SINAP and plan for ALICE-FCPPL

Song Zhang Yu-Gang Ma, Jin-Hui Chen, Wei Li, Chen Zhong, Qi-Ye Shou

Shanghai Institute of Applied Physics (SINAP), CAS

Outline

SINAP-STAR/ALICE group

Highlights from SINAP-STAR group

• From STAR to ALICE/Plan for ALICE analysis

Summary

Jiading Campus: (1) Thorium-based nuclear energy system ;

(2) Basic research divisions: **nuclear physics**, physical biology,

water science & technology

Zhangjiang Campus: (1) Shanghai Synchrotron Radiation Facilit (2) X-ray Free electron Laser

Nuclear Physics Division, SINAP

- •(1) RHIC-STAR physics
- (2) LHC-ALICE physics
- •(3) Radioactive beam physics
- •(4) Laser-electron Gamma Source construction
- •(5) Laser-nuclear physics
- •(6) Dark matter searching (PandaX Coll. @ JPL)
- ~20 staffs, ~40 PhD & Master Students

SINAP-STAR/ALICE group

SINAP-STAR

- Staff(6): Yu-gang Ma、Jinhui Chen、Guo-liang Ma、 Chen Zhong、Song Zhang、Wei Li
- Graduate student(5): Zheng-qiao Zhang、Yi-fei Xu、Long Ma、Chensheng Zhou、Mao-wu Nie

SINAP-ALICE (from 2017.1)

- Staff(6+1): Yu-gang Ma, Jin-hui Chen, Song Zhang, Chen Zhong、
 Wei Li, Qiye Shou, +one people (2018)
- Graduate student(3+5): Jun-Jee He, Liu-yao Zhang, Xin-li Zhao, +one (every year)

STAR's Papers with PA from SINAP

★17 papers as principal author from SINAP-STAR group

★STAR's 2 papers in Nature, 1 paper in Science, 4 papers in Physical Review Letters

★~20 proceeding papers

★277 STAR Papers

★STAR Collaboration: 57 institutes from 12 counties (area), 593 collaborators

Physics analysis at SINAP-STAR

- Strangeness dynamics
 - (anti-)hypertriton, lifetime, branch ratio
 - vexotic particle searching
- Interaction between antimatter
- Heavy flavour
 - Investigation in the sector of the sector
 - Charm hadron-charge hadron correlation
 - **Elliptic flow of J/** Ψ
- Updates for High Level Trigger (HLT)

Highlights from SINAP-STAR group

The anti-hypertriton observation

Observation of an Antimatter Hypernucleus

The STAR Collaboration, *et al. Science* **328**, 58 (2010); DOI: 10.1126/science.1183980

- Anti-hypertriton, the first anti-nucleus containing an anti-strange quark, extends the 3-D chart of nuclides into the new octant of strange antimatter
 - Strangeness popular factor represents the strength of local baryon-strangeness correlation, experimental probe for QCD phase transition. <u>S. Zhang et al., *Phys. Letts. B* 684 (2010) 224</u>

Observation of the anti-helium4

★ 18 anti-helium4, the heaviest antinucleus ever detected, were identified in STAR data

STAR Col.: *Nature* 473 (2011) 353

Liang Xue (SINAP), Quark Matter 2011 talk; 2013 Excellent CAS PhD Dissertation;

S. Zhang 张松, SINAP, CAS, 3/24/17

Antiproton interaction

Basic parameters for particle interactions: within error range, f0(pbar-pbar)=f0(p-p)
 d0(pbar-pbar) =d0(p-p)
 Obey CPT theorem: Charge, Parity, and Time Reversal Symmetry

527, 325 (2015)

Principal authors

Y. G. Ma, Q. Y. Shou, A. Tang, K.F. Xin, Z.Q. Zhang, M. Lisa et al.,

This work is a part of Mr. Zhenq-qiao Zhang (SINAP), one of Yu-Gang Ma's PhD students,

PhD Dissertation (2017)

From STAR to ALICE

√antimatter interaction

✓hypernuclei

vexotic projects

✓heavy flavour

✓ALICE upgrade

Di-baryon searching

- H particle
- Di-Omega
- N-Omega

discussion on measurements

Why dibaryon?

- Provide more information about the short-range behaviour of (p)QCD (fm scale)
- Directly supply the evidence of the quark-gluon degrees of freedom in hadrons and hadronic systems

- deuteron-like states: weekly bound, d, $\Xi\Omega$, $\Xi\Xi$
- ΔΔ-like (d*) states: relatively deeply bound, but widths of the states much broader, only week decay modes, binding energy a few tens of MeV
- ΩΩ-like states: deeply bound states with narrow widths, strong decay mode exists, binding energy can reach one hundred MeV

H particle

- In 1977, Jaffe predicted that double strange dibaryon made of six quark (*uuddss*) may be deeply bound below the Λ-Λ threshold due to strong attraction from color magnetic interaction based on the bag model calculation
- Properties : $J^{P} = 0^{+}$, mass : (1.9-2.8) GeV/c²

Phys. Rev. D **15**, 267 (1977); Phys. Rev. D **15**, 281 (1977) Phys. Rev. Lett. **38**,195 (1977); **38**, 617(E)(1977)

