Measurements of Higgs boson production in the di-photon decay channel at $\sqrt{s}=13 \mathrm{TeV}$ in pp collisions at CMS

Linda Finco

IPN Lyon (IN2P3-CNRS)/UCB Lyon 1, France
On behalf of the CMS Collaboration

France-China Particle Physics Laboratory Beijing (China)
$27^{\text {th }}$ March 2017

Production Modes

4 PRODUCTION MECHANISMS

Decay Modes

5 MAIN DECAY MODES EXPLOITED:

- $\mathrm{H} \rightarrow \mathrm{bb}$ (~58\%)
- $\mathrm{H} \rightarrow \mathrm{WW} \rightarrow 2 \operatorname{l2v}$ ($\sim 22 \%)$
- $\mathrm{H} \rightarrow \mathrm{gg}$ (~8.5\%)
- $\mathrm{H} \rightarrow \tau \tau(\sim 6 \%)$
- $\mathrm{H} \rightarrow \mathrm{ZZ} \rightarrow 4 \mathrm{I}$ (~3\%)
- $H \rightarrow \gamma \gamma(\sim 0.2 \%)$

Decay Modes

5 MAIN DECAY MODES EXPLOITED:

The $H \rightarrow y y$ Decay Channel

- Clean signature with two isolated and highly energetic photons
- Final state fully reconstructed with excellent mass resolution
- Large background from QCD ($\gamma \gamma-\gamma j-\mathrm{jj})$

NARROW SIGNAL PEAK

LARGE FALLING BACKGROUND

- Partial 2016 dataset analyzed, $12.9 \mathrm{fb}^{-1}$ collected at 13 TeV for the main analysis (HIG-16-020)
- Total 2016 dataset analyzed, $35.9 \mathrm{fb}^{-1}$ for the differential analysis (HIG-17-015)

Analysis Strategy

$$
m_{\gamma \gamma}=\sqrt{2 E_{1} E_{2}(1-\cos \theta)}
$$

- Select two "good quality" photons
- Measure photon energy precisely
- Find the primary vertex of the decay
- Event categorization on mass resolution and S/B
- Additional event classes according to production mechanism
- Signal extracted from background by fitting the observed di-photon mass distributions in each category

Photon Energy

$$
m_{\gamma \gamma}=\sqrt{2\left(E_{1} E_{2}\right)(1-\cos \theta)}
$$

- Photon energy reconstructed by building clusters of energy deposits in the electromagnetic calorimeter.
- Energy and its uncertainty corrected for local and global shower containment
\longrightarrow regression technique:
- corrects photons' energies
- provides an estimate of energy resolution
- Energy scale in data corrected as a function of data taking epochs, pseudorapidity, EM shower width and transverse energy
- Smearing to the reconstructed photon energy in MC to match the resolution in data $\longrightarrow Z \rightarrow \boldsymbol{e e}$ peak used as reference

Vertex Identification

$$
m_{\gamma \gamma}=\sqrt{2 E_{1} E_{2}(1-\cos \theta)}
$$

- Vertex assignment considered as correct within 1 cm of the di-photon interaction point \longrightarrow negligible impact on mass resolution
- Multi-variate approach:
- Observables related to tracks recoiling against the di-photon system
- direction of conversion tracks
- Second MVA discriminant to estimate the probability for the vertex assignment to be within 1 cm
\longrightarrow used for di-photon classification
- Method validated on $Z \rightarrow \mu \mu$ events, by refitting vertices ignoring the muon tracks

Photon Selection

BDT OUTPUT

- Trigger selection:
double-photon trigger path based on transverse energy, H / E, electromagnetic shower shapes and isolation variables, $\mathrm{m}_{\gamma \gamma}$
- Preselection:
similar to trigger requirements, but more stringent
- Photon Identification:
- Multi-Variate approach to reject fake photon candidates (mainly from π^{0} mesons produced in jets)
- Shower shape and isolation observables, median energy density (ρ)
- BDT output provides an estimate of the per-photon quality

Tagged Events

Specific event categories defined targeting Higgs boson production mode other than ggF

ttH PRODUCTION MODE:

