ALICE Highlights of Recent Results of Recent Results of Results of

Xiaoming Zhang (Central China Normal University)

- ALICE experiment at the LHC
- Bulk properties
- Hard probes

10th France China Particle Physics Laboratory Workshop Tsinghua University, Beijing, China, March 27 - 30 2017

The ALICE Experiment

EM calorimeters, $|\eta|$ <0.7

- EMCal, DCal and PHOS
- Neutral particle PID
- High-p⊤ electrons
- Jets...

Forward detectors

- V0,T0,ZDC...
- Trigger
- Centrality selection
- Event-plane reconstruction

The ALICE Experiment

EM calorimeters, $|\eta|$ <0.7

- EMCal, DCal and PHOS
- Neutral particle PID
- High-p⊤ electrons
- Jets...

Forward detectors

- V0,T0, ZDC...
- Trigger
- Centrality selection
- Event-plane reconstruction

TOF

PHOS)

ABSORBER

Muon spectrometer, $-4 < \eta < -2.5$

Open heavy flavours and quarkonia

acceptance

New for RUN-II

Extent back-to-back di-jet

ZDC -116m from LP,

CHAMBERS/

- W/Z bosons
- Low mass resonances

DIPOLE MAGNET

ALICE Performance

- Efficient low- p_T tracking down to 150 MeV/c
- Excellent particle identification anti-³He observed directly, hadron, lepton and photon identification up to high momenta
- Excellent vertexing capabilities (heavy flavours, Vo, cascades, conversions)
- Forward muon spectrometer: J/ψ and Y reconstruction down to $p_T = 0$
- Precise event characterization (for both Pb-Pb collisions and small systems)

Data Collection in LHC RUN-II

Collision System	Pb-Pb	p–Pb	pp
Year	2015 / 2018	2016	2015 - 2018
Energy (TeV)	5.02	5.02 / 8	5.02 / 13

- Pb–Pb: properties of the QCD medium
- p-Pb: Cold nuclear matter effects
- pp: reference for p-Pb and Pb-Pb, onset of collectivity?

Data Collection in LHC RUN-II

- Pb-Pb: properties of the QCD medium
 LHC RUN-II: various triggers for physics diversity, higher collision energy
 and data taking luminosity than RUN-I
- pp: reference for p-Pb and Pb-Pb, onset of collectivity?

Charged-Particle Multiplicity

Pb-Pb at

Bjorken estimate:

- Central Pb–Pb collisions at 5.02 TeV
 - dN/dη ~ 2000
 - Energy density ε ~18 GeV/fm³ above deconfinement transition (~1 GeV/fm³)
- ALICE: Pb–Pb at 5.02 TeV highest energy so far
 - For 0–5% most central collisions, confirms trend from lower energies
- $<dN_{ch}/d\eta>$ vs. $<N_{part}>: ~20\%$ increase going from 2.76 to 5.02 TeV
 - Provides further constraints for models

Net-Baryon Moments

$$\kappa_1(x) = \langle x \rangle$$

$$\kappa_2(x) = \langle x^2 \rangle - \langle x \rangle^2$$

$$\kappa_2(\text{Skellam}) = \kappa_1(p) + \kappa_1(\overline{p})$$

 Net-Baryon fluctuations: expressed as (ratio of) cumulants which can be compared with IQCD predictions — particularly interesting for studies of QCD phase diagram

Net-Baryon Moments

- Net-Baryon fluctuations: expressed as (ratio of) cumulants which can be compared with IQCD predictions — particularly interesting for studies of QCD phase diagram
- First measurement at LHC energies critical reference for RHIC program

Identified Particle Production

- Particle identification with different techniques: ITS, TPC, TOF and HMPID
 - Topological identification of Kaons from kinks
- Mass dependent hardening of particle spectra with increasing centrality

Bulk Profiles

- Simultaneously fit the K, π and proton spectra with Boltzmann-Gibbs Blast-Wave model
- Simplified hydrodynamics model with three parameters
 - $<\beta_T>$ mean radial expansion velocity
 - T_{kin} kinetic freeze-out temperature
 - n velocity profile

In Pb-Pb collisions at 5.02 TeV

- Fit quantity similar to that at 2.76 TeV
- Blast-Wave parameters follow the trend obtained at lower energy
- For the most central collisions
 - → Largest the radial flow ever observed in heavy-ion collisions

