

Neutrino Physics and Beyond at JUNO

Ran HAN

Beijing Institute of Spacecraft Environment Engineering

On behalf of the JUNO Collaboration

10th workshop of the FCPPL

Qinghua Univ, 27-30 March '17

The JUNO

• JUNO (Jiangmen Underground Neutrino Observatory): a 20 kton "multipurpose" neutrino experiment, under construction near Kaiping (South China).

Oscillation probes


- 1. Neutrino Mass Hierarchy
- Precision Measurements of mixing parameters
 "Neutrino physics with JUNO" J. Phys. G 43 (2016) 030401

Astrophysical sources

- 1. Supernova burst neutrinos
- 2. Diffuse supernova neutrinos
- 3. Solar neutrinos
- 4. Geo-neutrinos
- 5. Atmospheric neutrinos

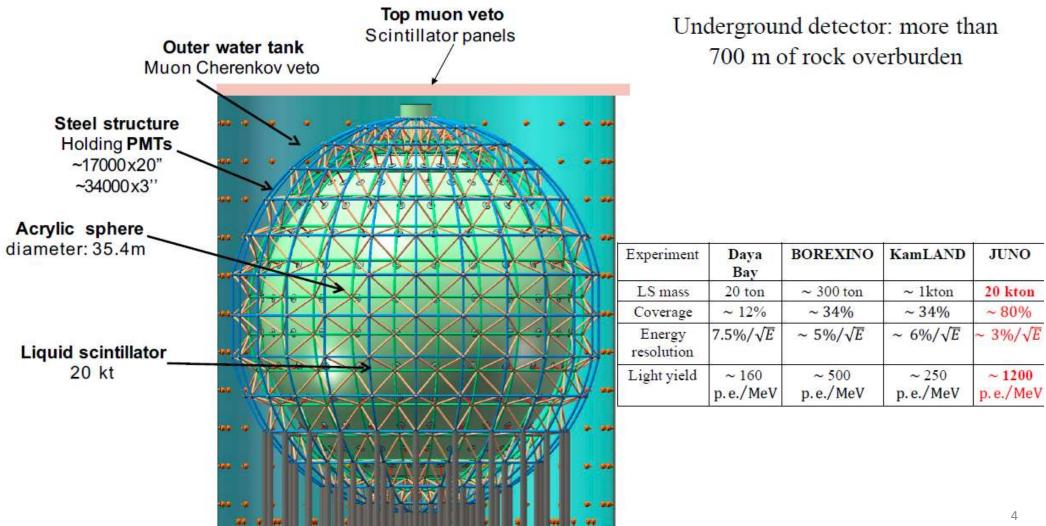
Others

- 1. Sterile neutrinos
- 2. Exotic searches Indirect dark matter search Proton decay Other probes of new physics

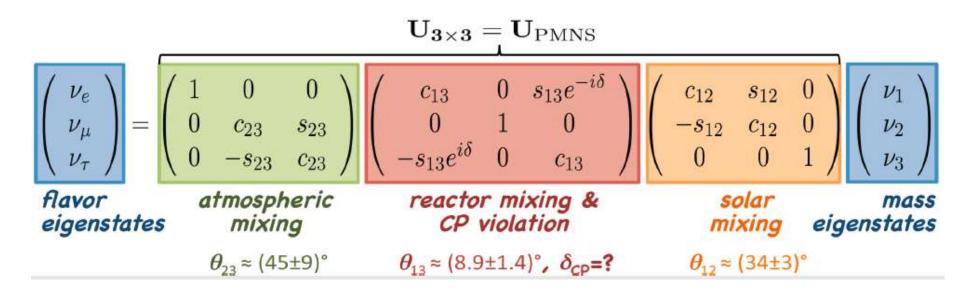
List of JUNO Members

Country	Institute			
Armenia	Yerevan Physics Institute			
Belgium	Universite libre de Bruxelles			
Brazil	PUC			
Brazil	UEL			
Chile	PCUC			
Chile	UTFSM			
China	BISEE			
China	Beijing Normal U.			
China	CAGS			
China	ChongQing University			
China	CIAE			
China	DGUT			
China	ECUST			
China	Guangxi U.			
China	Harbin Institute of Technology			
China	IHEP			
China	Jilin U.			
China	Jinan U.			
China	Nanjing U.			
China	Nankai U.			
China	NCEPU			
China	Pekin U.			
China	Shandong U.			
China	Shanghai JT U.			
China	IMP-CAS			
China	SYSU			
China	Tsinghua U.			
China	UCAS			
China	USTC			
China	U. of South China			