Higgs accompanied by two b quarks and two W bosons

- ttH Hadronic (additional jets):
- (sub)lead $p_{T} / m_{y \gamma}>1 / 2(1 / 4)$
- at least one lepton ($\ell=e, \mu$), away from Z peak
- ≥ 2 jets
- $\geq 1 \mathrm{~b}$-jet
- ttH Leptonic (additional leptons):
- (sub)lead $p_{T} / m_{y \gamma}>1 / 2(1 / 4)$
- 0 leptons
- ≥ 5 jets
- $\geq 1 \mathrm{~b}$-jet

VBF PRODUCTION MODE:

Higgs accompanied by 2 jets separated by a large rapidity gap

- MVA approach to identify events with 2 jets
- 2 jets with $\mathrm{p}_{\mathrm{T} 1}>30 \mathrm{GeV}, \mathrm{p}_{\mathrm{T} 2}>20 \mathrm{GeV},|\eta|<4.7, \mathrm{~m}_{\mathrm{jj}}>250 \mathrm{GeV}$
- Combination of di-jet and di-photon BDT (VBF tag 0-1)

Untagged Events

The remaining inclusive events are categorized according to the photon kinematics, perevent mass resolution, photon ID and good vertex probability by a multivariate classifier

The number of categories and their boundaries are optimized to maximize the expected significance

Signal and Background Model

SIGNAL

Parametrized model of Higgs boson mass shape

- Obtained from simulation
- MC tuning and data/MC efficiency scale factors applied

BACKGROUND
Background model extracted from data

- Different functional forms used for each category
- Choice of function treated as a discrete nuisance parameter

Mass Spectra (Tagged Events)

VBF Tag 0

 VBF Tag 1

TTH Leptonic

TTH Hadronic

Mass Spectra (Untagged Events)

Mass Spectra (All Categories)

All Categories

All Categories weighted by sensitivity

Results

- Significance at 125.09 GeV : 5.6σ observed (6.2σ expected)
- Maximum observed significance is 6.1σ at 126.0 GeV
- Best-fit signal strength $\hat{\mu}=0.95 \pm 0.20=0.95 \pm 0.17$ (stat.) ${ }_{-0.07}^{+0.10}$ (syst.) ${ }_{-0.05}^{+0.08}$ (theo.)

Results

Signal strength measured in bosonic and fermionic components:

- $\mu_{g g H / t t H}=0.80_{-0.18}^{+0.14}$
- $\mu_{V B F / V H}=1.59_{-0.45}^{+0.73}$

Signal strength measured for each production modes
\longrightarrow compatible with the Standard Model

Fiducial Cross-Section

- Full 2016 dataset ($35.9 \mathrm{fb}^{-1}$)
- Different categorization:
- Di-photon mass estimator
- 3 events categories
- Fiducial cross-section measured

$$
\hat{\sigma}_{\text {fid }}=84 \pm 11 \text { (stat.) } \pm 7 \text { (syst.) fb }
$$

$$
\sigma_{f i d}^{t h}=75 \pm 4 \mathrm{fb}
$$ profiling m_{H}

Differential Cross-Section

- Full 2016 dataset ($35.9 \mathrm{fb}^{-1}$)
- Different categorization:
- Di-photon mass estimator
- 3 events categories
- Differential cross-section measured as a function of di-photon p_{T} and N_{j}

Conclusions

- Results of the CMS H $\rightarrow \gamma \gamma$ analysis have been reported, using $12.9 \mathrm{fb}^{-1}$ of collision data collected in 2016 at 13 TeV
- The Higgs boson has been observed with a peak significance of 6.1σ at $\mathrm{m}_{\mathrm{H}}=126.0 \mathrm{GeV}$
- The best fit signal strength is $\widehat{\boldsymbol{\mu}}=\mathbf{0 . 9 5} \mathbf{- 0 . 1 9}_{+0.21}$
- The best-fit values for the signal strength modifiers associated with bosonic and fermionic components are found to be $\boldsymbol{m}_{g g H / t t H}=\mathbf{0 . 8 0} 0_{-0.18}^{+0.14}$ and $m_{V B F / V H}=1.59_{-0.45}^{+0.73}$
- The fiducial cross-section is measured to be $\widehat{\sigma}_{\text {fid }}=84 \pm 11$ (stat.) ± 7 (syst.) fb

FULL 2016 DATASET

- Differential distributions have been reported as a function of di-photon p_{T} and the number of jets

Backup

