

News in Quarkonium Production, now and AFTER ...

J.P. Lansberg

IPN Orsay – Paris-Sud U. – Paris Saclay U. –CNRS/IN2P3

10th France-China Particle Physics Laboratory Workshop
Tsinghua U., Beijing, March 27 - 30, 2017

March 29, 2017

1 / 11

Our FCPPL collaboration

Theory of quarkonia + fixed-target experiment at the LHC

	France	China
Leaders	J.P. Lansberg (IPNO)	J.X. Wang (IHEP)
Permanent	C. Hadjidakis (IPNO)	B. Gong (IHEP)
	I. Hrivnacova (IPNO)	K.T. Chao (PKU)
	C. Lorcé (CPhT-X)	Y. Mao (PKU)
	L. Massacrier (IPNO)	Y.Q. Ma (PKU)
		Y. Gao (Tsinghua)
		Z. Yang (Tsinghua)
		Z. Tang (USTC)
		J. He (UCAS)
		H.F. Zhang (Chongqing)
		Y.J. Zhang (Beihang)
Non-permanent	H.S. Shao (LPTHE; → CR2)	L.P. Sun (PKU)
	N. Yamanaka (IPNO) F. Scarpa (IPNO)	
	1. ocurpa (11 110)	 ←□▶←□▶←□▶←□▶ ●

Theory collaboration with H.S. Shao (ex-PKU)

Theory collaboration with H.S. Shao (ex-PKU)

- Automated code to evaluate the impact of nuclear PDF [Eur.Phys.J. C77 (2017) 1]
 - Partonic scattering amplitude fit to pp data
 - Any nuclear PDF set available in LHAPDF5 or 6 can be used
 - Applied to I/ψ , Y, D and B
 - Extensive comparison with LHC data

Theory collaboration with H.S. Shao (ex-PKU)

- Automated code to evaluate the impact of nuclear PDF [Eur.Phys.J. C77 (2017) 1]
 - Partonic scattering amplitude fit to pp data
 - Any nuclear PDF set available in LHAPDF5 or 6 can be used
 - Applied to J/ψ , Y, D and B
 - Extensive comparison with LHC data
- Z + b via non prompt J/ψ [Nucl.Phys. B916 (2017) 132]
 - Measured by ATLAS
 - No theory prediction available when the data came out
 - Good theory-data agreement with our MG5@NLO evaluation

Theory collaboration with H.S. Shao (ex-PKU)

- Automated code to evaluate the impact of nuclear PDF [Eur.Phys.J. C77 (2017) 1]
 - Partonic scattering amplitude fit to pp data
 - Any nuclear PDF set available in LHAPDF5 or 6 can be used
 - Applied to J/ψ , Y, D and B
 - Extensive comparison with LHC data
- Z + b via non prompt J/ψ [Nucl.Phys. B916 (2017) 132]
 - Measured by ATLAS
 - No theory prediction available when the data came out
 - Good theory-data agreement with our MG5@NLO evaluation
- NLO computation of $Z + J/\psi$ [JHEP 1610 (2016) 153]
 - 11 ATT 40
 - Measured by ATLAS
 - Significant tension with theory; $\Delta \phi$ spectrum hints at a large SPS yield (peak at $\Delta \phi \simeq \pi$)
 - Our NLO evaluation gives an upper limit on the SPS; tension confirmed (?)
 - BUT we also claim that the interpretation of the $\Delta\phi$ spectrum could be misleading

[raw count spectrum prone to large acceptance corrections]

Discrepancy with the ATLAS data a priori solved

10 < pt < 30 GeV/c

PPb 34.6 nb¹, pp 28.0 pb¹ (5.02 TeV)

1.4

10 < p₇ < 30 GeV/c

Prompt J/ψ

1.2

10 < p₇ < 30 GeV/c

Prompt J/ψ

1.2

10 < p₇ < 30 GeV/c

Prompt J/ψ

1.2

10 < p₈ Prompt J/ψ

10

Realisations (1-bis)

Harvesting quarkonium data with H.S. Shao (ex-PKU)

Realisations (1-bis)

