

Status of the JUNO detector system

Miao HE
IHEP, Beijing

On behalf of the JUNO collaboration

2017-03-29

10th workshop of the France China Particle Physics Laboratory

Jiangmen Underground Neutrino Observatory

- JUNO: a multipurpose neutrino experiment
 - 20kton liquid scintillator, 3%@1MeV energy resolution, 700m underground
 - A unique way to determine mass hierarchy using reactor antineutrinos by the interference between Δm_{31}^2 and Δm_{32}^2 .
 - First experiment to measure solar and atmospheric mass splitting simultaneously. <1% precision to θ_{12} , Δm^2_{21} and Δm^2_{31} (Δm^2_{32}).
 - Large detector volume, good resolution and low background allow rich physics goals: supernova, geo-, solar ... neutrinos
 - Long term possibility under consideration: accelerator neutrino, $0\nu\beta\beta$...

JUNO detector

Central detector: engineering design

Final design approved in July 2015: Acrylic sphere + Stainless steel latticed shell

- Acrylic sphere: ID35.4m, thickness: 120mm.
 >200 pieces of 3m×8m panels bonded on site.
- Stainless steel: ID40.1m, OD41.1m, divided into 30 longitudes and 23 layers
- Weight of acrylic sphere: ~600 t.
- Weight of stainless steel: ~590 t.
- No. of connecting bars: 590
- No. of shell's pillars: 60

Acrylic panel

Onsite assembly

Bonding machine

Node test

Central detector progress

An international review in Sep. 2016

- 11 committee member: 4 SNO members, 2
 Daya Bay US engineers, as well as Italy, UK,
 China on material, mechanics and physics
- The committee feels the detector has the big challenges on technical, schedule...close collaboration and coordination is necessary

Finished bidding of acrylic sphere in Feb. 2017

- Donchamp acrylic company (汤臣新材料) won the bid and got the contract of acrylic production and building, due to the better production capacity, equipment, management, preparation for our project.
- Bidding of SS shell in a few months
- 1:10 scale prototype is in preparation

Preparation for acrylic production

- Built the new workshop for producing acrylic panel according to our special requirement
- Prepare the equipment for acrylic forming and machining

Liquid scintillator

- Requirements for JUNO LS
 - Lower background for $\bar{\nu}_e$ physics: $^{238}U<10^{-15}g/g$, $^{232}Th<10^{-15}g/g$, $^{40}K<10^{-17}g/g$
 - High light yield: concentration of fluor need to be optimized
 - Long attenuation length: >20m@430nm
- LS Purification methods
 - Distillation, column purification, filtration, water extraction, stripping...
- Preliminary LS recipe (based on DYB experiment)
 - 3g/L PPO, 15mg/L bis-MSB in LAB
 - PPO: 2,5-Diphenyloxazole
 - Bis-MSB: 1,4-di-(2-methylstyryl)benzene,
 p-bis(o-methylstyryl)benzene
 - LAB: linear alkyl benzene

LS pilot plant at Daya Bay

- Study of JUNO liquid scintillator with one of Daya Bay detector, led by INFN and IHEP
 - Pre-study of 20t mass production
 - Optimization of fluorescent materials
 - Study of radioactivity background
 - Test of purification methods

Distillation system

Steam stripping system

Water extraction

Ultra-pure nitrogen

LAB storage tank

Al₂O₃ column

20-inch PMT

- A new design of large area MCP-PMT by Chinese team
 - Higher QE: transmissive photocathode at top + reflective photocathode at bottom
 - → High CE: less shadowing effect
 - Easy for production: less manual operation and steps

			, , , , , , , , , , , , , , , , , , ,	Contracts were signed in 2015
Characteristics	unit	MCP-PMT	/ / \	15k MCP-PMT (75%) from NNVT
		(NNVC)	(Hamamatsu)	5k Dynode(25%) from Hamamatsu
Detection Efficiency	0/2	27% > 24%	27% > 24%	on Dynaud (2070) nonn namamatau

Mass Production at NNVT

- Production equipment all in hands
- Training workers, tuning equipment
- All parts in hand
- A few hundreds of products

Radioactivity of glass

PMT instrumentation

 Characterization, installation and protection of ~50,000 PMTs with largest optical coverage in the neutrino world, under up to 45m pure water and running for 20-30 years.

