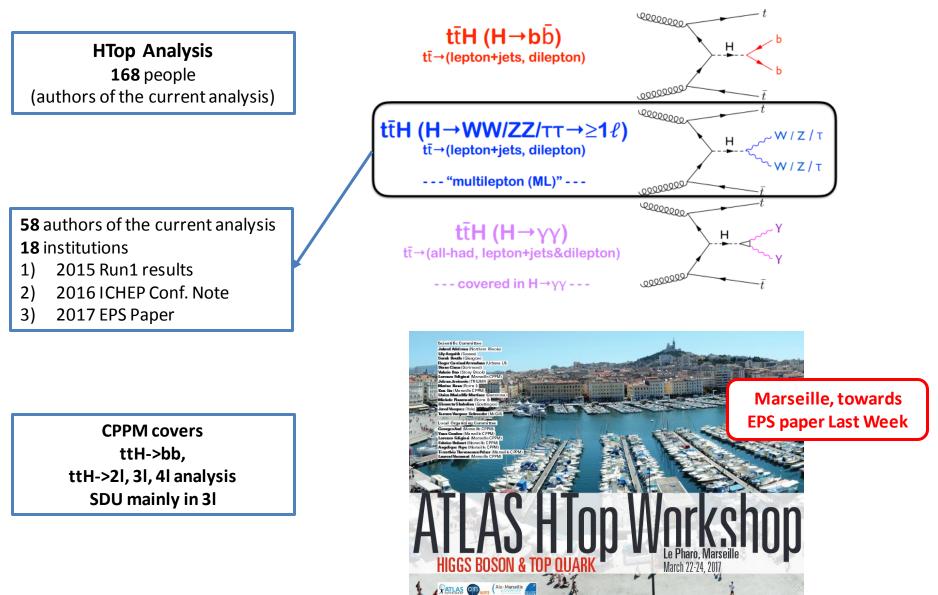
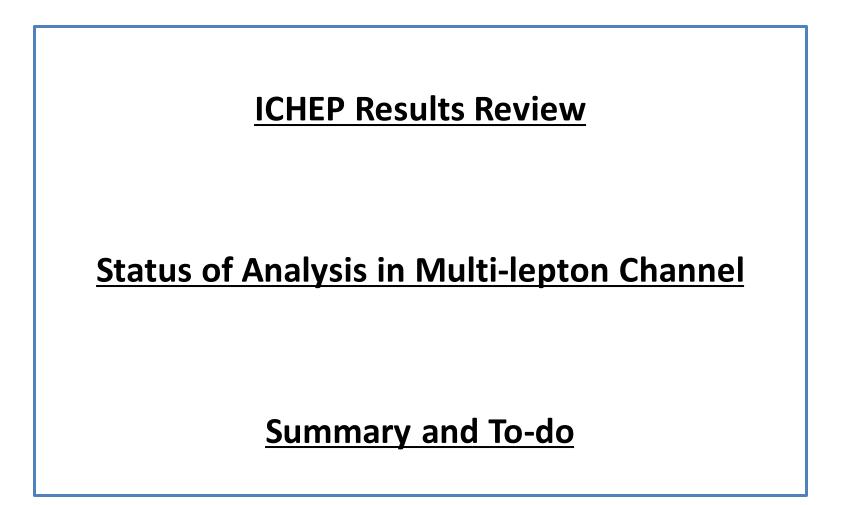