Bulk Profiles

- Simultaneously fit the K, π and proton spectra with Boltzmann-Gibbs Blast-Wave model
- Simplified hydrodynamics model with three parameters
- $<\beta_T>$ mean radial expansion velocity
- T_{kin} kinetic freeze-out temperature
- n velocity profile

Blast-Wave parameters in small systems (pp and p-Pb)

- Similar features as observed in Pb–Pb collisions
 - With increasing multiplicity larger $<\beta_T>$, smaller T_{kin}
- Higher <β_T> for smaller collision systems at comparable multiplicity
- Does not exclude hydro-like collective behavior

Azimuthal Anisotropy

- Quantify anisotropy: Fourier decomposition of particle azimuthal distribution relative to the reaction plane (Ψ_{RP}) coefficients v_2 , v_3 , v_4 ... v_n
- Elliptic flow (v₂): spatial anisotropy pressure gradients lead to momentum anisotropy — hydrodynamics
- Higher order flow: bring additional constraints on the initial conditions, η/s, EoS, freeze-out conditions...

Azimuthal Anisotropy

ALICE Phy. Rev. Lett. 116 (2016) 132302

- p_T-integrated values indicate an increase with collision-energy attributed to the increase in <p_T>
- Good agreement with hydrodynamical calculations
 - Measurements support a low value for η/s ratio ~0.2

• Improvements over RUN-I: kinematic range is extended

- Improvements over RUN-I: kinematic range is extended
 - Higher precision of ϕ -meson v_2 measurement

- Improvements over RUN-I: kinematic range is extended
 - Higher precision of ϕ -meson v_2 measurement
- Low p_T (<2 GeV/c): follows a mass ordering, indicative of strong radial flow

- Improvements over RUN-I: kinematic range is extended
 - Higher precision of φ-meson v₂ measurement
- Low p_T (<2 GeV/c): follows a mass ordering, indicative of strong radial flow
- Intermediate p_T (3< p_T <8 GeV/c): type dependence

- Improvements over RUN-I: kinematic range is extended
 - Higher precision of φ-meson v₂ measurement
- Low p_T (<2 GeV/c): follows a mass ordering, indicative of strong radial flow
- Intermediate p_T (3< p_T <8 GeV/c): type dependence kE_T/n_q scaling

Flow Harmonic Correlations

- High harmonic flow is modeled as the sum of linear and non-linear terms
 - Linear response: expected to correspond to the same order eccentricity
 - Non-linear response: corresponds to lower order initial eccentricities
- χ442 insensitive to η/s but sensitive to initial conditions
- χ532 weak sensitive to initial conditions, vary significantly with η/s

Flow Harmonic Correlations

- High harmonic flow is modeled as the sum of linear and non-linear terms
- Linear response: expected to correspond to the same order eccentricity.
 Provided new and stronger constraints on understanding hydro properties of the QGP medium
- χ442 insensitive to η/s but sensitive to initial conditions
- χ532 weak sensitive to initial conditions, vary significantly with η/s

Heavy Flavours

- Confirmed again non-zero v2 of open heavy flavour in semi-central collisions
- R_{AA} of muon from heavy-flavour decays at forward rapidity little energy dependence
- Higher precision measurements of R_{AA} and v_2 of open heavy flavours in RUN-II needed for strong model constraints

Near-side Jet Peak Broadening

- Moderate broadening in Δφ, while much larger broadening in Δη
 - Hint of strong interaction of jets with the medium

Near-side Jet Peak Broadening

- Moderate broadening in Δφ, while much larger broadening in Δη
 - Hint of strong interaction of jets with the medium
- AMPT without melting but with hadronic scattering describes data better than other options — describes both peak broadening and depletion in data
 - Depletion and broadening result from interplay of jets and collective medium, driving factor for depletion and broadening is radial flow

Conclusion

- ALICE LHC RUN-II: 5~10 x data taking rate than RUN-I
- Net-baryon fluctuations: critical reference for study of QCD phase diagram
- Identified particle production
 - The largest radial flow ever observed in heavy-ion collisions
 - Can not exclude hydro correlations at high multiplicity in small systems
- Anisotropic flow: support a low value for η/s (~0.2)
- Flow harmonic correlations: new constraint on understand hydro properties of the QCD medium
- Heavy flavour production: higher precision measurements, strong constraint on the R_{AA} and v_2 puzzle observed in RUN-I
- Jet peak depletion and broadening interplay of jets and collective medium