Search for SUSY with same-sign or three leptons and jets $at \sqrt{s} = 13$ TeV

Huan Ren

IHEP,CPPM 2017.Mar.27th FCPPL workshop

PARTICULES DE MARSEILLE

Institute of High Energy Physics Chinese Academy of Sciences

General information

ATLAS NOTE ATLAS-CONF-2016-037 4th August 2016

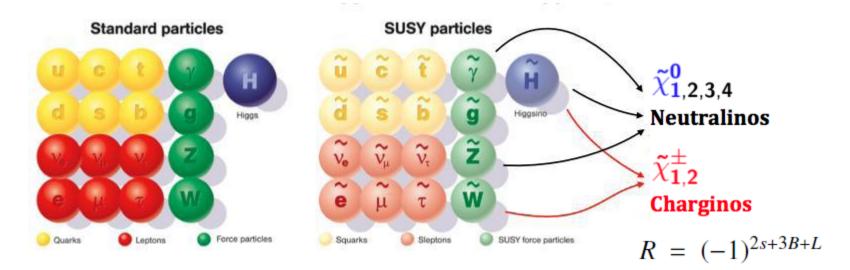
SUSY SS2I/3I+jets subgroup of ATLAS experiment

26 members

IHEP & CPPM

- Mahmoud Alstaty
- 🔶 Shan Jin
- Yang Liu
- Emmanuel Monnier
- Pascal Pralavorio
- Huan Ren
- Xuai Zhuang

Search for supersymmetry with two same-sign leptons or three leptons using 13.2 fb⁻¹ of $\sqrt{s} = 13$ TeV *pp* collision data collected by the ATLAS detector


The ATLAS Collaboration

Abstract

This note presents a search for strongly produced supersymmetric particles using signatures involving multiple energetic jets and either two isolated same-sign leptons (e or μ) or at least three isolated leptons. The analysis also utilises other observables, such as *b*-tagged jets or missing transverse momentum, to extend its sensitivity. A data sample of proton–proton collisions at $\sqrt{s} = 13$ TeV recorded with the ATLAS detector at the Large Hadron Collider in 2015 and 2016, corresponding to a total integrated luminosity of 13.2 fb⁻¹, is used for the search. No significant excess over the Standard Model expectation is observed. The results are interpreted in several simplified supersymmetric models featuring *R*-parity conservation and *R*-parity violation, extending the exclusion limits from previous searches.

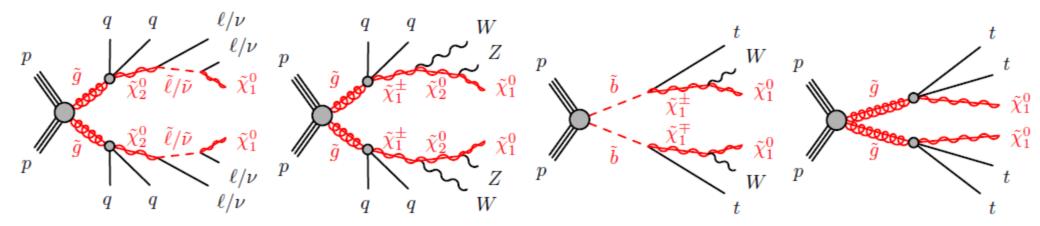
ATLAS-CONF-2016-037 05 August 2016

SUSY introduction

Supersymmetry - one of the most appealing Beyond Standard Model theories.

- Moderates the hierarchy problem
- Helps with the grand unification of gauge couplings.
- Provides a suitable dark matter candidate

Strongly produced gluino and squark:


- Large cross-section
- Natural signature: multi-leptons, multi-jets and large Missing Transverse Energy

Analysis motivation

Search gluino and squark initiated decay chains with multi-leptons in the final state

- Natural SUSY signature:
 - gluino, stop and sbottom masses expected to be at TeV scale .
- **Gluinos** are majorana particles:
 - -allow for same-sign lepton pair production
- Rare processes in Standard Model:
 - very low background expectation.

Signal Region definition

Signal scenario:

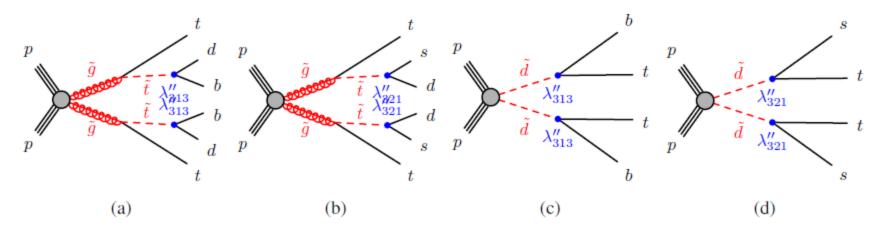
- **Same-sign** (SS) lepton pairs or **three leptons** (3L)

+ jets (pT > 25, 40, 50 GeV) and/or b-jets (pT > 20 GeV)

• large E_T^{miss} , $M_{eff} = \sum p_T^{lep} + \sum p_T^{jet} + E_T^{miss}$ (high kinematic regions)

R-Parity Conserving(RPC) Signal regions

6 RPC signal regions defined as a function of b-jet & lepton multiplicity:


SR	N_{ℓ}	$N_{b-\rm jets}^{20}$	Njets	$p_{\mathrm{T}}^{\mathrm{jets}}$	$E_{\rm T}^{\rm miss}$ [GeV]	$m_{\rm eff}$ [GeV]
SR3L1	≥3	=0	≥4	40	>150	-
SR3L2	≥3	=0	≥4	40	>200	1500
SR0b1	≥2	=0	≥6	25	>150	>500
SR0b2	≥2	=0	≥6	40	>150	>900
SR1b	≥2	≥1	≥6	25	>200	>650
SR3b	≥2	≥3	≥6	25	>150	>600

