to \chi_1 \ell^+ \ell^- \qquad 0$		4E: MIDM, SUSY			
	$Z \to \bar{\chi} \chi \ell^+ \ell^-$	0	4F: RayDM, slepton, heavy lepton mixing		
$Z \to E + JJ$	sir	nilar	to $E \!$		Jia Liu, Beijing, 7 Nov 2017

CEPC collider setup

• Detector performance

Photon energy resolution:
$$\frac{\delta E_{\gamma}}{E_{\gamma}} = \frac{0.16}{\sqrt{E_{\gamma}/\text{GeV}}} \oplus 0.01$$
,
Lepton momentum resolution: $\Delta \frac{\text{GeV}}{p_T^{\ell}} = 2 \times 10^{-5} \oplus \frac{10^{-3} \text{GeV}}{p_T^{\ell} \sin \theta}$,
Jet energy resolution: $\frac{\delta E_j}{E_j} = \frac{0.3}{\sqrt{E_j/\text{GeV}}} \oplus 0.02$.

Preliminary cuts

$$|\eta| < 2.3, E_{\gamma} > 10 \text{GeV}, E_{\ell} > 5 \text{GeV}, E_{j} > 10 \text{GeV}, E_{(\text{MET})} > 10 \text{GeV},$$
$$y_{ij} \equiv \frac{2 \text{Min}(E_{i}^{2}, E_{j}^{2}) \left(1 - \cos \theta_{ij}\right)}{E_{vis}^{2}} \ge 0.001$$

• SM background including one photon from ISR

Limits on exotic Z decay BR

 Di-Lepton + MET 	$Z \to \phi_d A', A' \to (\ell^+ \ell^-), \phi_d \to (\bar{\chi}\chi)$	2	4A: Vector portal	
	$Z \to A'SS \to (\ell\ell)SS$	1	4B: Vector portal	
	$Z \to \phi(Z^*/\gamma^*) \to \phi \ell^+ \ell^-$	1	4C: Long-lived ALP, Higgs portal	
	$Z \to \chi_2 \chi_1 \to \chi_1 A' \chi_1 \to (\ell^+ \ell^-) \not\!$	1	4D: Vector portal and Inelastic DM	
	$Z \to \chi_2 \chi_1, \chi_2 \to \chi_1 \ell^+ \ell^-$	0	4E: MIDM, SUSY	
	$Z \to \bar{\chi} \chi \ell^+ \ell^-$	0	4F: RayDM, slepton, heavy lepton mixing	

jing, 7 Nov 2017

- Dark sector models
 - Higgs portal, Vector portal,
 - Axion-like Particle, Higher dimension Operator
 - Can provide leading and complementary constraints comparing to current collider limits and DM limits

- Exotic Z decay topologies
 - Sensitivities on BR

 $\ell^+\ell^- + MET > \gamma\gamma + MET > JJ + MET > \gamma + MET$

Thank you!