

Measurements of Higgs boson production in the di-photon decay channel at $\sqrt{s} = 13$ TeV in pp collisions at CMS

Linda Finco

IPN Lyon (IN2P3-CNRS)/UCB Lyon 1, France

On behalf of the CMS Collaboration

France-China Particle Physics Laboratory Beijing (China)

27th March 2017

Production Modes

4 PRODUCTION MECHANISMS

Decay Modes

5 MAIN DECAY MODES EXPLOITED:

- H → bb (~58%)
- $H \rightarrow WW \rightarrow 2l_{2v} (\sim 22\%)$
- H → gg (~8.5%)
- H → ττ (~6%)
- $H \rightarrow ZZ \rightarrow 4I (~3\%)$
- H → γγ (~0.2%)

Decay Modes

5 MAIN DECAY MODES EXPLOITED:

- H → bb (~58%)
- $H \rightarrow WW \rightarrow 2l_{2v} (\sim 22\%)$
- $H \rightarrow gg (\sim 8.5\%)$
- $H \rightarrow \tau \tau$ (~6%)

•
$$H \rightarrow ZZ \rightarrow 4I (~3\%)$$

The $H \rightarrow \gamma \gamma$ Decay Channel

- Clean signature with two isolated and highly energetic photons
- Final state fully reconstructed with **excellent** mass resolution
- **Large background** from QCD ($\gamma\gamma \gamma j jj$)

- Partial 2016 dataset analyzed, 12.9 fb⁻¹ collected at 13 TeV for the main analysis (HIG-16-020)
- Total 2016 dataset analyzed, 35.9 fb⁻¹ for the differential analysis (HIG-17-015)

Analysis Strategy

$$m_{\gamma\gamma} = \sqrt{2E_1E_2(1-\cos\theta)}$$

- Select two **"good quality" photons**
- Measure photon energy precisely
- Find the **primary vertex** of the decay
- Event categorization on mass resolution and S/B
- Additional event classes according to production mechanism
- Signal extracted from background by fitting the observed di-photon mass distributions in each category

Photon Energy

$$m_{\gamma\gamma} = \sqrt{2E_1E_2(1-\cos\theta)}$$

- Photon energy reconstructed by building clusters of energy deposits in the electromagnetic calorimeter.
- Energy and its uncertainty corrected for local and global shower containment
 - regression technique:
 - corrects photons' energies
 - provides an estimate of energy resolution
- Energy scale in data corrected as a function of data taking epochs, pseudorapidity, EM shower width and transverse energy
- Smearing to the reconstructed photon energy in MC to match the resolution in data
 Z → ee peak used as reference

Vertex Identification

$$m_{\gamma\gamma} = \sqrt{2E_1E_2(1 - \cos\theta)}$$

- Vertex assignment considered as correct within 1 cm of the di-photon interaction point
 negligible impact on mass resolution
- Multi-variate approach:
 - Observables related to tracks recoiling against the di-photon system
 - direction of conversion tracks
- Second MVA discriminant to estimate the probability for the vertex assignment to be within 1 cm

used for di-photon classification

• Method validated on $Z \rightarrow \mu\mu$ events, by refitting vertices ignoring the muon tracks

Photon Selection

• Trigger selection:

double-photon trigger path based on transverse energy, H/E, electromagnetic shower shapes and isolation variables, m_{vv}

• Preselection:

similar to trigger requirements, but more stringent

Photon Identification:

- Multi-Variate approach to reject fake photon candidates (mainly from π⁰ mesons produced in jets)
- Shower shape and isolation observables, median energy density (p)
- BDT output provides an estimate of the per-photon quality

BDT OUTPUT

Tagged Events

Specific event categories defined targeting Higgs boson production mode other than ggF

ttH PRODUCTION MODE:

Higgs accompanied by two b quarks and two W bosons

- ttH Hadronic (additional jets):
 - (sub)lead p_T/m_{yy} > 1/2(1/4)
 - at least one lepton ($\ell = e, \mu$), away from Z peak
 - ≥ 2 jets
 - ≥ 1 b-jet
- ttH Leptonic (additional leptons):
 - (sub)lead p_T/m_{yy} > 1/2(1/4)
 - 0 leptons
 - ≥ 5 jets
 - ≥1 b-jet

VBF PRODUCTION MODE:

Higgs accompanied by 2 jets separated by a large rapidity gap

- MVA approach to identify events with 2 jets
- 2 jets with p_{T1} > 30GeV, p_{T2} >20 GeV, |η| < 4.7, m_{ii} >250 GeV
- Combination of di-jet and di-photon BDT (VBF tag 0-1)

Untagged Events

The remaining inclusive events are categorized according to the **photon kinematics**, perevent **mass resolution**, **photon ID** and **good vertex probability** by a **multivariate classifier**

The number of categories and their boundaries are **optimized** to maximize the **expected significance**

Signal and Background Model

SIGNAL

Parametrized model of Higgs boson mass shape

- Obtained from simulation
- MC tuning and data/MC efficiency scale factors applied

BACKGROUND

Background model extracted from data

- Different functional forms used for each category
- Choice of function treated as a discrete nuisance parameter

Mass Spectra (Tagged Events)

Mass Spectra (Untagged Events)

Mass Spectra (All Categories)

Results

- **Significance** at 125.09 GeV: **5.6σ observed** (6.2σ expected)
- Maximum observed significance is 6.1σ at 126.0 GeV
- Best-fit signal strength $\hat{\mu}$ = 0.95 ± 0.20 = 0.95 ± 0.17 (stat.) $^{+0.10}_{-0.07}$ (syst.) $^{+0.08}_{-0.05}$ (theo.)

Results

Model

Signal strength measured in bosonic and fermionic components:

- $\mu_{ggH/ttH} = 0.80^{+0.14}_{-0.18}$
- $\mu_{VBF/VH} = 1.59^{+0.73}_{-0.45}$

Signal strength measured for each production modes compatible with the Standard

Fiducial Cross-Section

- Full 2016 dataset (35.9 fb⁻¹)
- Different categorization:
 - Di-photon mass estimator
 - 3 events categories
- Fiducial cross-section measured profiling m_H

$$\widehat{\sigma}_{fid} = 84 \pm 11$$
 (stat.) \pm 7 (syst.) fb

$$\sigma_{fid}^{th} = 75 \pm 4 \text{ fb}$$

Differential Cross-Section

- Full 2016 dataset (35.9 fb⁻¹)
- Different categorization:
 - Di-photon mass estimator
 - 3 events categories
- Differential cross-section measured as a function of di-photon p_T and N_i

Conclusions

NEW RESULTS

- Results of the CMS H → γγ analysis have been reported, using 12.9 fb⁻¹ of collision data collected in 2016 at 13 TeV
- The Higgs boson has been observed with a peak significance of 6.1σ at m_H = 126.0 GeV
- The best fit signal strength is $\hat{\mu} = 0.95^{+0.21}_{-0.19}$
- The best-fit values for the signal strength modifiers associated with bosonic and fermionic components are found to be $m_{ggH/ttH} = 0.80^{+0.14}_{-0.18}$ and $m_{VBF/VH} = 1.59^{+0.73}_{-0.45}$
- The fiducial cross-section is measured to be $\hat{\sigma}_{fid} = 84 \pm 11$ (stat.) \pm 7 (syst.) fb
- Differential distributions have been reported as a function of di-photon p_T and the number of jets

FULL 2016 DATASET

Backup