China	Wu Yi U.
China	Wuhan U.
China	Xi'an JT U.
China	Xiamen University
China	NUDT
Czech	Charles U.
Finland	University of Oulu
France	APC Paris
France	CENBG
France	CPPM Marseille
France	IPHC Strasbourg
France	LLR Palaiseau
France	Subatech Nantes
Germany	Forschungszentrum Julich ZEA2
Germany	RWTH Aachen U.
Germany	TUM
Germany	U. Hamburg
Germany	IKP FZJ
Germany	U. Mainz
Germany	U. Tuebingen
Italy	INFN Catania
Italy	INFN di Frascati
Italy	INFN-Ferrara
Italy	INFN-Milano
Italy	INFN-Milano Bicocca
Italy	INFN-Padova
Italy	INFN-Perugia
Italy	INFN-Roma 3


Pakistan	PINSTECH (PAEC)		
Russia	INR Moscow		
Russia	JINR		
Russia	MSU		
Slovakia	FMPICU		
Taiwan	National Chiao-Tung U.		
Taiwan	National Taiwan U.		
Taiwan	National United U.		
Thailand	NARIT		
Thailand	PPRLCU		
Thailand	SUT		
USA	UMD1		
USA	UMD2		

= 71 members


Observers

- 1. Department of Physics, Jyvaskyla University, (Finland)
- 2. Institute of Electronics and Computer Science, (Riga, Latvia)

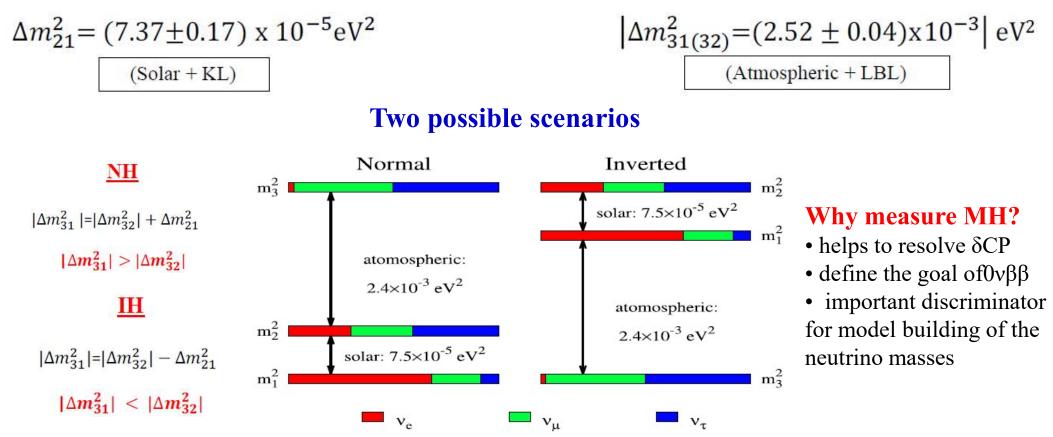
The Juno Detector

Oscillation Current Status

Resolved issues:

- Three non-zero mixing angles have been measured
- > Two independent mass-squared differences $|\Delta m_{31}^2|$ (or $|\Delta m_{32}^2|$) and Δm_{21}^2 have been measured

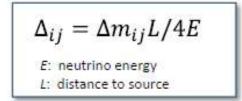
Unresolved issues:

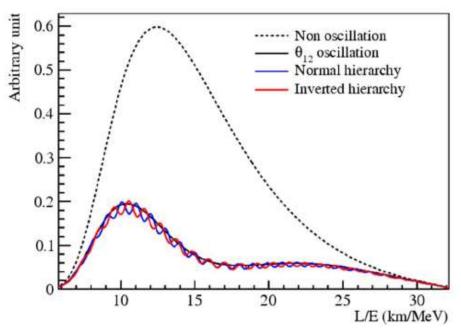

- Mass hierarchy
- CP-violating phase
- Theta(23) octant

Constitutes the main focus of the future neutrino oscillation experiments.