Also investigating more SRs with 2 leptons for 36.5 fb-1. Working in progress 5

R-Parity Violating(RPV) signal regions

3 RPV signal regions also defined, as a function of b-jets and jet multiplicity

SR	N _ℓ	N_{b-jets}^{20}	Njets	$p_{\mathrm{T}}^{\mathrm{jets}}$	$E_{\rm T}^{\rm miss}$ [GeV]	$m_{\rm eff}$ [GeV]	Other
SR1b-DD	≥2	≥1	≥4	50	-	>1200	\geq 2 negatively-charged leptons
SR3b-DD	≥2	≥3	≥4	50	-	>1000	\geq 2 negatively-charged leptons
SR1b-GG	≥2	≥1	≥6	50	-	>1800	-

RPV SUSY processes featuring gluino (a,b) or down squark (c,d) pair production and decays via baryon number-violating couplings λ'' considered in this analysis.

Will consider 3 more SRs for the PRV model with 36.5 fb-1 data.

Background estimation

background events with prompt SS/3I :

- ✓ tĪW,tĪZ
- Diboson (dominant in 0b SRs)
- Other rare process
 ttH, ttt, tt, tZ, ttWW, tWZ, Wh, Zh, tri-boson

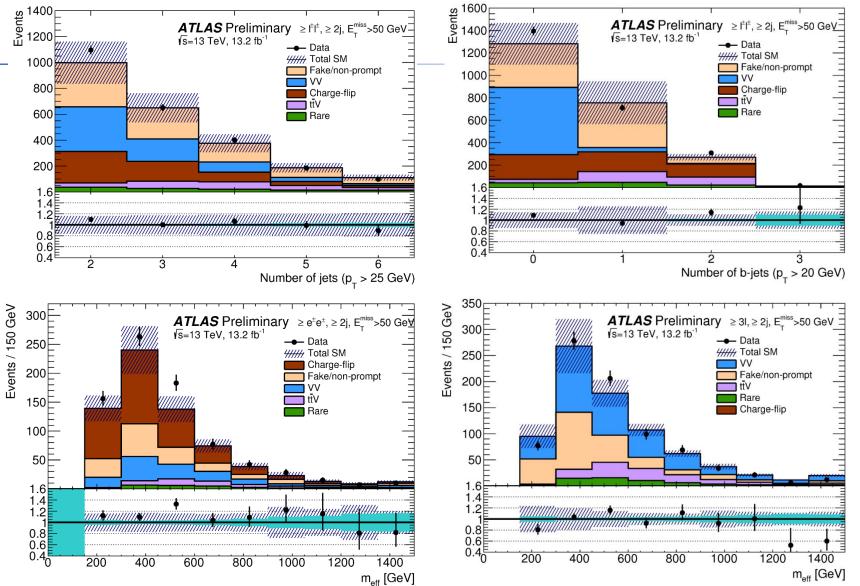
Estimated by Monte-Carlo simulation

 Dedicated Validation Region(VR) for most of the backgrounds

Data-driven estimation for electron charge-misID background

- Events with OS lepton pair are assigned with weight: $w_{\text{flip}} = \xi_1(1 \xi_2) + (1 \xi_1)\xi_2$ where for muons: $\xi_{(i)} = 0$
- Charge-flip rate are measured using Z->ee events using likelihood method

Fake leptons(Dominant source in most of the SRs)


Mainly from B hadrons decay (semi-leptonic ttbar process)

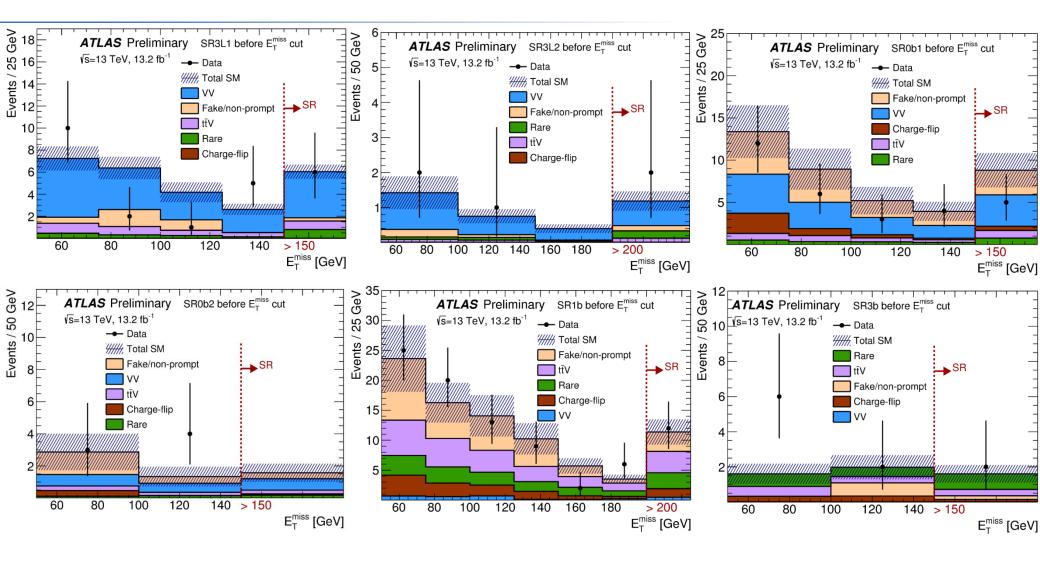
Estimated using pure data-driven - Matrix Method

- real efficiency Z->ll tag-and-probe
- fake rate data in CR enriched in ttbar.

$$\binom{n_{\text{pass}}}{n_{\text{fail}}} = \binom{1}{\frac{1-\varepsilon}{\varepsilon}} \frac{1-\zeta}{\zeta} \binom{n_{\text{real}}}{n_{\text{fake}}}$$