Harvesting quarkonium data with H.S. Shao (ex-PKU)

Topical collection in Few Body Systems: New observables in quarkonium production

- Following a workshop at ECT*-Trento
- 45+ participants with a strong FCPPL participation
- The collection will gather more than a dozen of papers
- 9 published so far

Heavy-ion studies in the fixed target mode

B. Trzeciak, C. Hadjidakis, L. Massacrier, .., JPL, .., A. Uras, Z. Yang, arXiv:1703.03726 [nucl-ex]

Heavy-ion studies in the fixed target mode

The quarkonium sequential suppression can be studied in a completely new energy domain between SPS and RHIC

+ 2 proceedings

1) Single-Transverse-Spin-Asymmetry studies with a fixed-target experiment using the LHC beams (AFTER@LHC). By J.P. Lansberg et al., [arXiv:1610.05228 [hep-ex]]. PoS DIS2016 (2016) 241.

2) Physics case for a polarised target for AFTER@LHC By Jean-Philippe Lansberg et al.. [arXiv:1602.06857 [nucl-ex]]. PoS PSTP2015 (2016)042

Realisations (3-bis)

ALICE acceptance in the fixed-target mode

B. Trzeciak, C. Hadjidakis, L. Massacrier, .., JPL, .., A. Uras, Z. Yang, arXiv:1703.03726 [nucl-ex]

- First look at the muon acceptance in the fixed-target mode as a function of the target position
- Central barrel currently studied
- Different options are possible
- If the target is outside the barrel, a dedicated tracker will be needed near the target: no overlap between the MFT and the muon-chamber acceptances
- Topic to be discussed in the "Physics Beyond Colliders" working group http://pbc.web.cern.ch/

Realisations (4) (from tomorrow until Saturday)

- Organised by Y.Q. Ma, Z. Yang and JPL; 25+ participants
- 5 sessions on quarkonium production:
 - proton-proton collisions
 - proton-nucleus collisions
 - nucleus-nucleus collisions
 - LHC fixed-target prospects
 - new observables
- Everybody is welcome to join (B105, West Building of School of Physics, PKU; 20 min. walk from here)

Projects (1)

Advance our studies of new quarkonium observables at NLO

with L.P. SUN (PKU), J.X. Wang (IHEP), H.F Zhang (Chongqing), Y.Z. Zhang (Beihang), H.S. Shao (future CR2)

We wish to perform new NLO studies of

- $\psi + \psi$ measured by LHCb, CMS, D0, ATLAS
- ψ + W measured by ATLAS
- $\Upsilon + \Upsilon$ measured by CMS
- ψ + Y measured by D0
- ψ + *D* measured by LHCb
- η_c measured by LHCb

and then make the link with gluon TMD extractions

 $J/\psi + \ell\ell$: JPL, C. Pisano and M. Schlegel, arXiv:1702.00305 [hep-ph].

Projects (2)

Fixed target studies at the LHC

with Z. Yang (Tsinghua) (possibly with J.He (UCAS))

- Use the LHCb-SMOG to refine our simulations (pp, pA and pp^{\uparrow})
- Evaluate the feasibility of a polarised gas target in LHCb and ALICE
- Evaluate the feasibility of a solid target illuminated by a bent crystal in ALICE
- Evaluate the performance of ALICE (Acceptance, DAQ, ...)
 with A. Uras (IPNL), G. Martinez (Subatech)
- All this in view of the CDR to be made by the end of 2018 for "Physics Beyond Colliders"

Conclusion

- Our multi-faceted FCPPL consortium is doing very well!

 [L. Massacrier got a CNRS CR2 position last year; H.S. Shao will get one this year!]
- Fruitful franco-chinese exchanges on various topics

 [Newcomers: H.F. Zhang (Chongqing) and Y.J. Zhang (Beihang)]
- Regular publications and communications
- Many prospects both for the theory and the experimental sides

[Not all mentioned]

- AFTER@LHC has been included as a core project in the CERN "Physics Beyond Colliders" initiative
- We start to look at the
- possibilities for ALICE in the fixed target mode
- Workshop to finalise the AFTER@LHC EoI in June in Orsay

Part I

Backup

12 / 11

· Advance our understanding of the large-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

- · Advance our understanding of the large-x gluon, antiquark and heavy-quark content in the nucleon & nucleus
- Very large PDF uncertainties for $x \gtrsim 0.5$.

