Can the Underlying Event be Hard?

Measuring the Double Parton Scattering (DPS) in ALICE

Paolo Bartalini and Diego Stocco

10th FCPPL workshop Beijing 26-30 March 2017

Outline

• Introduction

- Double Parton Scattering (DPS)
- Underlying Event (UE)

• UE measurement with ALICE

• DPS with ALICE: feasibility study

• Conclusions & outlook

Multiple Parton Interactions (MPI) at the LHC: a pictorial view

Scale of primary scatter

op, pA, A

DPS & The Effective Cross Section σ_{eff}

• $\sigma_{\text{DPS}}(A+B+X) = m * \sigma(A+X) * \sigma(B+X) / \sigma_{\text{eff}}$

- m = $\frac{1}{2}$ for identical interactions, m = 1 otherwise
- Probabilistic interpretation: $P(B|A) = P(B) * (\sigma_{inel}/\sigma_{eff})$
- Formalism applies to inclusive processes only
- σ_{eff} can be regarded as a hadronic form factor
- Huge ongoing TH effort to understand correlations: IP, Flavour, Spin, Color, ...
- Under the assumption of no correlations:
 - σ_{eff} ≈ geometrical quantity, in principle scale and √s independent [D.Treleani et al.]
 - Prediction: σ_{eff} = 20÷60 mb
- Measurements use the relationship in the following way:
 - σ_{eff} = m * $\sigma(A+X)$ * $\sigma(B+X) / \sigma_{DPS}(A+B+X)$
 - Need an accurate Single Parton Scattering (SPS) background
 - − Checking Scale and Vs independency is in the EXP TODO list
 - Statistics often limits the possibility to extract σ_{eff} in a differential way

Measurement of σ_{eff}

- First results on 4jets already 30 years ago: AFS , UA2: $\sigma_{eff} < 10$ mb
- Tevatron measurements from the years nineties: σ_{eff} ≈ 10÷15 mb
- Insufficient effort on background modeling in early measurements!
- LHC (W+2jet, etc.) $\sigma_{eff} \approx 15 \div 20 \text{ mb}$
 - Compatible with the Underlying Event measurement!

-
$$(UE)> / $(MB)> $\approx \sigma_{inel} / \sigma_{eff}$$$$

Large systematics from SPS background modeling

[JHEP 03 (2014) 032]

The Underlying Event (UE)

• Measuring the complementary activity in the presence of a leading interaction (usually a hard scattering)

Leading object (i.e. track, charged jet, jet, y, Z, etc.)

- Traditional methodology (à la Rick Field):
- Relying on charged tracks is very convenient: tracker detectors @ LHC allow to reconstruct tracks with p_T as low as ≈ 100 MeV
- Impact on isolations, jet pedestals, vertex reconstruction etc.
- Actually UE is interesting per se: handle on soft MPI and beam remnants

|η|<0.9:

- ITS, TPC, TOF: vertexing, tracking PID
- EMCal, TRD, HMPID: PID
- Charged particles, strange particles, D mesons, quarkonia, ...

-4<η<-2.5:

- MUON spectrometer: tracking, PID, trigger
- HF, W/Z, quarkonia,...

ALICE: the UE measurement in pp collisions

CCNU group active to extend the UE measurement at Vs =13 TeV Paolo Bartalini, Feng Fan, Yaxian Mao, Prabhakar Palini, Xiaowen Ren

[JHEP 07 (2012) 116]

Energy scale quoted as the leading charged track

- Toward & Away regions dominated by the leading interaction
- **Transverse region:** fast rise for $p_T < 4$ GeV/c mostly attributed to the increase of the MPI rate, followed by a plateau-like region (interpreted as saturation of the MPI rate)

ALICE: the UE measurement in pp collisions

• Comparison of the charged particle density in the plateau of the Transverse Region and the average charged particle density per unit of pseudorapidity ($<dN_{ch}/d\eta>$) in minimum bias events (scaled by $1/2\pi$)

 Under the assumption that most of the activity is due to MPI, the ratio between the UE and the MB curves is:
≈ <N_{MPI} (UE)> / <N_{MPI} (MB)>

[JHEP 07 (2012) 116]