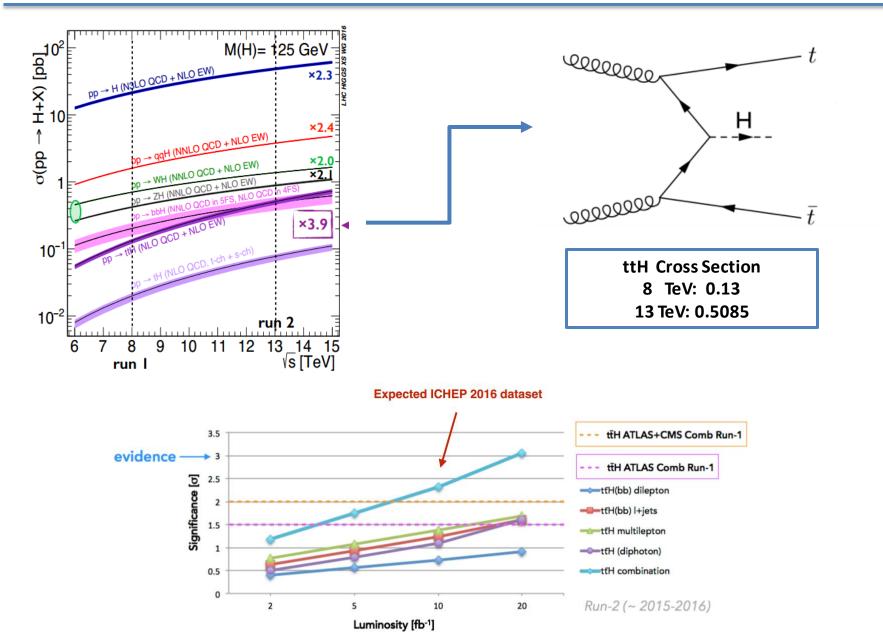
ttH Analysis in Multilepton at ATLAS

Chao Wang

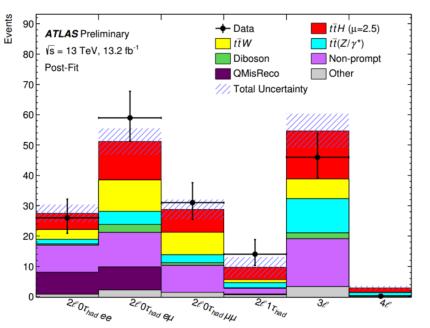
FCPPL Workshop 27-03-2017



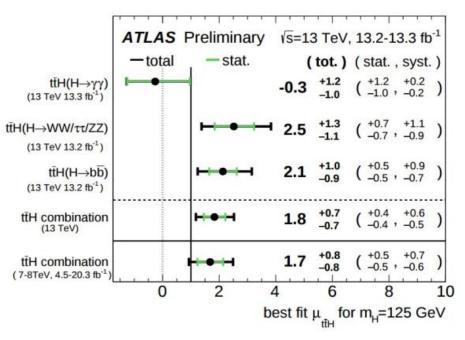



1

Overview of ttH Analysis at ATLAS



ICHEP Review



ICHEP Review

Data vs Predicted postfit events in the different channels

Best fit values of the ttH signal strength

Channel	Significance		
	Observed $[\sigma]$	Expected $[\sigma]$	
$t\bar{t}H, H \rightarrow \gamma\gamma$	-0.2	0.9	
$t\bar{t}H, H \to (WW, \tau\tau, ZZ)$	2.2	1.0	
$t\bar{t}H, H \rightarrow b\bar{b}$	2.4	1.2	
$t\bar{t}H$ combination	2.8	1.8	

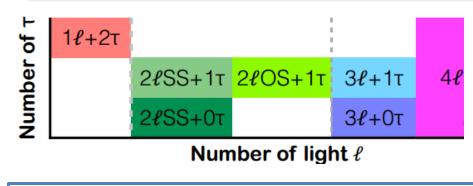
The best fit value of the ttH signal strength is 1.8 \pm 0.7

Observed significance: 2.8 sigma (1.8 expected from SM). 95% CL upper limit on ttH signal strength: 3.1 (1.4 expected from bkg. only)

ICHEP Review

Uncertainty Source	Δ	μ
Non-prompt leptons and charge misreconstruction	+0.56	-0.64
Jet-vertex association, pileup modeling	+0.48	-0.36
<i>ttW</i> modeling	+0.29	-0.31
$t\bar{t}H$ modeling	+0.31	-0.15
Jet energy scale and resolution	+0.22	-0.18
$t\bar{t}Z$ modeling	+0.19	-0.19

	significance obs (exp) [J]	μ
ATLAS run I	2.33 (1.53)	1.7 ± 0.8
ATLAS run 2	2.8 (1.8)	1.8 ± 0.7
CMS run I	3.4 (1.2)	$2.8^{+1.0}_{-0.9}$
ATLAS+CMS run I	4.4 (2.0)	$2.3\substack{+0.7 \\ -0.6}$


Comparison with Projection from Run1

Exp. Significance* (σ)	Proj (2015)	ICHEP (2016)
ttHbb dil	0.8	0.6 (-30%)
ttHbb l+j	1.4	1.1 (-30%)
ttHML	1.5	1.0 (-50%)
ttHyy	1.3	0.9 (-50%)
ttHComb	2.7	1.8 (-50%)