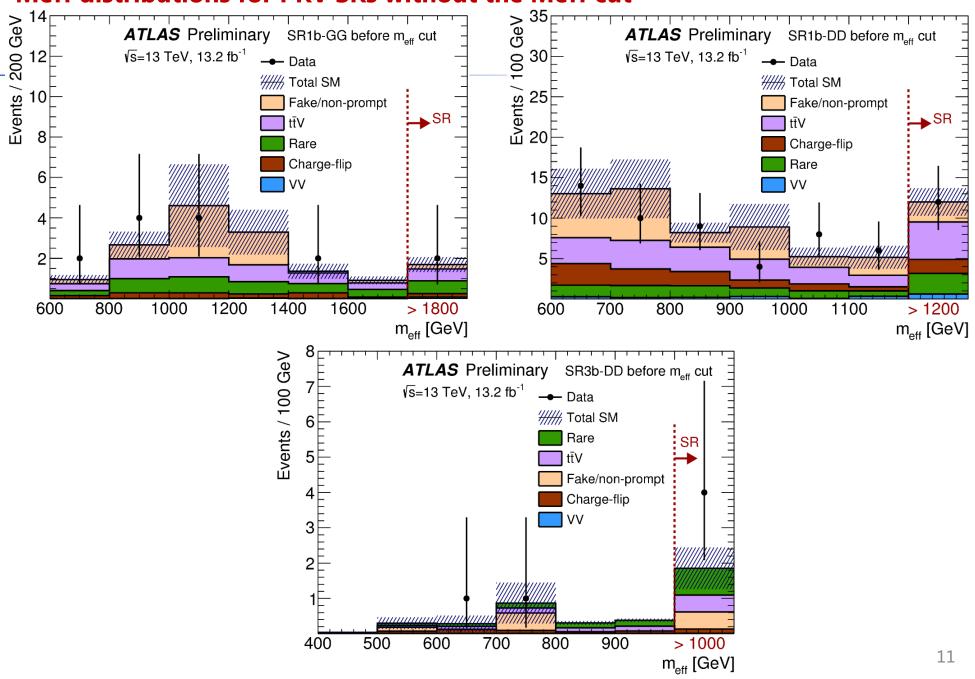
Validation plots for SM background estimation

Uncertainties include statistical sources, as well as systematic uncertainties for the data-driven backgrounds; for illustration, statistical uncertainties alone are shown in the light-coloured error bands in the ratio plots.

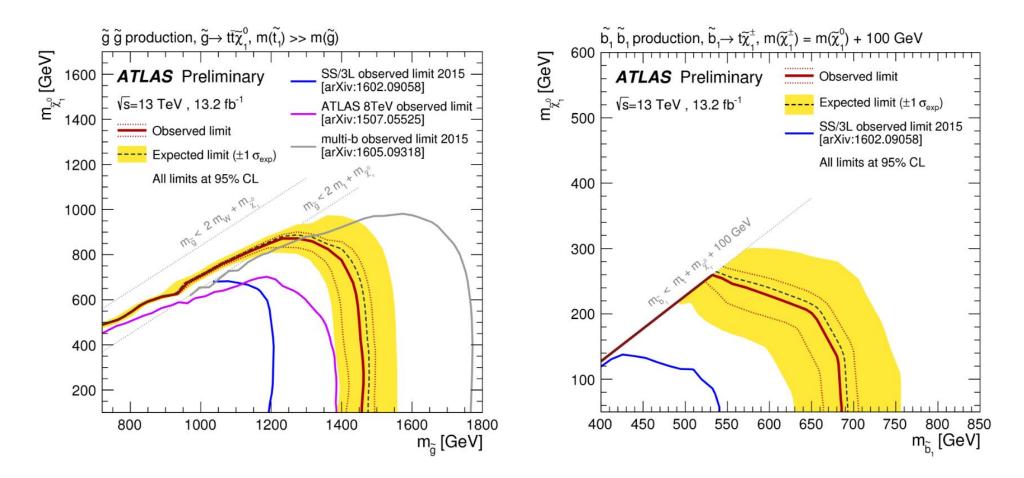

Results in Signal Regions

Yields in signal regions.

