International Workshop on High Energy Circular Electron Positron Collider IHEP, Beijing Nov 8-10 2017

CERN roadmap and FCC

Michelangelo L. Mangano michelangelo.mangano@cern.ch Theoretical Physics Department CERN

CERN's Future Circular Colliders (FCC) study

International FCC collaboration (CERN as host lab) to study:

pp-collider (*FCC-hh*)
 → main emphasis, defining infrastructure requirements

~16 T ⇒ 100 TeV *pp* in 100 km

- ~100 km tunnel infrastructure in Geneva area, site specific
- e⁺e⁻ collider (FCC-ee), as potential first step
- **HE-LHC** with *FCC-hh* technology
- *p*-e (*FCC-he*) option, integration of one IP, e from ERL
- CDR for end 2018

Experiments

Infrastructures

Cost Estimates

Overall layout optimization

- Optimized length: 97.5 km
 - Accessibility, rock type, shaft depth, etc.
 - Tried different options from 80 to 100 km
- Tunneling
 - Molasse 90% (easy to dig)
 - Limestone 5%, Moraines 5% (tougher)
- Shallow implementation
 - 30m below Leman lakebed
 - Only one very deep shaft (F, 476m)
 - Alternatives studied (e.g. inclined access)

Common layouts for hh & ee

ee

FCC-hh injector studies

FCC-ee injector complex

- **Baseline is comprised of:**
 - An e⁻ and e⁺ LINAC (length 250 m @ 25 MV/m) from ~0 to 6 GeV
 - An e⁺ production target and an e[±] damping ring (circumference 250 m) •
 - A pre-booster ring (from 6 to 20 GeV) probably in the SPS tunnel
 - A booster ring (from 20 GeV to the full FCC-ee energy), for continuous top-up injection

FCC-ee collider parameters

	Z	W	H (ZH)	ttbar	
beam energy [GeV]	45.6	80	120	182.5	
arc cell optics	60/60	90/90	90/90	90/90	
emittance hor/vert [nm]/[pm]	0.27/1.0	0.28/1.0	0.63/1.3	1.45/2.7	
β * horiz/vertical [m]/[mm]	0.15/.8 0.2/1		0.3/1	1/2	
SR energy loss / turn (GeV)	0.036 0.34		1.72	9.21	
total RF voltage [GV]	0.10	0.44	2.0	10.9	
energy acceptance [%]	1.3	1.3	1.5	2.5	
energy spread (SR / BS) [%]	0.038 / 0.132	0.066 / 0.153	0.099 / 0.151	0.15/0.20	
bunch length (SR / BS) [mm]	3.5/12.1	3.3 / 7.65	3.15 / 4.9	2.5/3.3	
bunch intensity [10 ¹¹]	1.7	1.5	1.5	2.8	
no. of bunches / beam	16640	2000	393	39	
beam current [mA]	1390	147	29	5-4	
SR total power [MW]	100	100	100	100	
luminosity [10 ³⁴ cm ⁻² s ⁻¹]	230	32	7.8	1.5	
luminosity lifetime [min]	70	50	42	44	
allowable asymmetry [%]	±5	±3	±3	±3	

Luminosity goals and operation model

- The FCC-ee physics goals require at least
 - 150 ab^{-1} at and around the Z pole ($\sqrt{s} \sim 91.2 \text{ GeV}$)
 - 10 ab^{-1} at the WW threshold ($\sqrt{s} \sim 161 \text{ GeV}$)
 - 5 ab^{-1} at the HZ cross section maximum ($\sqrt{s} \sim 240$ GeV)
 - 0.2 ab^{-1} at the top threshold ($\sqrt{s} \sim 350$ GeV) and 1.5 ab^{-1} above ($\sqrt{s} \sim 365$ GeV)
- Operation model (with 10% safety margin) with two IPs
 - 200 scheduled physics days per year (7 months 13 days of MD / stops)
 - Hübner factor ~ 0.75 (lower than achieved with KEKB top-up injection, ~0.8)
 - Half the design luminosity in the first two years of Z operation (~LEP1)
 - Machine configuration between WPs changed during Winter shutdowns (3 months/year)

Working point	Z, years 1-2	Z, later	ww	HZ	- tt threshold	365 GeV
Lumi/IP (10 ³⁴ cm ⁻² s ⁻¹)	100	200	13	7	1.6	1.3
Lumi/year (2 IP)	26 ab-1	52 ab-1	7.8 ab-1	1.8 ab-1	0.4 ab-1	0.35 ab⁻¹
Physics goal	150		10	5	0.2	1.5
Run time (year)	2	2	1	3	0.5	4

Total running time : 12-13 years (~ LEP)

Patrick Janot

Academic Training 11 Oct 2017 Longer shutdown: install 74 RF CMs LEP Record: 32 in one shutdown !