- Mass testing: four test facilities were built and reviewed in Hamburg, on the way to China. System integration and testing near JUNO site.
- Waterproof potting: target failure rate <0.5% for the first 6 years.
 Designed as multiple waterproof layers: putty + glue + pouring sealant.
- Implosion protection: acrylic + stainless steel protection covers. >50
 prototypes and several underwater tests. Thickness optimizing.
- Installation: module was designed to achieve 75% coverage.
 Installation in parallel to acrylic sphere is preferred.

Readout electronics

- Front part under-water, encapsulated on back of PMT with HV module and divider.
- Transmission of data, hit, clock, power and trigger by ~100m
 CAT5+ cable
- Integration of prototype in 2017

Muon veto system

Goals of veto

- Fast neutron background rejection
- Help muon tracking and cosmogenic isotopes study
- Gamma background passive shielding
- Earth magnetic field shielding
- Water cherenkov detector
 - ~2000 20" PMT
 - 35 kton ultrapure water with a circulation system
 - Detector efficiency is expected to be > 95%
 - Fast neutron background ~0.1/day.
- Top tracker (details in Marcos' talk)
 - Re-using the OPERA's Target Tracker
 - Cover half of the top area

Water Cherenkov Detector

Top Tracker

Water Cherenkov detector

Mechanical structure

A "bird cage" structure
 was designed for support
 veto PMTs, tyvek films,
 cables and water pipes.

Water system

- Employ
 a circulation/polishing
 water system (~2 week
 one volume circulation).
- Keep a good water quality including radon control (<0.2 Bq/m³).

Earth magnetic field (EMF) shielding system

- Use double coils system for EMF shielding。
- A prototype of compensation coils system was built in IHEP.
- The theoretically calculation and prototype data are consist with each other. It's a good validation for compensation coils design of JUNO.

The Small PMT (SPMT) system

- Consists of up to 36,000 3-inch PMTs and readout electronics
- Physics concept was approved in 2015.07
- Detector system was established in 2016.01
- A joint FCPPL project started in 2016, now led by Anatael CABRERA in France and Miao HE in China.

FCPPL Project application for 2017

Frer	Chinese Group							
Name	Title		filiation stitute)	Name		Title		Affiliation (institute)
Anatael CABRERA	Dr	APC (Paris)		Miao HE		Dr	IHEP (Beijing)	
Herve DE KERRET	Dr	APC (Paris)		Jun CAO		Prof	IHER (Beijing)	
Alexis NOURY	Eng	APC (Pa	ris)	Xiaoshan J	IANG	Dr	IHE	(Beijing)
Cayetano SANTOS	Eng	APC (Pa	ris)	ZhengVVA	NG _	U.	HEP	(Beijing)
Jose BUSTO	Prof	CPPM (N	1arseille)	Ziyan DEN	IG-	S	IHEP	(Beijing)
Stefan BEURTHEY	Eng	CPPM (N	1arseille)	Wei W 1		Prof	SYSU	J (Guangzhou)
Margherita BUIZZA- AVANZINI	Dr	LLR (Par	is)	Ó.				
Selma CONFORTI	Dr/ Eng	OMEGA		O				
Christophe DE LA TAILLE	Dr	O) For	(Paris)					
Thiago JUNQUEIRA	Q,	SUBATE	CH (Nantes)					
Frederic LEFE	Dr/ Eng	SUBATE	CH (Nantes)					
Frederic YERMIA	Prof	SUBATE	CH (Nantes)					
Please provide here programs (now and fut							ating	in exchang
· progra	n sta	t u s nitted,	Status (PhD student, Postdoc)		spected Lab of ate of origin efense		ab	Expected dates in hos lab
7,								
	<u></u>		only for tra					

Small PMT physics

- Double-calorimetry: calibration of non-linear response of LPMT (primary), increase optical coverage by ~3% (secondary)
- Solar parameters measurements with partly independent systematics
- Help reconstruction for high energy physics: muon, atmospheric v...
- Help detection of supernova neutrino

