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Coupled-bunch Instabilities and Beam Loading

This talk will focus on two important effects in storage rings:
I Coupled-bunch instabilities in transverse and longitudinal planes;
I Transient beam loading due to non-uniform fill patterns.

Instabilities:
I Beam interacts with impedances at betatron or synchrotron

sidebands of revolution harmonics
I Transverse: MωRF ± Nωrev ± ωβ

I Longitudinal: MωRF ± Nωrev ± ωs

Transient beam loading:
I Driven by impedances at revolution harmonics MωRF ± Nωrev.
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Resonant Modes and Revolution Harmonics
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A 20 kHz resonance ideally
“hidden” between two revolution
harmonics.
1 km ring;
1.5 km ring;
3 km ring;
10 km ring;
100 km ring;
In large rings narrow resonances
cannot be “hidden” from the
beam.
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Transverse Planes: Resistive Wall
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Resistive wall impedance scales
linearly with circumference;
Impedance vs. frequency is
∝ 1/

√
ω;

The most unstable line is the
lower betatron sideband of the
first revolution harmonic (mode
-1);
Overall impedance scaling 1
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Beam/Cavity Interaction

loops

RF feedback

dynamics

Longitudinal

Generator

C R L

Beam

~IG

~VC

~IB

RLC model of the accelerating
cavity with two input currents:
generator and beam;
Cavity voltage ~VC is defined by
the sum current;
Low loading (~IB �~IG) — cavity
voltage is mostly defined by the
generator current;
High loading — cavity voltage is
strongly affected by beam current;
“Feedback loop” from cavity
voltage to beam current and back
to cavity voltage.
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Why Worry about Beam Loading

Two main effects of heavy beam loading in large rings:
I Synchronous phase transients;
I Longitudinal coupled-bunch instabilities driven by the RF cavity

fundamental impedance
Transient effects depend on

I Total beam loading;
I Fill pattern.

Fill patterns can be designed to mitigate transient effects;
But longitudinal instabilities due to the fundamental impedance
remain an issue even with completely uniform fills;
Reducing beam loading in the RF system design helps both
issues.
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Ring Circumference and Beam Loading

Photo/image credit: CERN, SLAC

People don’t build multi-kilometer
rings just to spend money;
Large circumference — very high
energy;
Or very high current;
Or both.
Large circumference means
heavy beam loading of the RF
system.
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Cavity Detuning and Longitudinal Stability
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Growth rate for mode -1 is
∝ Z (ωrf − ωrev + ωs)− Z (ωrf +
ωrev − ωs);
Symmetric on resonance;
Growth rates peak when
fundamental crosses
revolution harmonics;
Need RF feedback to reduce
the effective impedance.
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Mitigating Beam Loading in Design

Cavity detuning

ωd =
∣∣∣ωrfI0

Vc

R
Q cosφb

∣∣∣
Minimize the number of cavities:

I Reduces fundamental impedance interacting with the beam;
I Limited by the maximum coupler power and/or the maximum cavity

voltage.
Minimize detuning:

I Cavities with low R/Q;
I Lower RF frequencies are preferable, especially when coupler

limited.
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Bunch-by-bunch Feedback

Definition
In bunch-by-bunch feedback approach the actuator signal for a given
bunch depends only on the past motion of that bunch.

Controller

Beam Kicker structure

Back−endFront−end

SensorBPM Actuator

Bunches are processed sequentially.
Correction kicks are applied one turn later.
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Feedback Control Limits: Transverse

For single pickup/single kicker topology the maximum growth rate
that can be controlled is limited by the response delay (time from
measuring bunch position error to correction kick acting on the
same bunch on a later turn).
Rule of thumb for robust operation: λcl ≥ −λol.
Fast damping in time domain corresponds to wide bandwidth in
the frequency domain→ feedback induced noise can be an issue
in the vertical plane.
For fractional tunes in 0.2–0.4 range the limit is around 10 turns
growth time (with 10 turns closed-loop damping time);
Tunes close to integer or half-integer require the feedback with
signals from many past turns, slower damping.
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growth time (with 10 turns closed-loop damping time);
Tunes close to integer or half-integer require the feedback with
signals from many past turns, slower damping.
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Feedback Control Limits: Longitudinal

Measure longitudinal position (time of arrival), correct energy;
To generate required 90◦ phase shift the feedback must observe
at least half synchrotron period;
Fastest growth times on the order of 1–2 synchrotron periods.
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Longitudinal Example from ANKA
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     f) Growth Rates (post−brkpt)

ANKA:mar0516/143812:  Io= 138.0587mA,  Dsamp= 2,  ShifGain= 4, Nbun= 184,
At Fs: G1= 119.0572,  G2= 0,  Ph1= −76.5927,  Ph2= 0,  Brkpt= 240,  Calib= 34.252.

Measured while cavity tuning
walks an HOM onto a
synchrotron sideband;
Growth time is 2.3Ts, damping
time is Ts;
Filter is 2/3 of a synchrotron
period.
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Parameters
J. Gao, “CEPC accelerator CDR - status”,
J. Zhai, “CEPC SRF system study”

Parameter Value
Energy 45.5 GeV
Energy loss per turn 35 MeV
Momentum compaction 1.14× 10−5

Energy spread 3.7× 10−4

Radiation damping time 433 ms
Gap voltage 53 MV
Harmonic number 216664
Buckets filled 10725
R/Q 106.5 Ω
Q0 1010

Coupling factor1 26657

1Optimized for zero reflected power at 83.7 mA
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Beam Loading Effects
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CEPC−Z; 12/0 powered/parked cavities; V
gap

 = 53 MV; I
0
 = 0.0837 A; CEPC−Z−1% fill

Nominal CEPC-Z, no parked
cavities, 1 kHz detuning;
Small gap transient;
Bunch length modulation is also
small;
Growth rates are moderate (mode
-1 at ≈ 3Ts), but mode 0 is tune
shifted nearly to DC, on the verge
of high-current Robinson
instability;
With moderate direct loop gain of
10, all modes are stabilized.
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From 12 to 24 Cavities
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157 mA, 3.7 kHz detuning;
Gap transient still acceptable;
Fastest growth time is 6 ms, a
third of synchrotron period;
With optimal direct loop gain of 30
instabilities are suppressed;
Zoom in to see all modes at
radiation damping;
6.5 kHz open-loop;
446 kHz closed-loop;
Some small mismatches at higher
frequencies.
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Summary

Even at low currents CEPC-Z is heavily beam loaded;
RF system design should be driven by the beam loading and
longitudinal stability considerations;
RF feedback loops will be needed to provide beam/cavity stability;
Fundamental impedance is large, but very tightly controlled, CBI
driving impedance reduction is straightforward;
Cavity HOMs are relatively unpredictable, need to be damped to
levels, manageable by the bunch-by-bunch feedback.
Gap transient response cannot be controlled by RF feedback
(high peak power), need to manage fill pattern gaps.
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