- Confirms DPS results: at the LHC, MPI are enhanced of a factor 2–3 from a rather modest energy scale
- The Pedestal Effect: Increasing at higher energies as $\sigma_{inel}/\sigma_{eff}$

DPS in p-Pb collisions with ALICE

- The probability of extra interactions is expected to be enhanced in p-Pb collisions compared to pp ones
 - in addition: ALICE collected luminosity in p-Pb compatible with the ones of other LHC experiments (not the case of pp collisions)
- Possible way to measure σ_{eff} in p-Pb: high-p_T muons at forward rapidity
 - single muon spectrum dominated by HF decay at high- p_T

Search for same-sign muons with high-p_T

Feasibility study

- Activity supported in the ALICE PAG-UD
- Enhancement factor: $E(\mu, p_T^{min}) = P(2\mu, p_T^{min})/P(\mu, p_T^{min})^2$
 - E = 1 => uncorrelated MPI
 - $E \neq 1 =>$ correlation among MPI

Pythia 8 simulations

- Light-flavour muons: compatible with 1 (large uncertainties)
- HF muons: large enhancement
 - CAVEAT: correlated decay chain of bb pairs

Conclusions

- Multiple Parton Interaction studies needed for a full understanding of the hadronic collisions
- Dedicated working group in ALICE (PAG-UE in the PWG-MM)
 - measurement of the charged particle production in the Transverse region in pp collisions at Vs=0.9 and 7 TeV: saturation with leading p_T tends to be underestimated by MC
 - − similar ongoing measurement in pp collisions at √s=13 TeV
 - also explore alternative methods to study MPIs (jets, muons, etc.)
- Collaboration CCNU+Subatech to study the feasibility of a DPS measurement in p-Pb collisions with muons at forward rapidity
 - ~10 nb^-1 collected in 2013 at Vs=5.02 TeV. Factor of ~2 more in 2016 at Vs=8 TeV
 - first studies on MC ongoing. Main issue: irreducible background from chain decay of bb pairs

Perspectives:

- Dedicated high-statistics MC
- Correlated background subtraction

CMS: DPS in $W \rightarrow \mu v + 2jets$

- Along the lines of the ATLAS experience [J.Phys.15 (2013) 033038] with more MCs, unfolding, higher stat. (5 fb⁻¹), etc.
- DPS signal extraction from simultaneous fit of:
 - $\Delta^{rel}p_T$ = relative p_T balance of di-jet system
 - ΔS = angle between total momenta of paired objects (μv ,di-jets) projected in the transverse plane

[JHEP 03 (2014) 032]

D. Stocco, P. Bartalini

CMS: DPS in W $\rightarrow \mu\nu$ + 2 jets

Along the lines of the ATLAS experience [New J.Phys. 15 (2013) 033038] with more MCs, Unfolding, higher stat, more observables, etc.

ightarrow DPS signal fractions from fit to templates

 $\Delta^{\text{rel}} p_T$ = Relative p_T balance of the di-jet system.

Data:

Collision data at $\sqrt{s} = 7$ TeV, Single Muon data streams with integrated luminosity of ~ 5 fb⁻¹

Event selection:

- with p_T > 35 GeV, $|\eta| < 2.1$

– Exactly one $\boldsymbol{\mu}$

High stat.

- Required to be isolated and to pass tight ID criteria
- particle flow Missing Transverse Energy, MET > 30 GeV
- transverse mass of (μ and MET) > 50 GeV
- Exactly 2 anti-KT jets with pT > 20 GeV and $|\eta| < 2.0$ (not inclusive, need correction to use the σ_{eff} formalism)

= Angle between total momenta of paired objects ($\mu\nu$, di-jet) projected in the transverse plane.

- Signal at small ΔS (DPS is flat while SPS is peaked at π) and small $\Delta^{rel} p_T$ (back-to-back di-jet in transverse plane).
- Signal Template combining W+0jets and di-jet samples.
- Backg. Template Madgraph+Pythia 8 (no jets from MPI).
- No double counting or phase space gaps.
- DPS signal fraction from simultaneous fit to $\Delta^{rel} p_T$ and ΔS .
- Extract σ_{eff} from signal fraction.

JHEP 03 (2014) 032

ΛS