- No excess observed

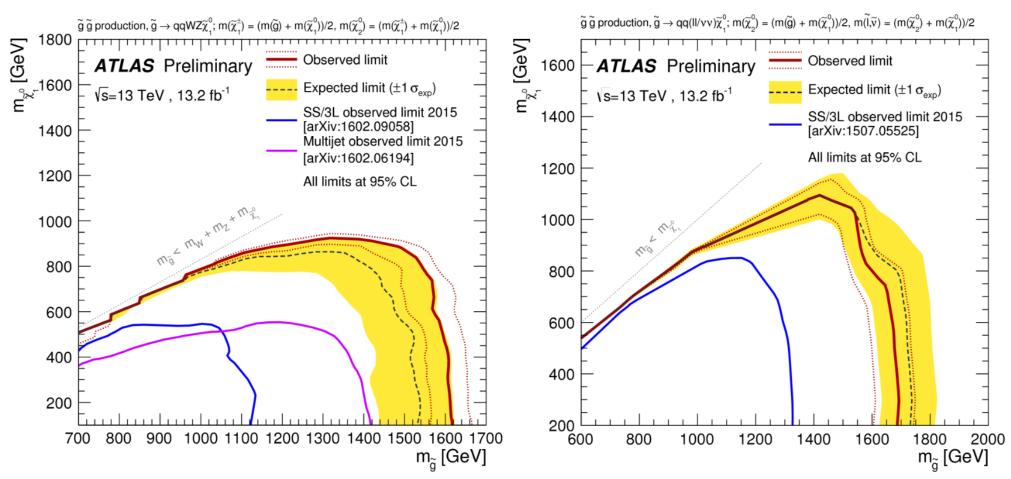

	SR3L1	SR3L2	SR0b1	SR0b2	SR1b	SR3b	SR1b-GG	SR1b-DD	SR3b-DD
Observed	6	2	5	0	12	2	2	12	4
Total SM	6.05 ± 2.15	1.18 ± 0.49	8.81 ± 2.87	1.57 ± 0.77	11.40 ± 2.76	1.60 ± 0.61	1.69 ± 0.57	12.03 ± 2.68	1.86 ± 0.75
ttZ	0.69 ± 0.25	0.10 ± 0.04	0.45 ± 0.18	0.10 ± 0.04	1.58 ± 0.55	0.19 ± 0.07	0.26 ± 0.08	2.81 ± 0.89	0.30 ± 0.10
ttW	0.09 ± 0.04	0.02 ± 0.01	0.45 ± 0.17	0.13 ± 0.06	1.97 ± 0.68	0.17 ± 0.06	0.33 ± 0.11	1.81 ± 0.58	0.18 ± 0.07
Diboson	4.18 ± 1.96	0.70 ± 0.43	3.72 ± 1.86	0.71 ± 0.52	0.47 ± 0.41	0.00 ± 0.00	$0.08^{+0.19}_{-0.09}$	0.61 ± 0.42	0.00 ± 0.00
Rare	0.80 ± 0.44	0.21 ± 0.13	0.76 ± 0.44	0.18 ± 0.12	2.69 ± 0.90	0.89 ± 0.31	0.64 ± 0.34	2.57 ± 1.32	0.76 ± 0.40
Fakes	0.29 ± 0.29	0.15 ± 0.15	2.92 ± 1.97	0.37 ± 0.53	3.25 ± 2.08	$0.20^{+0.49}_{-0.48}$	$0.21^{+0.33}_{-0.32}$	2.48 ± 1.66	0.48 ± 0.59
MisCharge	0.00 ± 0.00	0.00 ± 0.00	0.50 ± 0.09	0.08 ± 0.03	1.43 ± 0.19	0.14 ± 0.03	0.18 ± 0.07	1.74 ± 0.22	0.14 ± 0.03

MET distributions for RPC SRs without the Meff cut

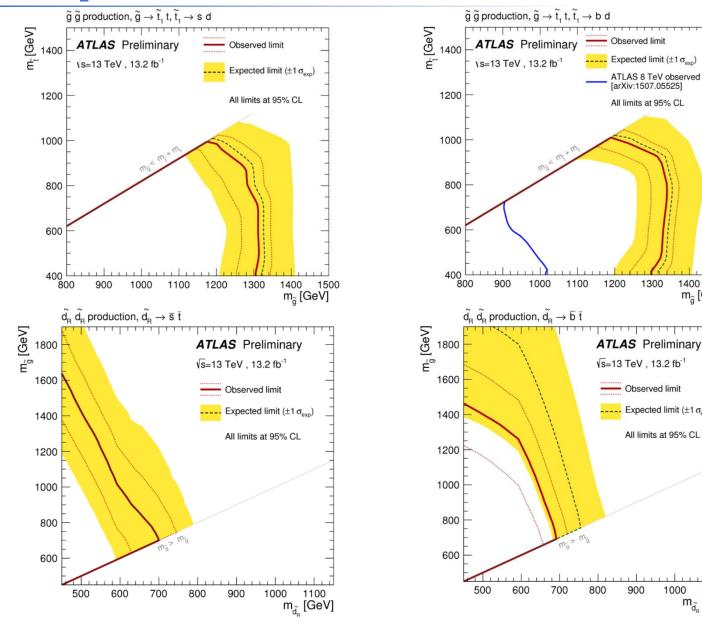


10

Meff distributions for PRV SRs without the Meff cut



Interpretation – Gtt and direct sbottom



Interpretation

– 2step via W/Z/sleptons

Interpretation – RPV SRs

Observed limit

Expected limit $(\pm 1 \sigma_{exp})$

All limits at 95% CL

1200

1300

Observed limit

900

1000

1100

 $m_{\tilde{d_{R}}}$ [GeV]

Expected limit $(\pm 1 \sigma_{exp})$

All limits at 95% CL

ATLAS 8 TeV observed limit [arXiv:1507.05525]

1500

1400 m_ã [GeV]

conclusion

- We presented a search for the production of gluinos and squarks in $\sqrt{S} = 13TeV$ pp collisions, in final states with jets and same-sign leptons.
- Data to SM expectations in 9 SRs shows no significant excess.
- We set exclusion limits on the masses of gluinos, bottom squarks and neutralinos in various benchmark scenarios, extending significantly the limits set previously.
- With 36.5 fb-1 data obtained by the end of last year, more SRs are defined and will have larger sensitivity for the SS/3I search. The 2015+2016 full data analysis is in progress for SUSY approval.
- One paper EPJC(2016)76(5), 1-26 published based on 2015 data
- CONF number of ICHEP: ATLAS-CONF-2016-037

Data/ & MC samples

- Data(5.80fb-1)
 - **2015 data(3.19fb-1):** reconstruction 20.7.3.8 (tag r7562), derivation 20.7.6.4 (tag r2667)
 - 2016 data(2.61fb-1): derivation 20.7.6.4 (tag r2667)
 - Period A: reconstruction 20.7.5.8 20.7.6.4 (tags f694-f706)
 - Period B: reconstruction 20.7.6.4 (tags f705-f708)

Monte Carlo

- ◆ All generated with **25-ns** bunch spacing configuration, derivation 20.7
- $t\bar{t}W$ with 0-2 extra partons $t\bar{t}Z/\gamma^*$ with 0-1 extra partons
- WZ ZZ $W^{\pm}W^{\pm}$ tree-induced qq->VV, loop induced gg->VV, EWK production VBS
- Rare process: ttH, ttt, tt, tZ, ttWW, tWZ, Wh, Zh