[could be crucial to characterise possible BSM discoveries]

- Proton charm content important to high-energy neutrino & cosmic-rays physics
- EMC effect is an open problem; studying a possible gluon EMC effect is essential
- Relevance of nuclear PDF to understand the initial state of heavy-ion collisions
- · Search and study rare proton fluctuations

where one gluon carries most of the proton momentum

- · Advance our understanding of the large-x gluon, antiquark and heavy-quark content in the nucleon & nucleus
- Very large PDF uncertainties for $x \gtrsim 0.5$.

[could be crucial to characterise possible BSM discoveries]

- Proton charm content important to high-energy neutrino & cosmic-rays physics
- EMC effect is an open problem; studying a possible gluon EMC effect is essential
- Relevance of nuclear PDF to understand the initial state of heavy-ion collisions
- · Search and study rare proton fluctuations

where one gluon carries most of the proton momentum

· Dynamics and spin of gluons inside (un)polarised nucleons

- · Advance our understanding of the large-x gluon, antiquark and heavy-quark content in the nucleon & nucleus
- Very large PDF uncertainties for $x \gtrsim 0.5$.

[could be crucial to characterise possible BSM discoveries]

- · Proton charm content important to high-energy neutrino & cosmic-rays physics
- EMC effect is an open problem; studying a possible gluon EMC effect is essential
- Relevance of nuclear PDF to understand the initial state of heavy-ion collisions
- Search and study rare proton fluctuations

where one gluon carries most of the proton momentum

- · Dynamics and spin of gluons inside (un)polarised nucleons
- Possible missing contribution to the proton spin: orbital angular momentum
- Test of the QCD factorisation framework [beyond the DY A_N sign change]
- Determination of the linearly polarised gluons in unpolarised protons

- · Advance our understanding of the large-x gluon, antiquark and heavy-quark content in the nucleon & nucleus
- Very large PDF uncertainties for $x \gtrsim 0.5$.

[could be crucial to characterise possible BSM discoveries]

- Proton charm content important to high-energy neutrino & cosmic-rays physics
- EMC effect is an open problem; studying a possible gluon EMC effect is essential
- Relevance of nuclear PDF to understand the initial state of heavy-ion collisions
- Search and study rare proton fluctuations

where one gluon carries most of the proton momentum

- · Dynamics and spin of gluons inside (un)polarised nucleons
- Possible missing contribution to the proton spin: orbital angular momentum
- Test of the QCD factorisation framework [beyond the DY

[beyond the DY A_N sign change]

- Determination of the linearly polarised gluons in unpolarised protons
- · HEAVY-ION COLLISIONS TOWARDS LARGE RAPIDITIES

· Advance our understanding of the large-x gluon, antiquark and heavy-ouark content in the nucleon & nucleus

• Very large PDF uncertainties for $x \gtrsim 0.5$.

[could be crucial to characterise possible BSM discoveries]

- Proton charm content important to high-energy neutrino & cosmic-rays physics
- EMC effect is an open problem; studying a possible gluon EMC effect is essential
- Relevance of nuclear PDF to understand the initial state of heavy-ion collisions
- Search and study rare proton fluctuations

where one gluon carries most of the proton momentum

· Dynamics and spin of gluons inside (un)polarised nucleons

- Possible missing contribution to the proton spin: orbital angular momentum
- Test of the QCD factorisation framework [beyond the I

[beyond the DY A_N sign change]

Determination of the linearly polarised gluons in unpolarised protons

· HEAVY-ION COLLISIONS TOWARDS LARGE RAPIDITIES

- Explore the longitudinal expansion of QGP formation with new hard probes
- Test the factorisation of cold nuclear effects from p + A to A + B collisions
- Test the formation of azimuthal asymmetries: hydrodynamics vs. initial-state radiation