5×10¹² Z

10⁸ WW

10⁶ HZ

10⁶ tt

The SCRF system: optimization and staging

- Very broad range of operation parameters
 - SR energy loss from 36 MeV to 9.21 GeV
 - Total voltage from 0.1 (Z) to 11 GV (tt)
 - Total current from 5.4 mA (tt) to 3.9 A (Z)
 - Aim at acceleration efficiency and cost reduction at high energy
 - Aim at cell shape and impedance optimization against HOMs at high current
 - Fast acceleration from 20 to 45 182.5 GeV in the booster
- Solution : Operation staging
 - Start with 400 MHz Nb/Cu cavities @ 4.5K for the Z, WW, and Higgs operation modes

(single

cells)

(multi

cells)

(multi

cells)

Power consumption

- The RF system needs to compensate for 100 MW SR losses
 - Corresponds to 200 MW electric power with 50% RF power sources (klystrons)
 - Klystron efficiency was ~55% at LEP2
 - Recent (2015) breakthroughs in klystron design promise 90% efficiency
 - Assume 85% will be achieved and take 10 20% margins

lepton collider	Z	W	ZH	$t\bar{t}$	LEP2
luminosity / interaction point [10 ³⁴ cm ⁻² s ⁻¹]	207 90	19	5	1.3	0.012
total RF power [MW]	163	163	145	145	42
collider cryogenics [MW]	3 2	5	23	39	18
collider magnets [MW]	3	10	24	50	16
booster RF & cryogenics [MW]	4	4	6	7	N/A
booster magnets [MW]	0	1	2	5	N/A
pre-injector complex [MW]	10	10	10	10	10
physics detectors (2) [MW]	10	10	10	10	9
cooling & ventilation [MW]	47	49	52	62	16
general services [MW]	36	36	36	36	9
total electrical power [MW]	276 ~275	~288	~ 308	~364	~120

- For comparison
 - LHC Run1: 210 MW, HL-LHC: 260 MW, FCC-hh: ~500 MW
 - CLIC: 250 MW (at 380 GeV) to 580 MW (at 3 TeV)

FCC-pp collider parameters

parameter	FCC-hh		HE-LHC	HL-LHC	LHC
collision energy cms [TeV]	100		27	14	14
dipole field [T]	16		16	8.33	8.33
circumference [km]	97.75		26.7	26.7	26.7
beam current [A]	0.5		1.12	1.12	0.58
bunch intensity [10 ¹¹]	1	1 (0.2)	2.2 (0.44)	2.2	1.15
bunch spacing [ns]	25	25 (5)	25 (5)	25	25
synchr. rad. power / ring [kW]	2400		101	7.3	3.6
SR power / length [W/m/ap.]	28.4		4.6	0.33	0.17
long. emit. damping time [h]	0.54		1.8	12.9	12.9
beta* [m]	1.1	0.3	0.25	0.20	0.55
normalized emittance [µm]	2.2 (0.4)		2.5 (0.5)	2.5	3.75
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5	30	25	5	1
events/bunch crossing	170	1k (200)	~800 (160)	135	27
stored energy/beam [GJ]	8.4		1.3	0.7	0.36

pp Luminosity evolution during a fill

Developed model including most relevant effects

- Improvement with more detail planned
- ⇒ Reach 8fb⁻¹/day with ultimate for 25ns spacing
 - \Rightarrow 5ab⁻¹ per 5 year run
- ⇒ Beam is burned quickly
 - ⇒ A reason to have enough charge stored

Ultimate example, 25ns, no luminosity ₁₃ levelling 8fb⁻¹/day

look @ Zimmermann's slides for many more details, 25ns vs 5ns, etc

=> total of O(20) ab-1 over 25 years of operation.