Mass Hierarchy

From global fits

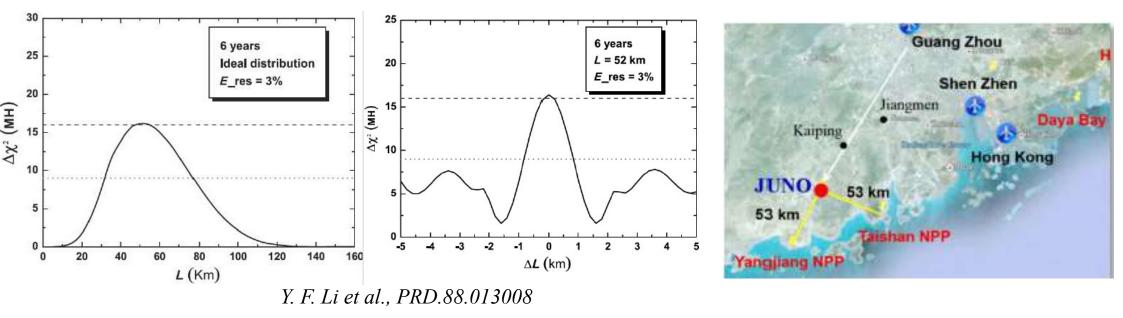

(see JHEP 1701 (2017) 087; arXiv: 1703.04471[hep-ph])



Vacuum oscillation: reactor neutrinos S. T. Petcov et al., PLB 533 (2002) 94

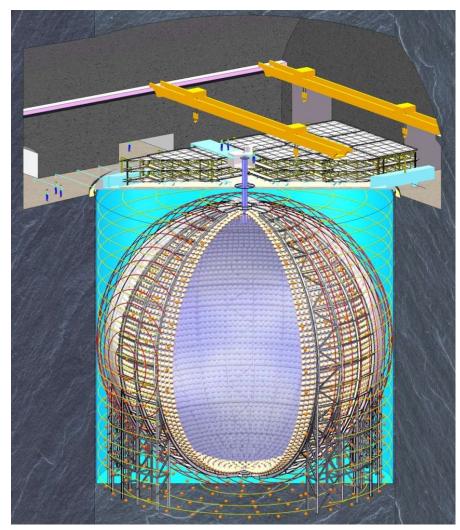
How to measure

 $P_{\overline{\nu}_e \to \overline{\nu}_e} = 1 - \sin^2 2\Theta_{13} \left(\cos^2 \Theta_{12} \sin^2 \Delta_{31} + \sin^2 \Theta_{12} \sin^2 \Delta_{32} \right)$ $- \cos^4 \Theta_{13} \sin^2 2\Theta_{12} \sin^2 \Delta_{21}$


> Requirements for measuring MH:

- position with advantageous L/E ratio
- low energy threshold
- excellent energy resolution
- low energy scale uncertainty

JUNO Collaboration, J. Phys. G 43, 030401 (2016)


Baseline Optimization

• ~53 km distance to two nuclear power plants (35.8 GW Pth)

- JUNO selected the experiment site with Considering the baseline optimization and impact of the baseline difference
- A candidate site was identified by taking account of the physical performance and detailed geological survey.
 ⁸

Excellent Energy Resolution

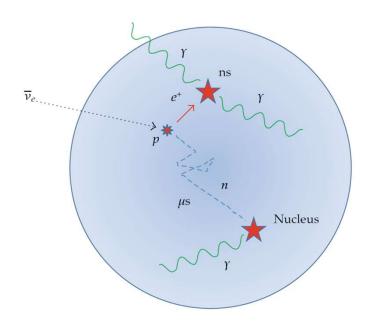
The energy resolution as or better than the size of $\Delta m_{21}^2 / |\Delta m_{31}^2|$