Energy range

7 TeV proton beam on a fixed target

c.m.s. energy:	$\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \text{GeV}$	Rapidity shift:
Boost:	$\gamma = \sqrt{s}/(2m_N) \approx 60$	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$

2.76 TeV Pb beam on a fixed target

c.m.s. energy: $\sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} \approx 72 \text{GeV}$	
Boost: $\gamma \approx 40$	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$

Energy range

7 TeV proton beam on a fixed target

c.m.s. energy:	$\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \text{GeV}$	Rapidity shift:
Boost:	$\gamma = \sqrt{s} / (2m_N) \approx 60$	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$

2.76 TeV Pb beam on a fixed target

c.m.s. energy: $\sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} \approx 1$	
Boost: $\gamma \approx 40$	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$

Such \sqrt{s} allow, for the first time, for systematic studies of W boson, bottomonia, p_T spectra, associated production, ..., in the fixed target mode

Energy range

7 TeV proton beam on a fixed target

c.m.s. energy:	$\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \text{GeV}$	Rapidity shift:
Boost:	$\gamma = \sqrt{s} / (2m_N) \approx 60$	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$

2.76 TeV Pb beam on a fixed target

c.m.s. energy: $\sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} \approx 72 \mathrm{GeV}$	
Boost: $\gamma \approx 40$	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$

Such \sqrt{s} allow, for the first time, for systematic studies of W boson, bottomonia, p_T spectra, associated production, ..., in the fixed target mode

Effect of boost:

[particularly relevant for high energy beams]

• LHCb and the ALICE muon arm become backward detectors

 $[y_{\rm c.m.s.}<0]$

Energy range

7 TeV proton beam on a fixed target

c.m.s. energy:	$\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \text{GeV}$	Rapidity shift:
Boost:	$\gamma = \sqrt{s} / (2m_N) \approx 60$	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$

2.76 TeV Pb beam on a fixed target

c.m.s. energy: $\sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} \approx 72 \text{GeV}$		<u> </u>
Boost: $\gamma \approx 40$	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$	329

Such \sqrt{s} allow, for the first time, for systematic studies of W boson, bottomonia, p_T spectra, associated production, ..., in the fixed target mode

Effect of boost:

[particularly relevant for high energy beams]

• LHCb and the ALICE muon arm become backward detectors

- $[y_{\rm c.m.s.} < 0]$
- With the reduced \sqrt{s} , their acceptance for physics grows and nearly covers half of the backward region for most probes $[-1 < x_F < 0]$

Energy range

7 TeV proton beam on a fixed target

c.m.s. energy:	$\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \text{GeV}$	Rapidity shift:
Boost:	$\gamma = \sqrt{s} / (2m_N) \approx 60$	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$

2.76 TeV Pb beam on a fixed target

c.m.s. energy: $\sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} \approx 72 \text{GeV}$		2 GeV ♣
Boost: $\gamma \approx 40$	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$	*

Such \sqrt{s} allow, for the first time, for systematic studies of W boson, bottomonia, p_T spectra, associated production, ..., in the fixed target mode

Effect of boost:

[particularly relevant for high energy beams]

• LHCb and the ALICE muon arm become backward detectors

 $[y_{\rm c.m.s.} < 0]$

- With the reduced \sqrt{s} , their acceptance for physics grows and nearly covers half of the backward region for most probes $[-1 < x_F < 0]$
- Allows for backward physics up to high $x_{\text{target}} (\equiv x_2)$

[uncharted for proton-nucleus; most relevant for p-p $^{\uparrow}$ with large x^{\uparrow}]

Advance our understanding of the high-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

Advance our understanding of the high-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

Very large PDF uncertainties for $x \ge 0.5$.

[could be crucial to characterise possible BSM discoveries]

Advance our understanding of the high-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

Very large PDF uncertainties for $x \gtrsim 0.5$.

[could be crucial to characterise possible BSM discoveries]

· Proton charm content important to high-energy neutrino & cosmic-rays physics

Advance our understanding of the high-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

• Very large PDF uncertainties for $x \gtrsim 0.5$.