FCC-hh cryogenic beam vacuum system

Synchrotron radiation (~ 30 W/m/beam (@16 T field) (LHC <0.2W/m) ~ 5 MW total load in arcs

- Absorption of synchrotron radiation at ~50 K for cryogenic efficiency (5 MW →100 MW cryoplant)
- Provision of beam vacuum, suppression of photo-electrons, electron cloud effect, impedance, etc.

Nb₃Sn conductor development program

Nb₃Sn is one of the key cost & performance factors for FCC-hh / HE-LHC

Main development goals:

- J_c increase (16T, 4.2K) > 1500 A/mm² i.e.
 50% increase wrt HL-LHC wire
- Reference wire diameter 1 mm
- Potentials for large-scale production and cost reduction

CERN

Future Circular Collider Study - Status Michael Benedikt SPC, CERN, 26. September 2017

15

procurement of state-of-the-art conductor for protoyping:

- Bruker/OST- European/US
- stimulation of conductor development with regional industry:
- CERN/KEK Japanese contribution. Japanese industry (JASTEC, Furukawa, SH Copper) and laboratories (Tohoku Univ. and NIMS).
- CERN/Bochvar High-technology Research Inst. Russian contribution. Russian industry (TVEL) and laboratories
- CERN/KAT Korean industrial contribution
- CERN/Bruker- European industrial contribution

characterization of conductor & research with universities:

- > Europe: Technical Univ. Vienna, Geneva University, University of Twente
- > Applied Superconductivity Centre at Florida State University

new US DOE MDP effort – **US** activity with **industry** (OST) and labs see S.Prestemon talk

16 T dipole design activities and options

see D.Tommasini talk

I5T dipole prototyping at FNAL (60mm aperture, L=Im)

ready for testing by mid-2018

FCC 16 T magnet R&D schedule

total duration of magnet program: ~20 years

would follow HL-LHC Nb₃Sn program with long models w industry from 2023/24

Fastest Possible Technical Schedules

technical schedule defined by magnets program and by CE

- \rightarrow earliest possible physics starting dates:
- FCC-hh: 2043
- FCC-ee: 2039
- HE-LHC: 2040 (with HL-LHC stop at LS5 / 2034)

M. Benedikt

Detector studies

- Detector design group leader: Werner Riegler
 - Indico site of mtgs: <u>http://indico.cern.ch/category/8920/</u>
 - join the mailing list
- Physics Simulation subgroup leaders: Heather Gray & Filip Moortgat
 - Indico site of mtgs: <u>http://indico.cern.ch/category/6067/</u>
 - join the mailing list
- Monthly mtgs of each group, if interested register to the mailing lists

Reference detector

earlier design

6 T, 12 m bore solenoid, 10 Tm dipoles, shielding coil

- 65 GJ stored energy
- 28 m diameter
- >30 m shaft
- multi billion project

current design

4 T, 10 m bore solenoid, 4 T forward solenoids, no shielding coil

- 14 GJ stored energy
- rotational symmetry for tracking!
- 20 m diameter (~ ATLAS)
- •15 m shaft
- ~1 billion project

23

Comparison to ATLAS & CMS

1 2 3 4 5 6

7 8

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25^{2[m]}

12

11.10

HE-LHC:

27 TeV pp in the LHC tunnel

Evolution, with beam energy, of scenarios with the discovery of a new particle at the LHC

26

Possible questions/options

- If $m_X \sim 6 \text{ TeV}$ in the gg channel, rate grows x 200 @27 TeV:
 - Do we wait 40 yrs to go to pp@100TeV, or fast-track 27 TeV in the LHC tunnel?
 - Do we need 100 TeV, or 50 is enough $(\sigma_{100}/\sigma_{14} \sim 4 \cdot 10^4, \sigma_{50}/\sigma_{14} \sim 4 \cdot 10^3)$?
 - and the answers may depend on whether we expect partners of X at masses $\gtrsim 2m_X$ ($\Rightarrow 27 \text{ TeV}$ would be

insufficient)

- If $m_X \sim 0.5$ TeV in the qqbar channel, rate grows x10 @100 TeV:
 - Do we go to 100 TeV, or push by $\times 10 \int L$ at LHC?
 - Do we build CLIC?
- etc.etc.