Low energy threshold: 20 kt liquid scintillator

Solution: Arcylic tank: $\varphi 35.4m$ (PMT sphere: $\varphi 40.1m$) ~18,000 20" PMTs ~36,000 3" PMTs 77% coverage QE ~30% $\Delta E/E=3\%/\sqrt{E(MeV)}$

Energy scale uncertainty < 1%

Signal and Background


• Signal channel:

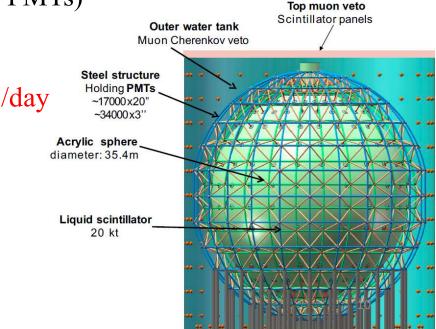
Inverse Beta Decay (IBD),

Prompt and

delayed coincidence signature

 $\bar{\nu}_e + p \to e^+ + n$

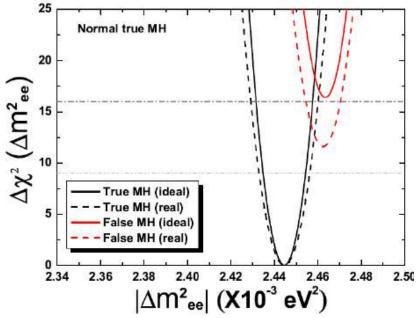
- Background reduction:
- 1. \sim 700 m rock overburden (~ 1900


m.w.e.)

- 2. Top tracker (IPHC Strasbourg)
- 3. Ultra pure water buffer as Cherenkov veto (2400 20" PMTs)

After cuts:

60 IBD/day vs 3.8


background events/day

MH sensitivity for JUNO

 $P_{\overline{\nu}_e \to \overline{\nu}_e} = 1 - \sin^2 2\Theta_{13} (\cos^2 \Theta_{12} \sin^2 \Delta_{31} + \sin^2 \Theta_{12} \sin^2 \Delta_{32}) \\ - \cos^4 \Theta_{13} \sin^2 2\Theta_{12} \sin^2 \Delta_{21}$

 $\Delta_{ij} = \Delta m_{ij} L/4E$ *E*: neutrino energy *L*: distance to source

Median sensitivity on MH after100k IBD (6 yr of running):

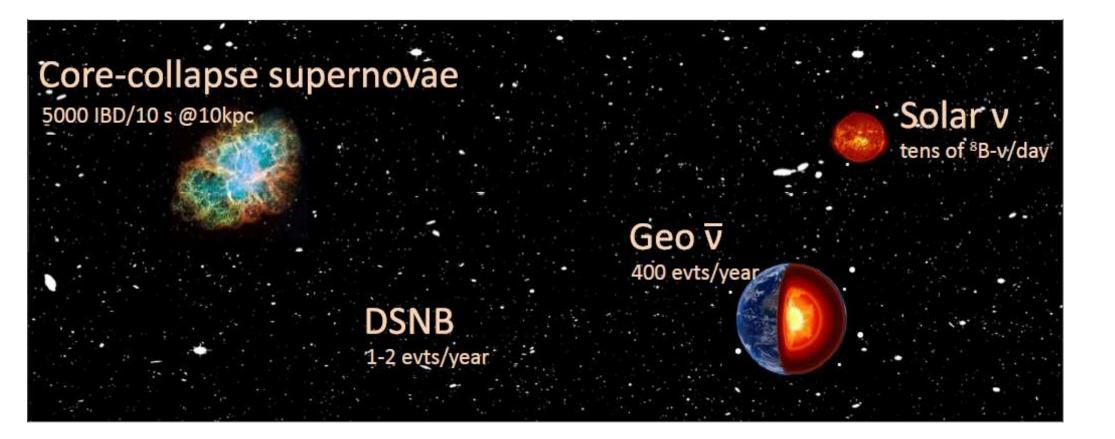
- 3σ ($\Delta X^2 > 10$) with the spectral measurement
- 4σ if including an external $\Delta m^2(\mu\mu)$ measurement spread of reactor cores, uncertainties from reactor neutrino flux, the energy scale and non-linearity.

