CLIC-Inspired Detector for FCC-ee

Oleksandr Viazlo

CERN

6 November 2017

æ

A (10) A (10) A (10)

Introduction

- FCC-ee is a high-luminosity, high-precision e^+e^- circular collider with four operational energy regimes: Z, WW, HZ, tt.
- Fixed 100 MW Synchrotron Radiation (SR) at all energies \rightarrow Larger beam currents possible at lower energies
- High statistical accuracies \rightarrow Small experimental uncertainties are needed \rightarrow Demands state-of-the-art performance for all detector subsystems
- This presentation will cover one of the proposed detector designs for FCC-ee which is based on the detector proposal for CLIC

Detector Design

.

크

- In order to maximize luminosity final focusing quadrupole chosen to be at 2.2m from IP **inside the detector**
- Compensating solenoid to prevent emittance blow-up from detector magnetic field due to non-zero crossing angle is even closer to the IP
- Constrains the maximum possible detector magnetic field to 2T (while the CLIC proposal assumes 4T magnetic field)

< ロ > < 同 > < 回 > < 回 >

Machine Detector Interface Region

- $\bullet\,$ Central detector has to be fitted within $\pm 150 \text{mrad} \rightarrow \text{constrains}$ forward region
- Luminosity monitor (LumiCal) is inside MDI region
- Additional tantalum shielding is foreseen to suppress synchrotron radiation background in the innermost layers of the detector (see picture)

Detector for FCC-ee

Software

- Dedicated software for FCC-ee is under development.
- For performance study of the CLIC-inspired detector for FCC-ee one can benefit from the fully functional and tested iLCSoft software used by the CLIC and ILC community.
- Detector geometry description and event simulation: DD4hep
- Event Reconstruction: Marlin
- Track Pattern recognition: TruthTracking or ConformalTracking
- Particle Flow Reconstruction: PandoraPFA
- Detector model:

https://github.com/iLCSoft/lcgeo/tree/master/FCCee/compact/FCCee_o1_v01

A (10) > A (10) > A (10)

VTX and Tracker Layout

- Tracking system consists of Vertex detector(VTX), Inner and Outer Trackers (IT and OT)
- VTX detector 3 pixel double layers in barrel and endcap
- Inner and Outer Trackers 3 barrel layers each and 4-7 disks
- Single-point resolution (sigma): VTX 3×3 μm; IT 7×300μm; OT 7×3000μm
- More than 12 hits per track over theta range 8.6 $^{\circ}$ 171.4 $^{\circ}$
- Material budget: 0.2%X0 per VTX layer has to be revised due to the need for cooling

Comparison of the CLIC and FCC-ee tracking system

Oleksandr Viazlo CLIC-Inspired Detector for FCC-ee

FCC-ee backgrounds

크

∃ ▶ ∢

Background estimate

FCC-ee Backgrounds

- $\gamma\gamma \rightarrow e^+e^-$
- $\gamma\gamma \rightarrow$ hadrons
- Synchrotron radiation

Background Estimation

- Full simulation (GuineaPig, GEANT/DD4hep)
- Detector assumptions:
 - pixel silicon detector, $25 \times 25 \mu m^2$
 - strip detector, 1×0.05 mm²
 - Cluster multiplicity = 5 for pixels and = 2.5 for strips
- Safety factor: 5
- Occupancy is estimated in the VTX and Tracker detectors

Maximum	occupancy per	BX
---------	---------------	----

E _{CM}	91.2 GeV	350 GeV
VTX Barrel	0.05 %	0.05 %
VTX Endcap	0.02 %	0.03 %
Tracker B.	0.002 %	0.0025 %
Tracker E.	0.014 %	0.0075 %

- Maximum 0.05% per BX both for 91.2 and 350 GeV cases from $\gamma\gamma \rightarrow e^+e^-$ background
- Need ≈0.4 µs read-out time at 91.2 GeV, to limit the occupancy to 1%
- Study at 365 GeV center-of-mass energy is ongoing. Preliminary results are of similar size as for 350 GeV case

Background Estimate

Estimate of $\gamma\gamma \rightarrow$ hadrons bkg.