HE-LHC pile up & performance

with 160 days of physics, 70% availability, 3 h turnaround time

 $\beta^*=25 \text{ cm}: 820 \text{ fb}^{-1}/\text{year}$ $\beta^*=40 \text{ cm}: 700 \text{ fb}^{-1}/\text{year}$

~15% reduction with 2x lower peak pile up

=> O(15 ab⁻¹) over 20-25 years

What does the HE-LHC entail?

• Necessary:

- empty the tunnel (more time & \$s than removing LEP)
- full replacement of the magnets (today's cost ~4xLHC. First prototypes in ~2026)
- upgrade of RF, cryogenics, collimation, beam dumps, ...
- Very likely:
 - major upgrade of SPS, to inject at O(I TeV) (magnets, RF, transfer lines, cryo if SC, ...)
 - major overhaul of detectors (radiation damage after HL-LHC, use of new technologies)
 - => it's like building the LHC ex-novo
 - very unlikely to be cheaper ...
 - ... but not incompatible with a ~constant CERN budget
 - nevertheless feasibility to be proven (eg magnets bigger than LHC's: will they fit in the tunnel ??)

HE-LHC tunnel integration

requirement: no major CE tunnel modifications

- challenges for tunnel integration
- maximum magnet cryostat external diameter compatible with LHC tunnel ~1200 mm
- classical 16 T cryostat design based on LHC approach gives ~1500 mm diameter!

strategy: develop a single 16 T magnet, compatible with both HE LHC and FCC-hh requirements:

- options und consideration:
 - allow stray-field and/or cryostat as return-yoke
 - active compensation with (simple) shielding coils
 - optimization of inter-beam distance (compactness)
 - (QRL integrated in magnets, → reduced integral field because of longitudinal space required for service module (5%))

→ smaller diameter, also relevant for FCC-hh cost optimization

Challenges of compact (1.2m[©])16T dipoles

- Dipole bend for HE-LHC (5mm over 14m)
- Field errors \Rightarrow reduced dynamic aperture at 100 TeV
- Physical aperture loss due to beam screen
- Impact of stray fields on tunnel electronics, esp. during quench

For more details on the challenges of HE-LHC (optics, injection, collimation/ extraction, IR and triplet protection, ...) see Zimmermann at <u>https:// indico.cern.ch/event/647676</u>

Conceptual Design Report

European Strategy for Particle Physics

- Sept 2017: Council establishes the Strategy Secretariat:
 - Halina Abramovicz Scientific Secretary, with Chairs of SPC (R.K.Ellis), ECFA (tba, November), european laboratory directors group (L.Rivkin)
- Sept 2018: Council nominates Preparatory Group and Strategy Group
- Dec 2018: deadline for submission of input from the community
- 2019: Community discussions
 - Open Symposium (~Sept '19, and possibly one in early '19)
 - Preparatory group summarizes community feedback in Briefing Books
- Early 2020: Strategy Group discussion and preparation of the draft Strategy (I-week mtg, inspired by briefing books)
- May 2020: adoption of the Strategy by Council

remarks

- Input welcome from the full international community, addressing also other global, regional or national plans
- Strategy group includes I voting rep / member state, as well as observers from associate/observer states, other regions, astro and nuclear communities, EU, ...
- Final Strategy statements endorsed and signed by Council.
 - However, the Strategy is a collection of resolutions and statements, not an implementation plan. Implementation of the Strategy, and consideration/approval of specific initiatives/facilities emerging from it, is a subsequent process, in the hands of Council and CERN's management.
- Timeline of Strategy releases so far:
 - 2006, 2013, 2020 \Rightarrow ~7 year timeframe

FEDFCC Collaboration & Industry Relations

Resources

Talks at HL/HE-LHC workshop:

HE-LHC: F.Zimmermann, <u>https://indico.cern.ch/event/647676/</u> <u>contributions/2721141/</u> HL-LHC: L.Rossi, <u>https://indico.cern.ch/event/647676/contributions/</u> 2721132/

FCC academic training lectures:

FCC-ee: P.Janot, <u>https://indico.cern.ch/event/666889/</u> FCC-hh (detectors): W.Riegler, <u>https://indico.cern.ch/event/666890/</u> FCC-hh/eh (physics): MLM, <u>https://indico.cern.ch/event/666891/</u>

thanks to all of them and M.Benedikt for sharing slides