- Since prediction, dedicated measurements have been performed to look for the H dibaryon signal, but its existence remains an open question
- Binding energy from QCD calculation:
 ✓NPLQCD: 17 MeV, PRL-106-162001(2011)
 ✓HAL: 30-40 MeV, PRL-106-162002(2011), PTP-124-591(2010)
 ✓A.W.Thomas et al. (LQCD), 13+-14 MeV above the di-Lambda threshold, most likely unbound, PRL-107-092004(2011)
 ✓Chiral constituent quark model: 7 MeV, PRC-85-045202(2012)
 Experiment: STAR, Λ-Λ correlation, not exclude the existence of H particle though the strength of the Λ-Λ interaction is week, PRL-114-022301(2015)

Di-Ω

• Chiral quark model:

Z. Y. Zhang et al., NPA-625-59 (1997); PRC-61-065204 (2000)

- ✓ suggest a di-Omega dibyaryon search in heavy ion collision experiments
- ✓ Binding energy 100 MeV, lifetime 2 times of free Omega's
- More likely a six-quark particle with large binding energy and short relative distance (RMS=0.84 fm) between two Omegas
- AMPT (including reaction listed):

C. M. Ko, Z. Y. Zhang, PLB-624-210(2005)

lo.	Channel	$\sqrt{s_0}$	Α	α	β	δ
	$\Omega + \Omega \rightarrow (\Omega \Omega)_0 + \gamma$	3.345	20.16	0.63	0.25	1.44
[$\Omega + \Omega \to (\Omega \Omega)_0 + \eta$	3.777	3988.23	1.77	0.13	1.10
Ι	$\Omega + \Omega \to (\Omega \Omega)_0 + \eta'$	4.187	79.02	3.24	3.08	5.89
V	$\Omega + \Omega \rightarrow (\Omega \Omega)_0 + \phi$	4.249	506.35	2.71	2.96	7.18
T	$\Omega + \Xi \to (\Omega \Omega)_0 + K$	3.722	18.93	2.07	2.62	5.99
Τ	$\Omega + \Xi \to (\Omega \Omega)_0 + K^*$	4.123	322.55	2.27	2.33	7.79
II	$\Omega + N \rightarrow (\Omega N)_2 + \gamma$	2.611	5.85×10^{16}	3.44	4.95×10^{-9}	0.19
III	$\Omega + N \rightarrow (\Omega N)_2 + \pi$	2.750	1.69×10^{8}	2.52	2.40×10^{-3}	0.44
X	$\mathcal{Q} + (\mathcal{Q}N)_2 \to (\mathcal{Q}\mathcal{Q})_0 + N$	4.278	1888.36	1.09	-	-

- ✓ production probability of 2.8x10^{-6} per event for central Au+Au collisions at centre of mass energy 130 GeV
- veek decays: (1) Omega-Omega->pi^{-}+Xi^{0}+Omega^{-}, (2) Omega-Omega->pi^{0}+Xi^{-}
 +Omega^{-}
- ✓ nomesonic decay: Omega-Omega->Xi^{-}+Omega^{-}
- Quark-delocalization color-screening model: H. Pang et al., PRC-70-035201(2004)

✓H particle and di-Omega, loosely bound system similar to deuteron, binding energy about few MeV

NΩ

• MIT bag model: in 1987 MIT bag model predicted NΩ dibaryon which is stable with respect to strong decay *T. Goldman et al.*, *PRL-59-627 (1987)*

- Quark-Delocalization color-screeing model (QDCSM) and chiral quark model (ChQM)
 H. Pang, J. Ping, F. Wang, T. Goldman, E. Zhao, PRC-69-065207 (2004);
 H. Pang, J. Ping, L. Chen, F. Wang, T. Goldman, PRC-70-035201 (2004);
 M. Chen, H. Huang, J. Ping, F. Wang, PRC-83-015202 (2011);
 - H. Huang, J. Ping, F. Wang, PRC-92-065202 (2015)

VNΩ, madly attractive, mass: 2549 MeV (QDCSM) or 2528 (ChQM)

- **v** compact six-quark state, a narrow dibaryon resonance
- decay mode: NΩ->Λ+Ξ (spin=0, decay width 12 KeV), (spin=1, decay width 22 KeV);

\checkmark suggest N Ω correlation analysis to identify the bound state

• Lattice QCD: bound state of NΩ whose binding energy 19 MeV with error of 5 MeV, HAL Collaboration, NPA-928-89 (2014)

Discussion on measurements (I)

• Invariant mass reconstruction:

directly conform the existence of dibaryon

Just more complicated for background from multi-daughter and the uncertain decay width

Discussion on measurements (II)

- correlation method: two identified particles decay $\Lambda\Lambda$ Correlation Function in mode, model depended, only provide the interaction is attractive or not
 - N-Omega correlation analysis to identify the bound state, H. Huang, J. Ping, F. Wang, PRC-92-065202 (2015)

The ratio of correlation functions between small and large collision system is proposed to be a new measure to extract the strong p-Omega interaction without much contamination from the Coulomb attraction, K. Morita, A. Ohnishi, F. Etminan, T. Hatsuda, arXiv:1605.06765 [hep-ph] (2016)

- →VI: weaker attraction
- ➡VII: shallow bound state
- ➡VIII: deep bound state

Summary

- Introduction to SINAP-group on heavy ion collision physics
- High lights from SINAP-STAR group
- Plan for ALICE physics analysis
 - Antimatter interaction
 - Hypernuclei researching
 - Dibaryon searching

Heavy flavour measurements