• Size of $\gamma\gamma \rightarrow$ hadrons background is **2 orders of magnitude lower** than from $\gamma\gamma \rightarrow e^+e^- \rightarrow$ negligable effect

Synchrotron radiation

- Study is ongoing
- Preliminary results show negligable effect for 91.2 GeV case and comparable effect to $\gamma\gamma \rightarrow e^+e^-$ for 350/365 GeV cases

Tracking and Calorimetry Performance

Conformal Tracking

 Conformal tracking is used as the main track pattern recognition algorithm at CLIC

LCWS presentation about CLIC Conformal Tracking performance

Momentum and Transverse Impact Parameter Resolution

- Detector tracking performance with single muon
- Excellent impact parameter resolution, as required for efficient b- and c-tagging

Tracking Efficiency

Calorimeter

ECAL

- SiW sampling calorimeter
- Cell size: 5x5 mm²
- 40 layers, 22 X₀
- Identical to CLIC ECAL → to keep good photon energy resolution

HCAL

- steel + scintillator sampling calorimeter
- Cell size: 3x3 cm²
- 44 layers, 5.5 λ₁
- Depth is inspired by HCAL for ILD detector (optimized for 500 GeV)

- High-granularity calorimeters allows one to separate clusters from different particles in jets and to track precisely EM and hadron showers
- Particle-flow reconstruction algorithm: PandoraPFA
- Default calibration procedure by Pandora (the same as used for ILD and CLIC):
 - Energy calibration: 10 GeV photons, 10 GeV muons and 50 GeV K_L^0 single particle gun samples
 - Photon ID Likelihood: hadronically decaying Z events sample at 380 GeV

Neutral Particles Energy Resolution

• Energy of charged particles is estimated from tracking

- Total energy is reconstructed with 1% accuracy:
 - 91 GeV: 90.4 GeV
 - 380 GeV: 376.4 GeV
- Jet energy resolution in barrel region:
 - 91 GeV: 4.4 %
 - 380 GeV: 3.5 %
- comparable resolution with the CLIC detector

$$\frac{\text{RMS}_{90}(E_j)}{\text{mean}_{90}(E_j)} = \frac{\text{RMS}_{90}(E_{jj})}{\text{mean}_{90}(E_{jj})} \sqrt{2}$$
arXiv:1209.4039

• The design of CLIC-inspired all-silicon detector for FCC-ee has been presented

- Background studies demonstrate that dominant contribution to the detector occupancy originates from γγ → e⁺e⁻ which constrains electronics readout time to ≈0.4 μs for VTX and Tracker detectors at 91.2 GeV. At 365 GeV it is much more relaxed because of the much larger bunch spacing (8533 ns vs. 20 ns)
- Performance studies based on the full simulation demonstrate that proposed detector design for FCC-ee provides comparable tracking and calorimetry performance w.r.t. CLIC detector

Thank you for attention!

A > + = + + =

BACKUP

Э.

イロト イヨト イヨト イヨト

Coverage of VTX and Tracker detectors

• More than 12 hits over theta range 8.6 $^{\circ}$ - 171.4 $^{\circ}$

Overall dimensions of CLIC and FCC-ee detectors

	CLIC		FCC-ee
VTX Barrel	31-60 mm	\Rightarrow	17-59 mm
VTX Endcap	Spirals	\implies	Disks
Tracker radius	1486 mm	\Rightarrow	2100 mm
ECAL thickness	40 layers, 22 X ₀	\Rightarrow	40 layers, 22 X_0
HCAL thickness	60 layers, 7.5 λ_l	\Rightarrow	44 layers, 5.5 λ_l
Yoke thickness	1989 mm	\implies	1521 mm
MDI (forward region)		\implies	< 150 mrad
Solenoid field	4 Tesla	\Rightarrow	2 Tesla

Ξ.

イロト イ団ト イヨト イヨト