Advantages

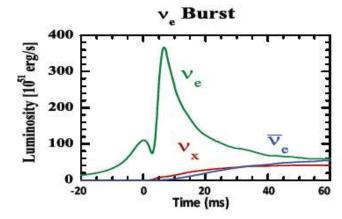
JUNO looks at almost vacuum oscillations and, therefore, it doesn't suffer from the uncertainty on Earth density profile and the ambiguity of CP-violating phase.

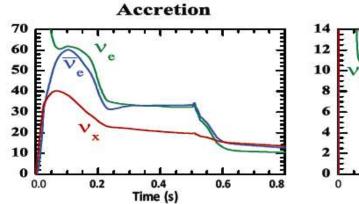
Y. F. Li et al., PRD.88.013008

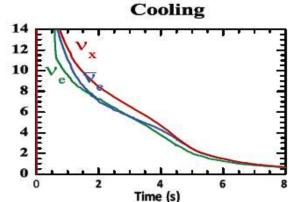
Other Oscillation Probes


- JUNO can measure antineutrino spectrum with excellent energy resolution
- **Precision measurement of** the neutrino oscillation parameters to an accuracy of better than 1%,

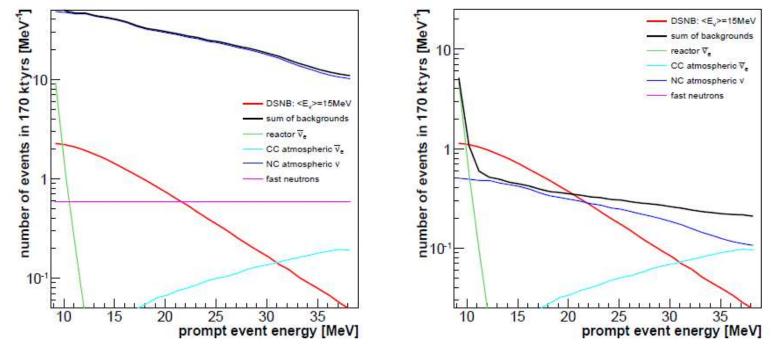
Oscillation Parameter	Current accuracy (global 1σ)**	Dominant experiment(s)	JUNO Potentiality
Δm_{21}^2	2.3%	KamLAND	0.59%
$\Delta m^2 = m_3^2 - \frac{1}{2} \left(m_1^2 + m_2^2 \right) $	1.6%	MINOS, T2K	0.44%
$\sin^2(\theta_{12})$	~4-6%	SNO	0.67%


JUNO Collaboration, J. Phys. G 43, 030401 (2016)

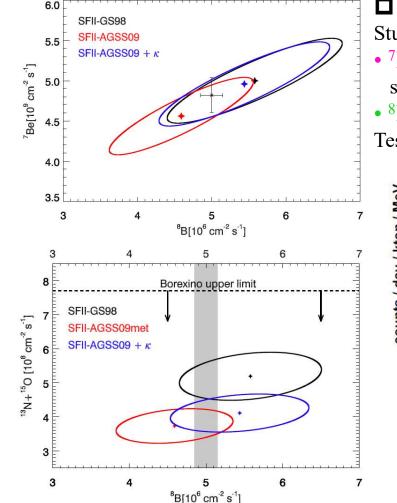

Esteban et. al, JHEP 1701 (2017) 087 and F. Capozzi et al., arXiv: 1703.04471[hep-ph]