Double calorimetry

Large-PMT (LPMT): measure energy via "charge integration", increase photon statistics → stochastic effect

Small-PMT (SPMT):
 measure energy via "photon counting", control systematics
 → non-stochastic effect

Nonlinear response of LPMT due to the distortion of output waveform

Non-linearity (single channel)

-

Non-uniformity (position dependent)

Resolution deterioration (full detector)

Comparison of reconstructed energy and true energy of LPMT and SPMT

Small PMT simulation

- Implementation of two PMT systems with Geant4 in the JUNO offline software framework.
- With realistic geometry and photon detection efficiency, ~45 PEs/MeV for 36,000 SPMTs, 3%~4% of LPMTs.

Implementation of a single small tube in Geant4.

A simulated event with PMT responses, **color** corresponds to number of PEs in a PMT.

Small PMT hardwares

128 SPMTs * = Items common to both LPMT & SPMT systems

SPMT specification and bidding

- Close contact with suppliers: Hamamatsu, HZC and ETL.
- Sample tubes basically meet JUNO's requirements.
- Specification is finalizing.
- Bidding in April.

NO.	Parameter	Value
1	Diameter of Bulb	<82mm
2	Effective Diameter of Cathode	>72mm
3	QE×CE@420nm	Minimum>22%, Average>24%
4	TTS (FWHM)	<6ns
5	HV@ 3×10 ⁶ gain	C. Tello
6	P-V Ratio	Minnun 2, Average>2.5
7	Resolution of SPE (σ)	<35%
8	Dark Rate@ 0.25 PE	<1. 5kHz
9	Dark Rate @ 0.3 PE	<5Hz
10	Uniformity of QE	<15%
11	Prepulse Ratio After Suite Natio	<5%, <5%
12	Spectral Response Range	300-650 nm
13	Stability	Gain fluctuate(1 week): 5% Gain fluctuate(1 year): 10%
14	Glass radiation level(ppb)	²³⁸ U: < 400ppb, ²³² Th: <400ppb, ⁴⁰ K: <200ppb
15	Minimum compressive	1.0MPa
16	Lifetime (Working @JUNO)	>20 years
17	Working current of base	<9µА
18	Nonliner	<10%@1-100p. e.

Specification in the bidding document

Electronics

- HV unit and GCU: same as LPMT
- HV splitter study to start soon
- ASIC Battery Card (8×CatiROC) being designed, prototypes(v0+v1) in 2017. Test board on hand. Good timing and charge resolution.
- CatiROC (OMEGA & APC) analogue 2-fold pipeline ping-LowGain if q≥q(threshold) ("ping-pong") **Dual-Data Stream** •ping-HighGain output with no I PMT⇒4 channels preamp dead time (appears a single-channel) if q≥q(threshold) pong-LowGain $g = [10,50] \times$ pong-HighGain

CatiROC @ Dual-Data Stream output

Underwater box

- ← An organization now in FR
 - CENBG Bordeaux to conduct prototyping
 - CPPM Marseille as support experts
 - PUC Chile for production
- ← Some engineers working on

2 options under consideration:

- Home made SS box filled with oil or potted
- Direct contact with companies providing junction boxes (50-300m depth with electrical feedthrough)

Mass testing and integration

Summary

- JUNO was approved in 2013, and started civil construction in 2015.
- The detector design was finalized, and the construction of each system is in good progress.
- Plan to start operation in 2020, with 20-30 years life time.
- France and China work in close cooperation on the Top Tracker and the Small PMT system.

backup

Underwater connector

- An additionnal connector may simplify a lot the installation
- Issues :
 - Specifications (HV, Crosstalk, Water-proofing)
 - Price/channel

Over sealing Input cable

Over sealing technics @ IN2P3

R&D in France and China

- 4 types of connectors have been developed for 20" PMT;
- The reliability of the connector have to be verified;

Start contact with

companies

Installation

- Two scenarios
- No connector: install PMT one by one on the platform
- With connector: install PMT and UWB on surface