• Analysis framework

 Based on the SUSYAnalysisExample EventLoop package and various tags of SUSYTools up to 00-07-69 and analysis release up to

Object definition & event selections

Object selections

	Pre-selected Electron	Pre-selected Muon
Acceptance	$p_{\rm T} > 10 \text{ GeV}, \eta^{\rm clust} < 2.47$	$p_{\rm T} > 10 {\rm GeV}, \eta < 2.5$
	except $1.37 < \eta^{clust} < 1.52$	
Quality	LooseAndBLayerLLH	xAOD::Muon::Medium
ℓ-jet Isolation	see sect	ion 4.4
Impact parameter	$ d_0/\sigma(d_0) < 5.0$	
	Signal Electron	Signal Muon
Quality	MediumLLH	-
	$ \eta < 2.0$	-
Isolation	"FixedCutTight"	"FixedCutTightTrackOnly"
Impact parameter	$ z_0 \cdot \sin(\theta) < 0.5 \mathrm{mm}$	$ z_0 \cdot \sin(\theta) < 0.5 \mathrm{mm}$
		$ d_0/\sigma(d_0) < 3.0$

Pre-selected jet		
Collection	AntiKt4EMTopo	
Acceptance	$p_{\rm T} > 20 {\rm GeV}, \eta < 2.8$	
Overlap	see section 4.4	
Jet vertex tagger	reject jets with $p_{\rm T} < 60$ GeV, $ \eta < 2.4$	
	and JVT<0.59 after overlap removal	
	b-jets	
Acceptance	$p_{\rm T} > 20 {\rm GeV},$	
	$ \eta < 2.5$	
b-tagging	MV2c10 algorithm 70% OP	
	MV2c10 algorithm 85% OP for overlap removal	

Event slections:

- Cleaning requirements

Bad jet, bad muons and cosmic muons

- At least 2 leptons

At least 2 signal leptons 2 leading leptons have pT>20GeV

- Then sorted into 3l events or SS2l events:

- Event containing a 3rd signal-lepton with pT>10GeV is regarded as 3l event
- Otherwise, if the 2 leading leptons have identical charge, the event is regarded as SS2l events

triggers

Trigger strategy - data

- 2015 data with $E_T^{miss} < 250 GeV$: logical OR of dilepton triggers HLT_2e12_lhloose_L12EM10VH HLT_e17_lhloose_mu14 HLT_mu18_mu8noL1

- 2015 data with $E_T^{miss} > 250 GeV$:

logical OR of the dilepton triggers and HLT_xe70

- 2016 data with $E_T^{miss} < 250 GeV$ logical OR of dilepton triggers HLT_2e17_lhvloose HLT_e17_lhloose_nod0_mu14 HLT_mu20_mu8noL1
- 2016 data with $E_T^{miss} > 250 GeV$:

logical OR of the dilepton triggers and HLT_xe80_tc_lcw_L1XE50 *will be switched to HLT_xe100_mht

Trigger strategy – MC

chosen randomly between the two options(data2015 or data 2016) according to the relative luminosities and $<\mu>$ profiles of the 2015 and 2016 datasets

Trigger match

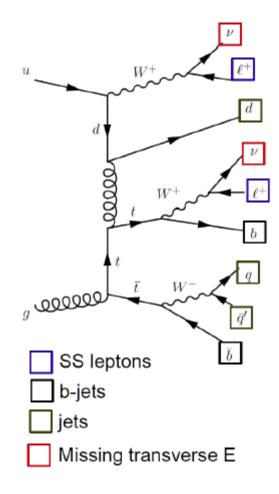
Considered only for signal leptons with $p_T > 20 GeV$

Also for muons with pT>10 GeV in the case of the dimuon trigger

Trigger scale factor

Will be consider for MC events not passing the E_T^{miss} triggers

Background estimation


background events with prompt SS/3I in the final state:

- $\checkmark t\bar{t}W, t\bar{t}Z$
- Diboson (dominant in 0b SRs)
- Other rare process

ttH, tttt, ttt, tZ, ttWW, tWZ, Wh, Zh, tri-boson

Estimated by Monte-Carlo simulation

- Dedicated VR for most of the backgrounds

All systematic sources for RPC SRs

Uncertainty of channel	SR3L1
Total background expectation	2.95
Total statistical $(\sqrt{N_{exp}})$ Total background systematic	±1.72 ±0.85 [28.72%]
alpha_theoryUncertWZ_SR3L1	±0.62
gamma_stat_SR3L1_cuts_bin_0	±0.49
alpha_JET_reso	±0.29
alpha_JET_scale_NP1	±0.28
alpha_JET_scale_NP3	±0.15
alpha_FT_JVT	±0.14
Lumi	±0.14
alpha_theoryUncertRare	±0.11
alpha_theoryUncertTTbarV_SR3L1	±0.11
alpha_pileupBKG	±0.09
alpha_FT_B	±0.07
alpha_eIID	±0.04
alpha_FT_Extra1	±0.03
alpha_muSys	±0.03
alpha_FT_Light	±0.03
alpha_elIso	±0.02
alpha_elReco	±0.02
alpha_FT_C	±0.01
alpha_muIsoSys	±0.01
alpha_JET_scale_NP2	±0.01
alpha_Mu_MS	±0.01
alpha_MET_Soft_reso_Para	±0.01
alpha_Mu_Scale	±0.01
alpha_muStat	±0.01
alpha_EG_Resolution	±0.01
alpha_EG_Scale	±0.01
alpha_muIsoStat	±0.00
alpha_theoryUncertOtherMB	±0.00
alpha_JET_EtaIntercalibration	±0.00
alpha_MET_Soft_Scale	±0.00
alpha_Mu_ID	±0.00
alpha_FT_Extra2	±0.00
alpha_muStat_lowpt	±0.00
alpha_MET_Soft_reso_Perp	±0.00
alpha_muSys_lowpt	±0.00