Observatory of Astrophysical Sources

Supernova Neutrino Physics @ JUNO



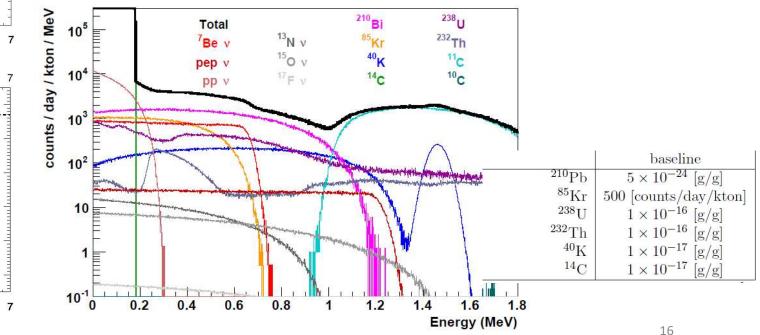
- For a SN at a distance of10kpc, JUNO will register about 5000 events from IBD, 2000 events from all-flavor elastic neutrino-proton scattering (>0.2 MeV).
- SN neutrino events with high statistics, flavor information, good energy resolution, give us a great opportunity to understand the mechanism of supernova explosion and physical pictures of the neutrino oscillation.


Process	Туре	Events ($< E_{\gamma} > = 14 \text{ MeV}$)
$\bar{v}_e + p \rightarrow e^+ + n$	CC 23	5.0 x 10 ³
$v + p \rightarrow v + p$	NC	1.2 x 10 ³
v+e→v+e	ES	3.6 x 10 ²
$v + {}^{12}C \rightarrow v + {}^{12}C^*$	NC	3.2 x 10 ²
$v_e^{+12}C \rightarrow e^{-+12}N$	22	0.9 x 10 ²
$\bar{v}_e^{+12}C \rightarrow e^{++12}B$	20	1.1 x 10 ²
N.B.: Other <e<sub>u> values</e<sub>	needed to be	considered for a complete picture

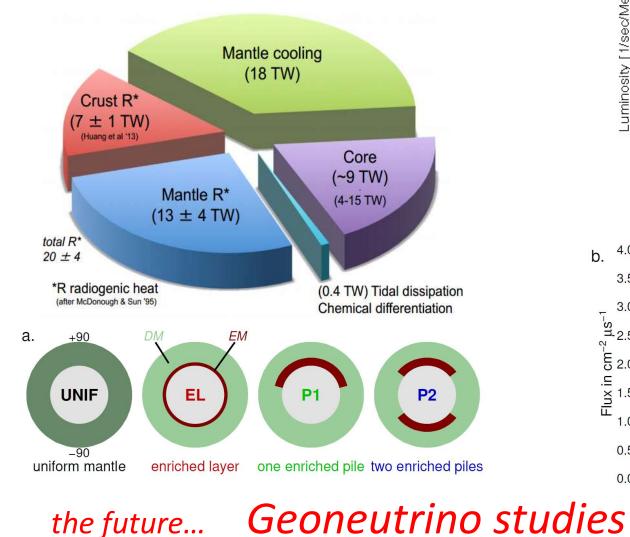
DSNB@JUNO

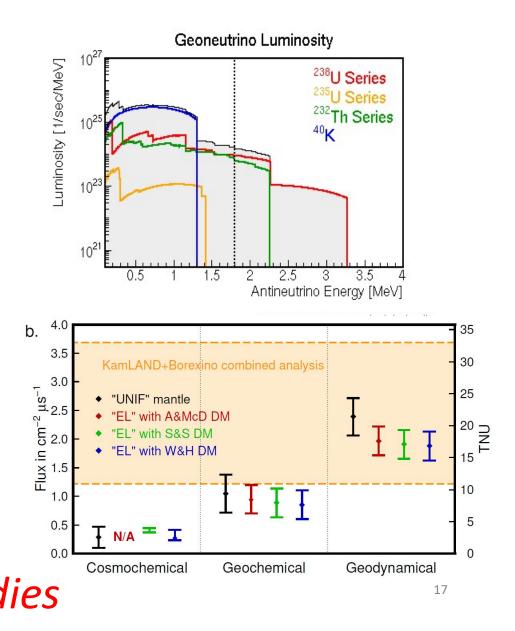
- DSNB: the integrated neutrino flux from past Core collapse SN rate
- Gives: cosmic star-formation rate, the average spectrum and rate of failed SN
- Strong atmospheric neutrino background, pulse-shape discrimination techniques
- 3σ expected for observation after 10 yr
- non-detection improve current limits and exclude a significant range of DSNB parameter ¹⁵space.