[could be crucial to characterise possible BSM discoveries]

- Proton charm content important to high-energy neutrino & cosmic-rays physics
- EMC effect is an open problem; studying a possible gluon EMC effect is essential
- Relevance of nuclear PDF to understand the initial state of heavy-ion collisions

Best to take data at large x and small scale, than at large scale: advantange of low E; provided HT are under control

Advance our understanding of the high-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

• Very large PDF uncertainties for $x \gtrsim 0.5$.

[could be crucial to characterise possible BSM discoveries]

- Proton charm content important to high-energy neutrino & cosmic-rays physics
- EMC effect is an open problem; studying a possible gluon EMC effect is essential
- · Relevance of nuclear PDF to understand the initial state of heavy-ion collisions
- · Search and study rare proton fluctuations

where one gluon carries most of the proton momentum

Best to take data at large x and small scale, than at large scale: advantange of low E; provided HT are under control

Advance our understanding of the dynamics and spin of gluons and quarks inside (un)polarised nucleons

Advance our understanding of the dynamics and spin of gluons and quarks inside (un)polarised nucleons

Possible missing contribution to the proton spin: Orbital Angular Momentum $\mathcal{L}_{g;q}$:

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \mathcal{L}_g + \mathcal{L}_q$$

 $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \mathcal{L}_g + \mathcal{L}_q$ [First hint by COMPASS that $\mathcal{L}_g \neq 0$]

Advance our understanding of the dynamics and spin of gluons and quarks inside (un)polarised nucleons

Possible missing contribution to the proton spin: Orbital Angular Momentum $\mathcal{L}_{g;q}$:

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \mathcal{L}_g + \mathcal{L}_q$$

Test of the QCD factorisation framework

[First hint by COMPASS that $\mathcal{L}_g \neq 0$]

[beyond the DY A_N sign change]

Advance our understanding of the dynamics and spin of gluons and quarks inside (un)polarised nucleons

Possible missing contribution to the proton spin: Orbital Angular Momentum $\mathcal{L}_{g,g}$:

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \mathcal{L}_g + \mathcal{L}_q$$

 $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \mathcal{L}_g + \mathcal{L}_q$ [First hint by COMPASS that $\mathcal{L}_g \neq 0$]

Test of the QCD factorisation framework

[beyond the DY A_N sign change]

Determination of the linearly polarised gluons in unpolarised protons

[once measured, allows for spin physics without polarised proton, e.g. at the LHC]

Heavy-ion collisions towards large rapidities

17 / 11

Heavy-ion collisions towards large rapidities

A complete set of heavy-flavour studies between SPS and RHIC energies [needed to calibrate the quarkonium thermometer $(J/\psi, \psi', \chi_c, \Upsilon, D, J/\psi \leftarrow b + \text{pairs})$]

Heavy-ion collisions towards large rapidities

- A complete set of heavy-flavour studies between SPS and RHIC energies [needed to calibrate the quarkonium thermometer (J/ψ , ψ' , χ_c , Y, D, $J/\psi \leftarrow b$ + pairs)]
- Test the formation of azimuthal asymmetries: hydrodynamics vs. initial-state radiation

Heavy-ion collisions towards large rapidities

- A complete set of heavy-flavour studies between SPS and RHIC energies [needed to calibrate the quarkonium thermometer $(J/\psi, \psi', \chi_c, \Upsilon, D, J/\psi \leftarrow b + \text{pairs})$]
- Test the formation of azimuthal asymmetries: hydrodynamics vs. initial-state radiation
- · Explore the longitudinal expansion of QGP formation

Heavy-ion collisions towards large rapidities

- · A complete set of heavy-flavour studies between SPS and RHIC energies [needed to calibrate the quarkonium thermometer $(J/\psi, \psi', \chi_c, \Upsilon, D, J/\psi \leftarrow b + \text{pairs})$]
- Test the formation of azimuthal asymmetries: hydrodynamics vs. initial-state radiation
- Explore the longitudinal expansion of QGP formation
- Test the factorisation of cold nuclear effects from p + A to A + B collisions