Uncertainty of channel	SR3L2
Total background expectation	0.86
Total statistical $(\sqrt{N_{exp}})$	±0.93
Total background systematic	±0.42 [48.46%]
gamma_stat_SR3L2_cuts_bin_0	±0.36
alpha_theoryUncertWZ_SR3L2	±0.17
alpha_pileupBKG	±0.13
alpha_JET_scale_NP1	±0.06
alpha_JET_reso	±0.06
alpha_JET_scale_NP3	±0.05
Lumi	±0.04
alpha_theoryUncertRare	±0.03
alpha_FT_JVT	±0.03
alpha_FT_Extra1	±0.02
alpha_JET_scale_NP2	±0.02
alpha_FT_B	±0.02
alpha_theoryUncertTTbarV_SR3L2	±0.02
alpha_muSys	±0.01
alpha_Mu_ID	±0.01
alpha_FT_Light	±0.01
alpha_elIso	±0.01
alpha_eIID	±0.01
alpha_FT_C	±0.00
alpha_muIsoSys	±0.00
alpha_EG_Scale	±0.00
alpha_elReco	±0.00
alpha_muStat	±0.00
alpha_MET_Soft_reso_Para	±0.00
alpha_EG_Resolution	±0.00
alpha_Mu_MS	± 0.00
alpha_muIsoStat	±0.00
alpha_FT_Extra2	±0.00
alpha_theoryUncertOtherMB	±0.00
alpha_muStat_lowpt	± 0.00
alpha_muSys_lowpt	± 0.00
alpha_Mu_Scale	± 0.00
alpha_MET_Soft_reso_Perp	± 0.00
alpha_JET_EtaIntercalibration	± 0.00
alpha_MET_Soft_Scale	±0.00

Uncertainty of channel	SR0b1
Total background expectation	5.10
Total statistical $(\sqrt{N_{exp}})$	±2.26
Total background systematic	±1.55 [30.48%]
alpha_syst_fake_SR0b1	±1.40
gamma_stat_SR0b1_cuts_bin_0	±1.08
alpha_JET_reso	±0.47
alpha_theoryUncertWZ_SR0b1	±0.44
alpha_JET_scale_NP1	±0.36
alpha_Mu_MS	±0.16
alpha_Mu_Scale	±0.16
alpha_FT_JVT	±0.15
alpha_pileupBKG	±0.15
alpha_Mu_ID	±0.15
alpha_JET_scale_NP2	±0.13
alpha_theoryUncertRare	±0.13
alpha_theoryUncertTTbarV_SR0b1	±0.13
Lumi	±0.12
alpha_JET_scale_NP3	±0.11
alpha_FT_B	±0.09
alpha_theoryUncertWWjj_SR0b1	±0.06
alpha_FT_Extra1	±0.04
alpha_eIID	±0.03
alpha_FT_Light	±0.02
alpha_muSys	±0.02
alpha_FT_C	±0.02
alpha_elIso	±0.01
alpha_MET_Soft_Scale	±0.01
alpha_elReco	±0.01
alpha_syst_misch_SR0b1	±0.01
alpha_muIsoSys	±0.01
alpha_JET_EtaIntercalibration	±0.01
alpha_muStat	±0.01
alpha_EG_Resolution	±0.01
alpha_MET_Soft_reso_Para	±0.00
alpha_muIsoStat	±0.00
alpha_theoryUncertOtherMB	±0.00
alpha_EG_Scale	±0.00
alpha_FT_Extra2	±0.00
alpha_MET_Soft_reso_Perp	±0.00
alpha_muStat_lowpt	±0.00
alpha_muSys_lowpt	±0.00
aipna_inusys_iowpt	±0.00

1

All systematic sources for RPC SRs

Uncertainty of channel	SR0b2
Total background expectation	0.68
Total statistical $(\sqrt{N_{exp}})$	±0.82
Total background systematic	±0.25 [37.18%]
gamma_stat_SR0b2_cuts_bin_0	±0.20
alpha pileupBKG	±0.10
alpha_JET_scale_NP1	±0.07
alpha_theoryUncertWZ_SR0b2	±0.07
alpha_JET_scale_NP3	±0.04
alpha_theoryUncertTTbarV_SR0b2	±0.03
alpha_FT_JVT	±0.03
alpha_theoryUncertWWjj_SR0b2	±0.03
alpha_theoryUncertRare	±0.03
Lumi	±0.02
alpha_FT_B	±0.02
alpha_JET_scale_NP2	±0.02
alpha_FT_Extra1	±0.02
alpha_EG_Scale	±0.01
alpha_JET_reso	±0.01
alpha_MET_Soft_reso_Para	±0.01
alpha_FT_C	±0.01
alpha_MET_Soft_Scale	±0.01
alpha_EG_Resolution	±0.01
alpha_FT_Light	±0.01
alpha_eIID	±0.01
alpha_muSys	±0.00
alpha_MET_Soft_reso_Perp	±0.00
alpha_elIso	±0.00
alpha_muIsoSys	±0.00
alpha_elReco	±0.00
alpha_Mu_ID	±0.00
alpha_Mu_MS	±0.00
alpha_muStat	±0.00
alpha_JET_EtaIntercalibration	±0.00
alpha_muIsoStat	±0.00
alpha_FT_Extra2	±0.00
alpha_theoryUncertOtherMB	±0.00
alpha_muStat_lowpt	±0.00
alpha_muSys_lowpt	±0.00
alpha_Mu_Scale	±0.00