Solar neutrinos @ JUNO


ve elastic neutrino electron scattering Study of part of the pp solar fusion chain

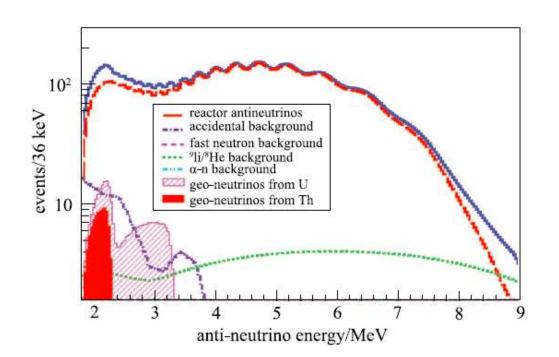
• ⁷Be neutrinos:

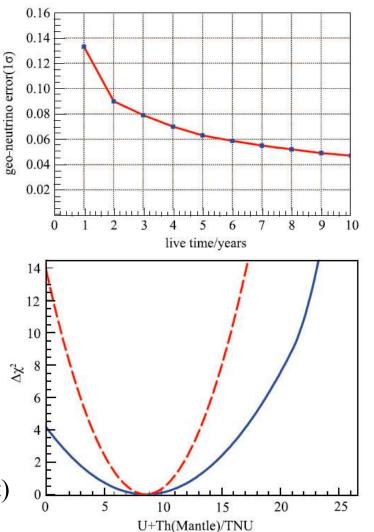

sub-MeV part of spectrum


• ⁸B neutrinos

Test of MSW oscillation pattern. Impact on Solar Models. Metallicity problem

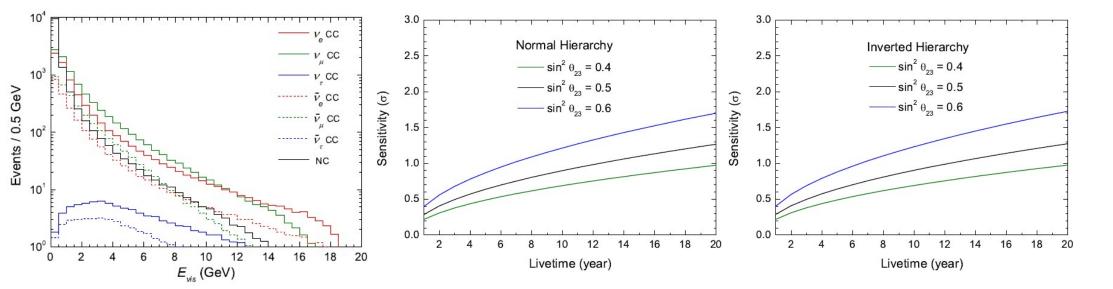
Geo-neutrino physics



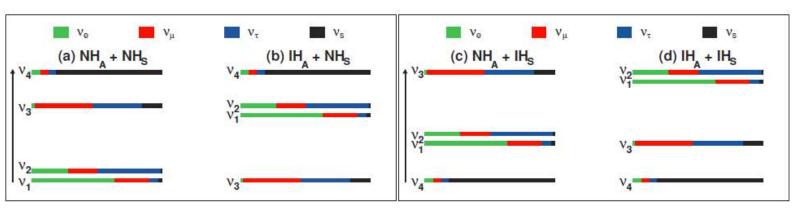

Geo-neutrino physics @ JUNO

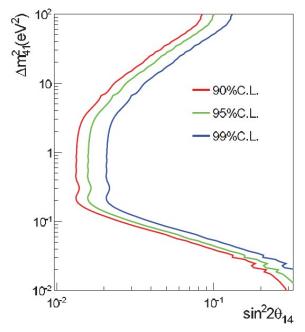
R. Han et al. Chin.Phys.C(2016)

