SINAP and plan for ALICE-FCPPL

Song Zhang
Yu-Gang Ma, Jin-Hui Chen, Wei Li, Chen Zhong, Qi-Ye Shou

Shanghai Institute of Applied Physics (SINAP), CAS

Outline

－SINAP－STAR／ALICE group

－Highlights from SINAP－STAR group
－From STAR to ALICE／Plan for ALICE analysis
－Summary

Jiading Campus:

(1) Thorium-based nuclear energy system ;
(2) Basic research divisions: nuclear physics, physical biology, water science \& technology

Zhangjiang Campus:

(1) Shanghai Synchrotron Radiation Facility
(2) X-ray Free electron Laser

- (1) RHIC-STAR physics
-(2) LHC-ALICE physics
-(3) Radioactive beam physics
-(4) Laser-electron Gamma Source construction
-(5) Laser-nuclear physics
-(6) Dark matter searching (PandaX Coll. @ JPL)
~20 staffs, ~40 PhD \& Master Students

SINAP-STAR/ALICE group

SINAP-STAR

SINAP-ALICE
 (from 2017.1)

- Staff(6): Yu-gang Ma, Jinhui Chen, Guo-liang Ma,
Chen Zhong, Song Zhang, Wei Li
- Graduate student(5): Zheng-qiao Zhang, Yi-fei Xu, Long Ma, Chensheng Zhou, Mao-wu Nie
- Graduate student(3+5): Jun-Jee He, Liu-yao Zhang, Xin-li Zhao, +one (every year)

SINAP Franç 7e insitute of Applizj Piysics，Chinese 4czdent；of Scier ses

STAR＇s Papers with PA from SINAP

太17 papers as principal author from SINAP－STAR group
太STAR＇s 2 papers in Nature， 1 paper in Science， 4 papers in Physical Review Letters
$\star \sim 20$ proceeding papers
$\star 277$ STAR Papers
丸STAR Collaboration： 57 institutes from 12 counties（area）， 593 collaborators

Physics analysis at SINAP-STAR

- Strangeness dynamics
$\sqrt{ }$ (anti-)hypertriton, lifetime, branch ratio
$\sqrt{ }$ exotic particle searching
- Interaction between antimatter
- Heavy flavour
$\sqrt{ }$ non-photonic electron-hadron correlation
$\sqrt{ }$ charm hadron-charge hadron correlation
$\sqrt{ }$ Elliptic flow of J / Ψ
- Updates for High Level Trigger (HLT)

The anti-hypertriton observation

STAR Col. Science 328 (2010) 58-62

Observation of an Antimatter Hypernucleus
 The STAR Collaboration, et al.
 Science 328, 58 (2010);
 DOI: 10.1126/science. 1183980

Anti-hypertriton, the first anti-nucleus containing an anti-strange quark, extends the 3-D chart of nuclides into the new octant of strange antimatter

Strangeness popular factor represents the strength of local baryon-strangeness correlation, experimental probe for QCD phase transition. S. Zhang et al., Phys. Letts. B 684 (2010) 224

Observation of the anti-helium4

nature

Observation of the antimatter helium-4 nucleus
The STAR Collaboration*

18 anti-helium4, the heaviest antinucleus ever detected, were identified in STAR data STAR Col.: Nature 473 (2011) 353 Liang Xue (SINAP), Quark Matter 2011 talk; 2013 Excellent CAS PhD Dissertation;

Antiproton interaction

$\sqrt{ }$ Basic parameters for particle interactions: within error range, fO (pbarpbar) $=\mathrm{f0}(\mathrm{p}-\mathrm{p}) \quad \mathrm{dO}(\mathrm{pbar}-\mathrm{pbar})=\mathrm{dO}(\mathrm{p}-\mathrm{p})$
$\sqrt{ }$ Obey CPT theorem: Charge, Parity, and Time Reversal Symmetry

nature

527, 325 (2015)

Principal authors

Y. G. Ma, Q. Y. Shou, A. Tang,
K.F. Xin, Z.Q. Zhang, M. Lisa et al.,

This work is a part of Mr. Zhenq-qiao Zhang (SINAP), one of Yu-Gang Ma's PhD students, PhD Dissertation (2017)

From STAR to ALICE

$\sqrt{ }$ antimatter interaction
\checkmark hypernuclei

$\sqrt{ }$ exotic projects

\checkmark heavy flavour
, ALICE upgrade

Di-baryon searching

- H particle
- Di-Omega
- N -Omega
- discussion on measurements

Why dibaryon?