Uncertainty of channel	SR1b
Total background expectation	6.37
Total statistical $(\sqrt{N_{exp}})$ Total background systematic	±2.52 ±1.61 [25.26%]
alpha_syst_fake_SR1b	±1.35
gamma_stat_SR1b_cuts_bin_0	±1.05
alpha_theoryUncertRare	±0.59
alpha_theoryUncertTTbarV_SR1b	±0.46
alpha_JET_scale_NP1	±0.46
alpha_JET_reso	±0.22
alpha_FT_JVT	±0.22
Lumi	±0.16
alpha_JET_scale_NP2	±0.11
alpha_theoryUncertWZ_SR1b	±0.10
alpha_JET_scale_NP3	±0.09
alpha_FT_B	±0.07
alpha_eIID	±0.04
alpha_syst_misch_SR1b	± 0.04
alpha_EG_Scale	±0.03
alpha_elIso	±0.03
alpha_muSys	±0.02
alpha_MET_Soft_reso_Perp	±0.02
alpha_FT_Extra1	±0.02
alpha_pileupBKG	±0.02
alpha_elReco	±0.02
alpha_FT_C	±0.01
alpha_MET_Soft_Scale	±0.01
alpha_muIsoSys	± 0.01
alpha_Mu_ID	±0.01
alpha_muStat	± 0.01
alpha_theoryUncertOtherMB	±0.01
alpha_EG_Resolution	±0.01
alpha_JET_EtaIntercalibration	± 0.00
alpha_Mu_MS	± 0.00
alpha_muIsoStat	± 0.00
alpha_FT_Light	± 0.00
alpha_Mu_Scale	± 0.00
alpha_FT_Extra2	±0.00
alpha_MET_Soft_reso_Para	± 0.00
alpha_muSys_lowpt	±0.00
alpha_muStat_lowpt	± 0.00

Uncertainty of channel	SR3b
Total background expectation	0.91
Total statistical $(\sqrt{N_{exp}})$	±0.96
Total background systematic	±0.55 [59.70%]
gamma_stat_SR3b_cuts_bin_0	±0.50
alpha_syst_fake_SR3b	±0.30
alpha_theoryUncertRare	+0.19
alpha_FT_B	±0.05
alpha_theoryUncertTTbarV_SR3b	±0.04
alpha_FT_JVT	±0.04
alpha_JET_scale_NP1	±0.03
Lumi	±0.03
alpha_FT_C	±0.02
alpha_FT_Extra1	±0.02
alpha_FT_Light	±0.02
alpha_JET_reso	±0.01
alpha_pileupBKG	±0.01
alpha_JET_scale_NP3	±0.01
alpha_syst_misch_SR3b	±0.01
alpha_JET_scale_NP2	±0.01
alpha_elID	±0.01
alpha_muSys	±0.00
alpha_elIso	±0.00
alpha_EG_Scale	±0.00
alpha_elReco	±0.00
alpha_MET_Soft_reso_Perp	±0.00
alpha_muIsoSys	±0.00
alpha_muStat	±0.00
alpha_Mu_ID	±0.00
alpha_FT_Extra2	±0.00
alpha_MET_Soft_reso_Para	±0.00
alpha_JET_EtaIntercalibration	±0.00
alpha_MET_Soft_Scale	±0.00
alpha_muIsoStat	±0.00
alpha_Mu_Scale	±0.00
alpha_EG_Resolution	±0.00
alpha_Mu_MS	±0.00
alpha_muSys_lowpt	±0.00
alpha_muStat_lowpt	±0.00 2

All systematic sources for RPV SRs

Uncertainty of channel	SR_RPV1bGG	Uncertainty o
Total background expectation	1.43	Total backgrou
Total statistical $(\sqrt{N_{exp}})$	±1.19	Total statistical
Total background systematic	±0.37 [25.71%]	Total backgrou
alpha_theoryUncertRare	±0.24	alpha_theoryU
gamma_stat_SR_RPV1bGG_cuts_bin_0	±0.22	gamma_stat_S
alpha theoryUncertTTbarV SR RPV1bGG	± 0.14	alpha theoryU
alpha_JET_scale_NP1	±0.09	alpha_FT_B
alpha_FT_JVT	±0.06	alpha_FT_JV1
Lumi	±0.05	alpha_JET_sca
alpha_JET_scale_NP2	± 0.02	Lumi
alpha_EG_Scale	± 0.02	alpha_FT_Ext
alpha_JET_scale_NP3	±0.02	alpha_FT_C
alpha_FT_B	±0.02	alpha_FT_Lig
alpha_FT_Extra1	± 0.02	alpha_pileupB
alpha_JET_reso	±0.01	alpha_JET_sca
alpha_elID	± 0.01	alpha_EG_Sca
alpha_theoryUncertWZ_SR_RPV1bGG	±0.01	alpha_elID
alpha_elIso	± 0.01	alpha_JET_sca
alpha_muSys	±0.01	alpha_muSys
alpha_FT_Light	±0.01	alpha_elIso
alpha_FT_C	±0.01	alpha_FT_Ext
alpha_elReco	±0.00	alpha_MET_S
alpha_muIsoSys	±0.00	alpha_elReco
alpha_syst_misch_SR_RPV1bGG	±0.00	alpha_muIsoS
alpha_pileupBKG	±0.00	alpha_muStat
alpha_muStat	±0.00	alpha_JET_Eta
alpha_MET_Soft_reso_Para	±0.00	alpha_EG_Res
alpha_muIsoStat	±0.00	alpha_muIsoSt
alpha_Mu_ID	±0.00	alpha_JET_res
alpha_MET_Soft_reso_Perp	±0.00	alpha_Mu_MS
alpha_FT_Extra2	±0.00	alpha_MET_S
alpha_JET_EtaIntercalibration	±0.00	alpha_MET_S
alpha_Mu_MS	±0.00	alpha_muSys_
alpha_EG_Resolution	±0.00	alpha_muStat_
alpha_MET_Soft_Scale	±0.00	alpha_Mu_Sca
alpha_muSys_lowpt	±0.00	alpha_Mu_ID
alpha_muStat_lowpt	±0.00	•
alpha_Mu_Scale	±0.00	