18



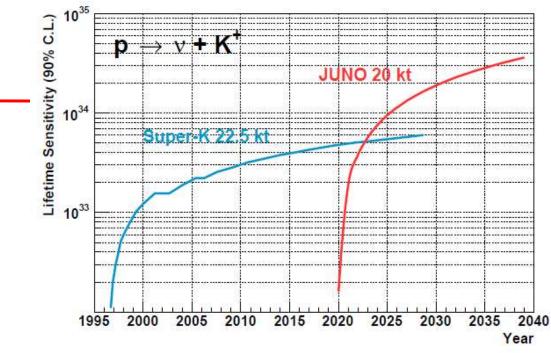
- 400events/year, much larger than before
- With 10 years: total uncertainty reach 5% (2TNU
- Comparison of the global reference model (18% crust) and a benchmark accuracy of the local model(8% crust)
- 3D local crust model is building now....

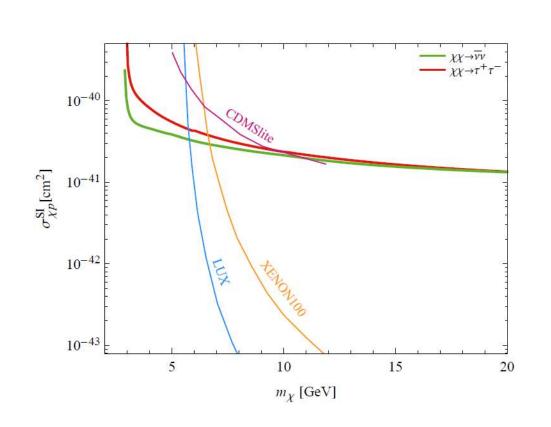

Atmospheric Neutrinos

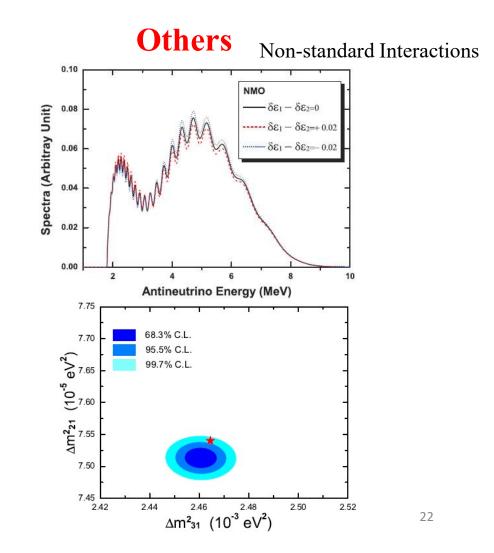

- Atmospheric neutrinos are a very important neutrino source to study the neutrino oscillation physics.
- The JUNO central detector has a very low energy threshold and can measure atmospheric neutrinos with excellent energy resolution.

Sterile Neutrinos

- Sterile neutrinos are gauge singlets of the Standard Model. They do not participate in standard weak interactions but couple to the active neutrinos through non-zero mixing between active and sterile flavors.
- The diameter of the JUNO central detector will be around 35 meters, which is perfectly suitable for a short-baseline oscillation experiment with a radioactive neutrino source sensitive to eV-scale sterile neutrinos.
- Sensitivity search at JUNO, assuming a 50 kCi¹⁴⁴Ce source at the detector center, with 450 days of data-taking. show the 90, 95 and 99% confidence levels including the reactor antineutrino background.






Exotic searches

- ➢ Indirect dark matter search
- ≻Nucleon decay
- ≻Non-standard interaction
- >Test unitarity using absolute measurements
- ≻Other probes of new physics

Nucleon decay

Neutrinos from Dark Matter

Summary

- JUNO: A funded project under construction; a 20kt LS detector in China with the purpose to Determine the neutrino mass hierarchy with reactor anti-neutrinos; unprecedented energy resolution and energy scale precision
- Furthermore, great potential regarding Astrophysical neutrinos, Atmospheric neutrinos, Exotic Search...
- Significance: after 100k IBD events (6 yr of data taking), 3-4 sigma