Evidence(3σ) with 2015+2016 data set will not be easy

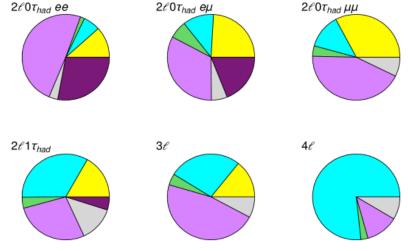
Significant improvements in all analysis and all channels is necessary

Multilepton Overview

Higgs boson decay mode $A \times \epsilon$					
Category	WW^*	au au	ZZ^*	Other	$(\times 10^{-4})$
$2\ell 0\tau_{\rm had}$	77%	17%	3%	3%	14
$2\ell 1\tau_{\rm had}$	46%	51%	2%	1%	2.2
3ℓ	74%	20%	4%	2%	9.2
4ℓ	72%	18%	9%	2%	0.88

Objections towards EPS

- 1. New trigger strategy (single OR dilepton)
- 2. Overlap removal:


based on the Run-1 procedure

3. Jets and bjets:

- 1. Pass jet clean criteria
- 2. pT > 25 GeV; $|\eta| < 2.5$
- 3. remove jets with |JVT| < 0.59
- 4. $|\eta| < 2.4$, and pT < 60 GeV
- 5. MV2c10_70
- 4. QMisID MVA is used to reduce the charge flip
- 5. New loose and tight lepton definition based on a MVA method

Run-2 ICHEP16

New lepton ID

		Lo	ose	Tight		
		е	μ	е	μ	
	Isolation	-	-	${\tt PromptLeptonIso} < -0.5$	${\tt PromptLeptonIso} < -0.5$	
•				AND IsoLoose (*)	AND IsoLoose (*)	-
	ID working point	Loose	Loose	Tight	Loose	
	Charge misID BDT	-	-	> 0.0670415	-	
	$ d_0 /\sigma_{d_0}$	< 5	< 3	< 5	< 3	
	$ \Delta z_0 \sin \theta_\ell $	< 0.5 mm	< 0.5 mm	< 0.5 mm	< 0.5 mm	

Remove isolation requirement at loose level To increase the statistics for the Matrix method

Move to new LepID MVA cut from: Electron: FixCutTightOnly Muon:FixCutTightTrackOnly

Improvement with new tight lepton for instance

Event	Lepton selection		В	S/B	S/\sqrt{B}	$\left S/\sqrt{B+\sigma_B^2} \right $	tī
$p_T^{1,2} > 20 \text{ GeV}$	FixedCutTight(TrackOnly) isolation	19.8	80.4	0.25	2.21	1.84	14.8
-	PromptLeptonIso < -0.50	16.9	62.9	0.27	2.13	2.06	5.2
$p_T^{1,2} > 15 \text{ GeV}$	FixedCutTight(TrackOnly) isolation		104.0	0.22	2.26	1.46	30.0
	PromptLeptonIso < -0.50	19.9	74.7	0.27	2.30	2.11	9.4

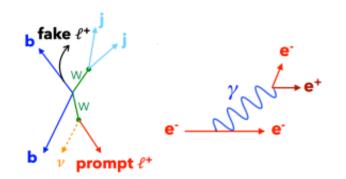
New tight LepID(BDT with b-tagging info. from the track jet that contains the lepton track and isolation) suppress the main ttbar background efficiently

Strategy towards EPS

- Event MVA in: 21, 31, 41
 - New channels like; 2IOS1tau, 1I2tau will also employ the MVA
- Fakes estimation:
 - 2I: Matrix Method, extended fake factor,
 - 3I: Matrix Method, extended fake factor, MC template
 - 4I: Fake factor

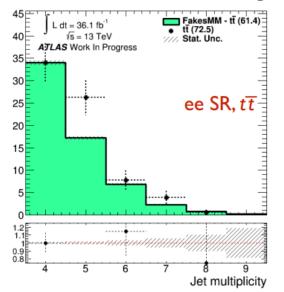
Matrix Method

Rely on regions to measure the real and fake rate

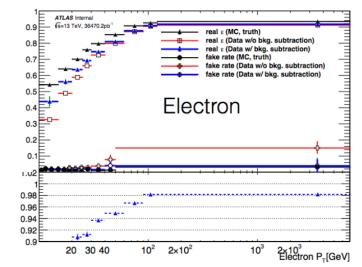

Fake factor Rely on this region to measure the fake factor MC template fit Rely on regions to extract norm. factor

Topological fit method Weak correlation to this region since using MVA to select fake enriched region