		Total background expectation	
of channel SR_RPV3bDD		Total statistical $(\sqrt{N_{exp}})$	
ground expectation	1.30	Total background systematic	
	±1.14	alpha_syst_fake_SR_RPV1bDD	
tical $(\sqrt{N_{exp}})$ ground systematic	±0.37 [28.88%]	gamma_stat_SR_RPV1bDD_cuts_bi	
ground systematic	±0.57 [20.00%]	alpha_theoryUncertTTbarV_SR_RP	
oryUncertRare	±0.28	alpha_theoryUncertRare	
at_SR_RPV3bDD_cuts_bin_0	±0.20	alpha JET scale NP1	
orvUncertTTbarV SR RPV3bDD	±0.11	alpha_JET_reso	
В	±0.08	Lumi	
JVT	±0.06	alpha_FT_JVT	
scale_NP1	±0.05	alpha_syst_misch_SR_RPV1bDD	
	±0.05	alpha_JET_scale_NP2	
Extra1	±0.04	alpha_pileupBKG	
C	±0.04	alpha_JET_scale_NP3	
Light	±0.02	alpha_FT_B	
upBKG	±0.02	alpha_theoryUncertOtherMB	
_scale_NP2	±0.02	alpha_elID	
Scale	±0.01	alpha_EG_Scale	
)	±0.01	alpha_elIso	
_scale_NP3	±0.01	alpha_muSys	
Sys	±0.01	alpha_FT_Extra1	
0	±0.01	alpha_theoryUncertWZ_SR_RPV1b	
Extra2	±0.01	alpha_FT_Light	
T_Soft_reso_Para	±0.00	alpha_elReco	
200	±0.00	alpha_MET_Soft_reso_Para	
soSys	±0.00	alpha_FT_C	
Stat	±0.00	alpha_muIsoSys	
EtaIntercalibration	±0.00	alpha_muStat	
Resolution	±0.00	alpha_Mu_MS	
soStat	±0.00	alpha_MET_Soft_reso_Perp	
reso	± 0.00	alpha_muIsoStat	
_MS	±0.00	alpha_FT_Extra2	
T_Soft_reso_Perp	±0.00	alpha_Mu_ID	
T_Soft_Scale	±0.00	alpha_MET_Soft_Scale	
Sys_lowpt	± 0.00	alpha_Mu_Scale	
Stat_lowpt	±0.00	alpha_JET_EtaIntercalibration	
_Scale	± 0.00	alpha_EG_Resolution	
_ID	± 0.00	alpha_muSys_lowpt	
		alpha_muStat_lowpt	
		alpha_theoryUncertWWjj_SR_RPV	

Uncertainty of channel	SR_RPV1bDD
Total background expectation	9.93
Total statistical $(\sqrt{N_{exp}})$	±3.15
Total background systematic	±2.18 [21.93%]
alpha_syst_fake_SR_RPV1bDD	±2.03
gamma_stat_SR_RPV1bDD_cuts_bin_0	±1.11
alpha_theoryUncertTTbarV_SR_RPV1bDD	±1.07
alpha_theoryUncertRare	±0.97
alpha JET scale NP1	±0.56
alpha_JET_reso	±0.35
Lumi	±0.31
alpha_FT_JVT	±0.30
alpha_syst_misch_SR_RPV1bDD	±0.20
alpha_JET_scale_NP2	±0.16
alpha_pileupBKG	±0.16
alpha_JET_scale_NP3	±0.12
alpha_FT_B	±0.12
alpha_theoryUncertOtherMB	±0.10
alpha_elID	±0.09
alpha_EG_Scale	±0.08
alpha_elIso	±0.06
alpha_muSys	±0.06
alpha_FT_Extra1	±0.06
alpha_theoryUncertWZ_SR_RPV1bDD	±0.05
alpha_FT_Light	±0.05
alpha_elReco	±0.03
alpha_MET_Soft_reso_Para	±0.02
alpha_FT_C	±0.02
alpha_muIsoSys	±0.02
alpha_muStat	±0.01
alpha_Mu_MS	±0.01
alpha_MET_Soft_reso_Perp	±0.01
alpha_muIsoStat	±0.01
alpha_FT_Extra2	±0.01
alpha_Mu_ID	±0.00
alpha_MET_Soft_Scale	±0.00
alpha_Mu_Scale	±0.00
alpha_JET_EtaIntercalibration	±0.00
alpha_EG_Resolution	±0.00
alpha_muSys_lowpt	±0.00
alpha_muStat_lowpt	23 ^{±0.00}
alpha_theoryUncertWWjj_SR_RPV1bDD	±0.00

Results in Signal Regions - RPV

Yields in RPV signal regions.

- No excess observed
- Observed data and background expectation for 5.8 fb-1
- And the background prediction normalized to 10 fb-1

	SR1b-GG	SR1b-DD	SR3b-DD
Observed	0	3	1
Total SM	0.83 ± 0.25	5.76 ± 1.56	0.75 ± 0.25
WWjj	0.00 ± 0.00	$0.00^{+0.00}_{-0.00}$	0.00 ± 0.00
WZ	0.02 ± 0.02	$0.10^{+0.23}_{-0.12}$	0.00 ± 0.00
ttZ	0.12 ± 0.04	1.29 ± 0.41	0.13 ± 0.04
ttW	0.16 ± 0.05	0.85 ± 0.28	0.08 ± 0.04
Rare	0.29 ± 0.16	1.16 ± 0.60	0.34 ± 0.18
OtherMultiBoson	0.00 ± 0.00	0.19 ± 0.08	0.00 ± 0.00
Fakes	0.15 ± 0.15	1.18 ± 1.17	0.15 ± 0.15
MisCharge	0.09 ± 0.05	0.98 ± 0.16	0.05 ± 0.02