Journal Club

IHEP Suyu Xiao 2017/02/24

Higgs physics at the Future Circular Collider

Open fundamental aspects of the Higgs sector of SM can can be experimentally studied at FCC:

- lightest fermions: uds, e⁺⁻, neutrinos
- Higgs potential: λ_3 , λ_4 via pp collision
- new physics coupled to scalar SM sector
- dark matter
 via on/off-shell boson invisible decay

Generation of the lightest fermion masses

FCC is a post-LHC project in a new 100-km tunnel under consideration at CERN, designed to deliver pp at \sqrt{s} = 100 TeV with \angle int = 0.2-2 ab⁻¹/yr integrated luminosities (FCC-hh), as well as e⁺e⁻ \sqrt{s} = 90-350 GeV with up to 80 ab⁻¹/yr (FCC-ee).

Figure 1: Higgs boson cross sections as a function of c.m. energy (total, and separated for different subprocesses) in pp (left) 6 and e⁺e⁻ (right) 5 collisions.

Generation of the lightest fermion masses

Higgs boson

couple →

fundamental fermions

decay →

stable visible matter

formed by 1st generation fermions(uū, dd, ss, e±)

Figure 2: Significance contours for the $e^+e^- \rightarrow H$ observation at $\sqrt{s}=125$ GeV (combining 10 Higgs boson decays) in the \sqrt{s} -spread vs. \mathcal{L}_{int} plane at FCC-ee [9]. The dashed line shows the natural H boson width.

Sterile neutrinos Ni produced at FCC-ee, observed via Ni → H + v

Determination of the Higgs potential

(statistical) precision on σ_{SM}	68% CL interval on Higgs self-couplings
3%	$\lambda_3 \in [0.97, 1.03]$
5%	$\lambda_3 \in [0.9, 1.5]$
O(25%)	$\lambda_3 \in [0.6, 1.4]$
O(15%)	$\lambda_3 \in [0.8, 1.2]$
_	_
O(100%)	$\lambda_4 \in [-4, +16]$
	3% 5% O(25%) O(15%) -

Table 1: Expected precision on SM cross sections for double and triple Higgs final-states reachable at FCC-hh (pp at 100 TeV, 30 ab⁻¹), and associated 68% CL ranges on λ_3 and λ_4 Higgs self-couplings. Details are provided in [6].

λ3, λ4 self-coupling interaction, Higgs determination

 \downarrow

confirm the shape of the Higgs potential and the mechanism of electroweak symmetry breaking

Searches for new scalar-coupled physics

Figure 3: Left: Sensitivity reach to new physics scales $(\Lambda/\sqrt{c_i})$, encoded in four dim-6 operator c_i coefficients, of precision Higgs (and triple gauge boson couplings) measurements at FCC-ee and ILC [17]. Right: FCC-ee sensitivity for rare H (and Z) decays into DM pairs in the BR_{H,Z $\rightarrow\phi\phi$} vs. m_{ϕ} plane [23].

Dark Matter

Matter 4%

Dark Matter & Dark Energy 96%

In Higgs-portal models, the H boson acts as a mediator between the SM and DM particles, playing a central role in the evolution of the early universe. Attractive scenarios exist for DM candidates (Φ) lighter than mH;Z/2, consistent with the measured DM thermal relic abundance in the universe, with DM freezing out through resonant H (or Z) exchanges. In such cases, the measurements of the invisible H and Z widths provide the best collider options to test such scenarios.

Theoretical studies indicate that the FCC-hh can place strong constraints on Higgs-portal couplings.

THANK YOU