 Fit shapes in relaxed SR categories in high stat. channels, add CRs to fit to have a handle on backgrounds


Fakes estimation

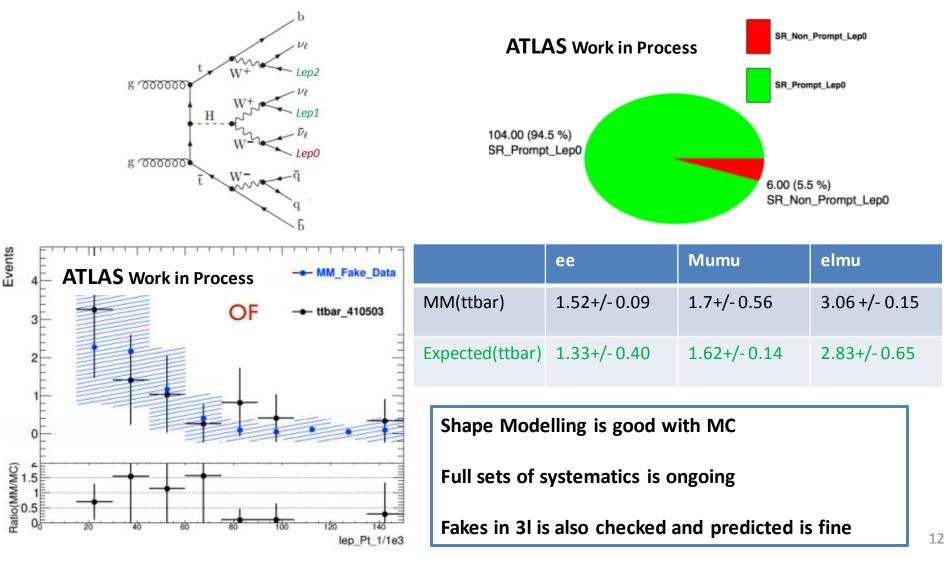
Fake Estimation in 2I


Major sources of "fake" lepton backgrounds in 2ℓ SS and 3ℓ :

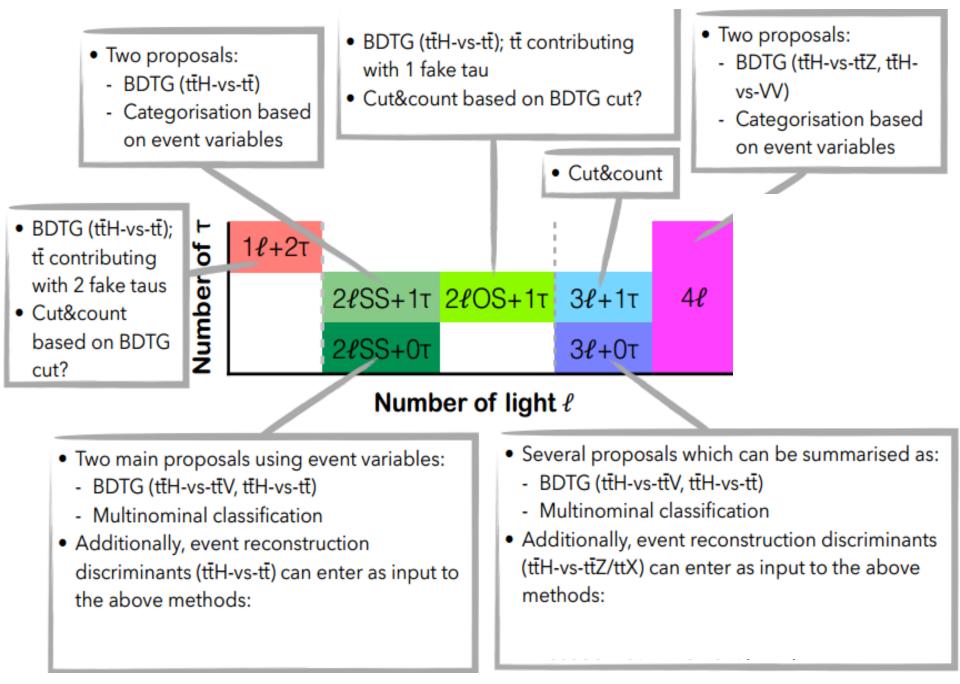
Matrix Method Modelling

Matrix Method:

Measure the efficiency in data for real/fake leptons to pass "Tight" selection in dedicated CRs, and obtain the total number of fakes in SR from "Anti-Tight (\overline{T})" sidebands via a matrix