- Provide more information about the short-range behaviour of (p)QCD (fm scale)
- Directly supply the evidence of the quark-gluon degrees of freedom in hadrons and hadronic systems

Dibaryon system

- deuteron-like states: weekly bound, d, ㅍ, 프
- $\Delta \Delta$-like (d*) states: relatively deeply bound, but widths of the states much broader, only week decay modes, binding energy a few tens of MeV
- $\Omega \Omega$-like states: deeply bound states with narrow widths, strong decay mode exists, binding energy can reach one hundred MeV

H particle

- In 1977, Jaffe predicted that double strange dibaryon made of six quark (uuddss) may be deeply bound below the $\wedge-\wedge$ threshold due to strong attraction from color magnetic interaction based on the bag model calculation
-Properties : $\mathrm{J}^{\mathrm{P}}=0^{+}$, mass : (1.9-2.8) $\mathrm{GeV} / \mathrm{c}^{2}$

$$
\psi(\mathrm{H})=\sqrt{\frac{1}{8}} \psi(\Lambda \Lambda)+\sqrt{\frac{4}{8}} \psi(N \Xi)-\sqrt{\frac{3}{8}} \psi(\Sigma \Sigma)
$$

- Since prediction, dedicated measurements have been performed to look for the H dibaryon signal, but its existence remains an open question
- Binding energy from QCD calculation:
\checkmark NPLQCD: 17 MeV, PRL-106-162001(2011)
\checkmark HAL: 30-40 MeV, PRL-106-162002(2011), PTP-124-591(2010)
\checkmark A.W.Thomas et al. (LQCD), 13+-14 MeV above the di-Lambda threshold, most likely unbound, PRL-107-092004(2011)
\checkmark Chiral constituent quark model: $7 \mathrm{MeV}, \mathrm{PRC}-85-045202(2012)$
- Experiment: STAR, $\wedge-\wedge$ correlation, not exclude the existence of H particle though the strength of the Λ - \wedge interaction is week, PRL-114-022301(2015)
\checkmark suggest a di-Omega dibyaryon search in heavy ion collision experiments
$\sqrt{ }$ Binding energy 100 MeV , lifetime 2 times of free Omega's
$\sqrt{ }$ More likely a six-quark particle with large binding energy and short relative distance (RMS=0.84 fm) between two Omegas
- AMPT (including reaction listed):
C. M. Ko, Z. Y. Zhang, PLB-624-210(2005)
$\sqrt{ }$ production probability of $2.8 \times 10 \wedge\{-6\}$ per event for central Au+Au collisions at centre of mass energy 130 GeV
 + Omega $\wedge\{-\}$
$\sqrt{ }$ nomesonic decay: Omega-Omega->Xi^\{-\}+Omega^\{-\}
- Quark-delocalization color-screening model: H. Pang et al., PRC-70-035201(2004)
$\sqrt{ } \mathrm{H}$ particle and di-Omega, loosely bound system similar to deuteron, binding energy about few MeV
- MIT bag model: in 1987 MIT bag model predicted $\mathrm{N} \Omega$ dibaryon which is stable with respect to strong decay
T. Goldman et al., PRL-59-627 (1987)
- Quark-Delocalization color-screeing model (QDCSM) and chiral quark model (ChQM)

$$
\begin{aligned}
& \text { H. Pang, J. Ping, F. Wang, T. Goldman, E. Zhao, PRC-69-065207 (2004); } \\
& \text { H. Pang, J. Ping, L. Chen, F. Wang, T. Goldman, PRC-70-035201 (2004); } \\
& \text { M. Chen, H. Huang, J. Ping, F. Wang, PRC-83-015202 (2011); } \\
& \text { H. Huang, J. Ping, F. Wang, PRC-92-065202 (2015) }
\end{aligned}
$$

$\sqrt{ } \mathrm{N} \Omega$, madly attractive, mass: 2549 MeV (QDCSM) or 2528 (ChQM)
$\sqrt{\text { compact six-quark state, a narrow dibaryon resonance }}$
 width 22 KeV);
$\sqrt{\text { suggest }} \mathrm{N} \Omega$ correlation analysis to identify the bound state

- Lattice QCD: bound state of $\mathrm{N} \Omega$ whose binding energy 19 MeV with error of 5 MeV, HAL Collaboration, NPA-928-89 (2014)

Discussion on measurements (I)

- Invariant mass reconstruction:
$\sqrt{ }$ directly conform the existence of dibaryon
$\sqrt{ }$ but more complicated for background from multi-daughter and the uncertain decay width
\square Topological reconstruction of $\Lambda p \pi$ to look for H
- Mass range: $2.2<\mathrm{m}_{\mathrm{H}}<2.231 \mathrm{GeV} / \mathrm{c}^{2}$
N. Shah for STAR Col. Nucl. Phys. A 914 (2013) 410 $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV}$.

- No visible signal with respect to mixed event or rotational background

Discussion on measurements (II)

- correlation method: two identified particles decay $\Lambda \Lambda$ Correlation Function in mode, model depended, only provide the interaction is attractive or not
\checkmark N-Omega correlation analysis to identify the bound state, H. Huang, J. Ping, F. Wang, PRC-92-065202 (2015)
$\sqrt{ }$ The ratio of correlation functions between small and large collision system is proposed to be a new measure to extract the strong p Omega interaction without much contamination from the Coulomb attraction, K. Morita, A. Ohnishi, F. Etminan, T. Hatsuda, arXiv:1605.06765 [hep-ph] (2016)
\Rightarrow VI: weaker attraction
\Rightarrow VII: shallow bound state
\Rightarrow VIII: deep bound state

Summary

- Introduction to SINAP-group on heavy ion collision physics
- High lights from SINAP-STAR group
- Plan for ALICE physics analysis
$\sqrt{ }$ Antimatter interaction
$\sqrt{ }$ Hypernuclei researching
$\sqrt{ }$ Dibaryon searching
$\sqrt{ }$ Heavy flavour measurements