Fakes	elecelec.	muon-muon	elecmuon
central value	76.2	185.8	247.3
stat. error	1.4	6.0	5.4
syst. error	14.7	-	78.7
ttbar-PP8 pred.	69.1 +/- 6.8 (76.36)	106.7 +/- 8.4 <mark>(106.96)</mark>	179.5+/-10.3 <mark>(200.57)</mark>
DD / MC ratio	1.10	1.74	1.38

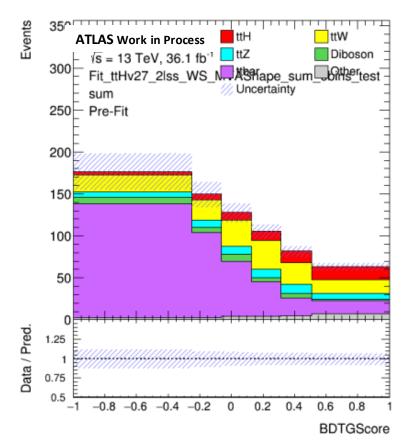

Fake estimates in SR-like region

Fake Estimation in 31

Assumption on lep0 : with very low possibility to be the fake and checked by MC If so, a simplified matrix method can be used in 3I as well

Multivariate Analysis

MVA Study in 2ISS


MVA trained versus two main backgrounds:

- ttH vs ttV = ttW + ttZ
- ttH vs ttbar (MC only)
- neglecting all other smaller backgrounds such as dibosons
 Finally fit the BDT shape

Selection: Relaxed SR : SLT || DLT, pT(lep) as low as the trigger threshold, 3 < nJets < 8, nBJets >=1, new lepton tight definition

Variables : 9 kinematic variables rather good modeling seen for all variables, also with data driven fakes

2 given BDTs (ttH-ttbar and ttH-ttV), different configurations were tested All fit the shape of a discriminant using 6 bins with auto-binning (also 4 and 8 were tested)

Multivariate Analysis with BDT in 31

Aiming at separating the ttV and ttbar from the ttH signal

- ✓ BDTG is trained for ttV and ttbar with sets of kinematic variables under a looser ICHEP SR region (looser jets requirement, w/o z veto, lower pt(15GeV for SS))
- ✓ Scan BDT score in 2D for all backgrounds to get the best sensitivity and do the shape fitting in future

Similar signal efficiency as Cut based -0.5 -0.5 BDT2 (tH vs ti)

Significance Scanning in 2D x: ttH vs ttbar, y: ttH vs ttV _____ Expected results with 36.5 fb⁻¹

S(Cowan) **Yields** ttH ttbar Total ttV Cut Based 16.3 ± 0.3 12.26 ± 1.4 46.3 ± 0.6 88.44 ± 4 1.85 ± 0.51 23.3 ± 5.4 13.1 ± 3.62 104 + 24.2 2.50 ± 0.61 50.3 ± 7.3 Best with **BDT Cut***

*BDTG_Best: the best significance with BDT with new tight lepton

- A better performance with BDT compared to cut based
- Re-optimize input variables and consider fakes with data driven method
- BDT shape fit with sets of systematics error

Summary and To-dos

Generally, new changes after ICHEP bring the improvements to all channels, but are still under testing

- New tight lepton gives the good ttbar suppression
 - Expected to have better performance in MVA or MM(ongoing)
 - lepton MVA calibration (ongoing)
- Data-vs-MC comparisons in various bkg. control regions
- Matrix method
 - Check fake composition on 2I and 3I channels (extra systematics for 3I)
- MVA is used in almost all channels
 - Show the promising results
 - Need more testing on the method, input variables
 - Full sets of systematics errors

Conclusions

✓ New changes bring the improvements to 3I

✓ Multivariate analysis is employed after ICHEP

✓ Preliminary studies show promising improvement

 ✓ A lot of things targeting at the significance improvements are going to be tested and will be implemented soon

Thank you for your attention!

Backup

EPS Schedule

April 2017	May 2017	June 2017
S 1	M 1 CERN holiday	 T ATLAS circulation for long paper
S 2	Т 2	F 2
M 3 14	W 3 HTop Unblinding approval	S 3
T 4	T 4 HTop approval	S 4
w 5 Baseline discussion	F 5	M 5 CERN holiday 23
Т 6	S 6	Т 6
F 7	S 7	W 7
S 8	M 8 19	Т 8
S 9	Т 9	F 9
M 10 15	W 10 HTop approval	S 10
T 11	T 11 INT note ready of Higgs	S 11
w 12 Baseline decision	F 12 circulation long	M 12 24
T 13	S 13	T 13
F 14 Good Friday	S 14	W 14
Easter weekend	M 15 20	T 15 open presentation with F 16 paper to CONF conversion
s 16	T 16	
M 17 Easter Monday 16	W 17	S 17
T 18	T 18 Higgs approval long paper	S 18
w 19 Status reports	F 19	M 19 25
T 20	S 20	T 20 W 21
F 21 S 22	S 21	W 21 T 22
S 22 S 23	M 22 21	F 23
M 24 17	W 24 Higgs plenary is holiday	s 24
T 25	T 25 CERN holiday	S 25
W 26 HTop Unblinding approval	F 26	M 26 26
T 27	S 27	T 27 note to sign off
F 28	S 28	w 28 allows one week to
S 29	M 29 Spring bank holiday 22	
\$ 30	T 30	F 30
5 50	W 31	

Overlap Removal

ICHEP-2016 overlap removal

Keep	Remove	Cone size $(\Delta \mathbf{R})$ or track
electron	tau	0.2
muon	tau	0.2
electron	CaloTagged muon	shared track
muon	electon	shared track
electron	jet	0.2
jet	electron	0.4
muon	jet	(0.2 or ghost-matched to muon) and (numJetTrk \leq 2)
jet	muon	0.4
tau	jet	0.2

Run 1 overlap removal

Keep	Remove	Cone size (A R)
electron	electron (low $p_{\rm T}$)	0.1
muon	electron	0.1
electron	jet	0.3
jet	muon	Run-1: $0.04 + 10$ [GeV]/ p_T (muon)
		modified Run-1: min(0.4, $0.04 + 10[GeV]/p_T$ (muon))
electron	tau	0.2
muon	tau	0.2
tau	jet	0.3

CPPM- BDT Sample and Selection

- **Signal** : ttH(Pythia8)
- Background :
 - 1) ttV (ttW, ttZ)
 - 2) ttbar(410009-dilepton ttbar, pythia6) and 410503(pythia8) is also used for testing

Selection(ICHEP basic but with some changes):

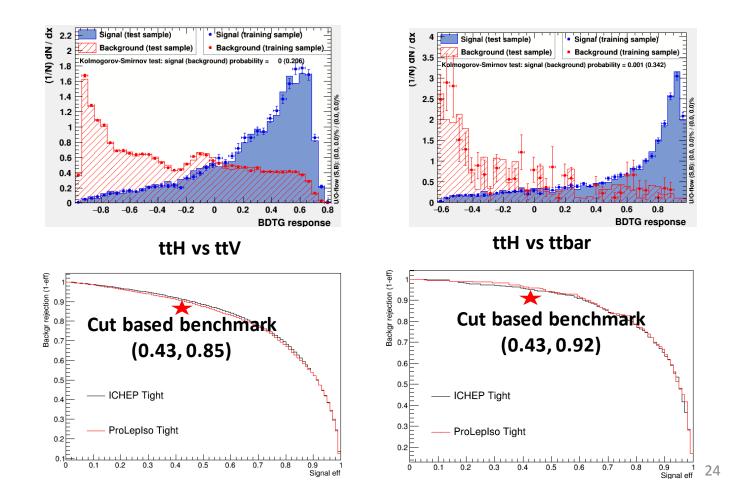
Loosing some selections based on the cut based 3I SR to increase the statistics

No changes:

- 1) Event cleaning
- 2) Charge, number of lepton
- 3) Tight ID on Lep1 and Lep2

Changes:

- 1) Pt: 10GeV, 15GeV, 15GeV
- 2) Trigger: single-lepton || di-lepton
- 3) jets>1 and bjets >0 to let more statistics in
- 4) Loose requirement on impact parameter
- 5) No Z veto on invariant mass of mll
- 6) Tight isolation or (Ele and muon: PromptLeptonIso_TagWeight < -0.5) on lep1 and lep2


CPPM-BDT

BDTG is trained: ttH vs ttbar ttH vs ttV

Samples are split into odd and even two parts during the training and testing stage

Selection (ICHEP basic but with some changes)

Loosing some selections based on the cut based 3I SR to increase the statistics: Lower pt, S||D trigger, looser jets(2-1), loose impact parameter, no Z veto on invariant mass of mll, new tight isolation on lepton is tested.

