Hiroshima Conference HSTD 11

Okinawa, Dec 10 - 15, 2017

Pixel Detector Overview Pixel Detectors ... where do we stand?

in my very subjective opinion ... w/ apologies

Norbert Wermes
University of Bonn

~1997

HEP tracking

Hybrid pixel detectors

Imaging

Monolithic pixel detectors

Imaging

2017

Some early prejudices ... e.g. about HL-LHC radiation levels

- Tough for planar sensors ...!?
- There is no alternative, though ...!?
- Diamond will never become a pixel detector ... !?
- You have to use p-type material ...!?
- ...

Radiation

HL-LHC fluence =>every Si lattice cell sees about 50 mips

- Readout at n⁺ electrodes (e⁻ collection)
- Operate at high bias voltages
- Carefully plan the annealing scenario
- Provide proper electrode design and guard rings
- Use p-substrates (rather than n-in-n) ... why?

evidence

but more complex for pixels

- Q trapping
- structured weighting fields
- E-field after irradiation

What is actually different for p vs n bulk?

n – bulk Donor removal/acceptor increase <-> acceptor removal

oxygen enriched silicon

B_iO_i

acceptor (B) removal decreases negative ρ

Cure? C-enrichment?

E. Donegani, Thesis U Hamburg (2017)

A. Junkes, E. Donegani, C. Neunbüser, IEEE TNS (2014) 10.1109/NSSMIC.2014.7431260

radiation induced oxygen interstitial

Radiation hard Si sensors -> (thin) planar pixel sensors

 thin n⁺ in p sensors after high fluences (neutrons)

talk by K. Nakamura

• **6000 – 7000 e**for 100 - 200 μm sensors @ 300 V – 600 V bias

hit efficiencies are still reasonable at Φ > 10¹⁶

Macchiolo, Nisius, Savic, Terzo, NIM A831:111–115, 2016. Terzo, Andricek, Macchiolo, Nisius et al, JINST 9 (2014) C05023 K. Kimura et al., NIM A831 (2016) 140-146 Y. Unno et al., NIM A699(2013)72–77.

Radiation hard Si sensors -> 3D-Si sensors

- S. Parker, C. Kenney, J. Segal, ICFA Instr.Bull. 14 (1997) 30 C. Da Via, et al., NIM A49 (2005) 122-125, NIM A 699 (2013) 18
 - particle path (signal) different from drift path
 - high field w/ low voltage
 - -> radiation tolerance
 - -> Q still 50% @ 10¹⁶ cm⁻²
 - slightly larger C_{in} (noise)
 - > now also in diamond, CdTe

ATLAS IBL stave

3D sensors have been put to reality in ATLAS IBL detector since 2015 -> so far reliable and well performing

talk by C.B. Martin

Development for HL-LHC:

- thin (100 µm)
- 6" wafers
- electrodes thin (5µm) & narrowly spaced
- slim or active edges

G.F. Dalla Betta et al., NSSMIC.2015, arXiv:1612.00608, J. Lange et al., arXiv:1707.01045

Radiation hard Si sensors -> 3D-Si sensors

S. Parker, C. Kenney, J. Segal, ICFA Instr.Bull. 14 (1997) 30 C. Da Via, et al., NIM A49 (2005) 122-125, NIM A 699 (2013) 18

- particle path (signal) different from drift path
- high field w/ low voltage
- -> radiation tolerance
- -> Q still 50% @ 10¹⁶ cm⁻²
- slightly larger C_{in} (noise)
- now also in diamond, CdTe

ATLAS IBL stave

3D sensors have been put to reality in ATLAS IBL detector since 2015 -> so far reliable and well performing

talk by C.B. Martin

Development for HL-LHC:

- thin (100 µm)
- 6" wafers
- electrodes thin (5µm) & narrowly spaced
- slim or active edges

G.F. Dalla Betta et al., NSSMIC.2015, arXiv:1612.00608, J. Lange et al., arXiv:1707.01045

Diamond ...

... has been made into a radhard "quasi" tracker

talks by H. Kagan N. Venturi

You cannot use CMOS (technologies for) sensors. They do not have the same properties as "good" silicon sensors ...!?

... passive CMOS sensors

- can have in-pixel AC coupling
- fancy RDL possibilities by metal layers
- cheap large feature size technology possible
- no extra bumping step, because bumps (C4)
 come with CMOS fabrication
- do flip-chipping in-house (large pitch)
- large sensors possible (→ reticule stitching)
- may be even wafer based flip-chipping (8")

- LFounry 150 nm CMOS technology
- $2k \Omega cm p$ -type bulk
- ATLAS FE-I4 pixel size (50 μm x 250 μm)
- 16 x 36 pixel

D.-L. Pohl et al., JINST 12 (2017) no.06, P06020

Performance of passive CMOS sensors

- IV curves of all samples ok (bias 120 V -> 500 V)
- about **220 μm** depletion depth
- leakage current 20 μA / cm³ (IBL: 15 μA/cm³)
- noise as in standard sensors
 - planar sensors ($C_D = 117 \text{ fF}$): ENC = 120 e-
 - 3D-Si sensors ($C_D = 180 \text{ fF}$): ENC = 140 e-
- high efficiency after irradiation (1 x 10^{15} n_{eq}/cm^2)

D.-L. Pohl et al., JINST 12 (2017) no.06, P06020

FE chip

- A complex chip (o(10⁹) transistors) in general can only be done by industry and needs many years of development ...
 !? ... and is too expensive ... !?
- 250 nm technology was radhard => 65 nm technology is even better ... !?

Pixel R/O-Chip for HL-LHC rates (and radiation)

- Effort and costs so large that joint approach (cross experiments) is needed -> RD53 (20 Institutes)
- High hit rate (not smaller pixel size) requires high logic density -> 65nm TSMC

- FE-65 prototypes (2016) -> RD53A (full size chip) -> back from foundry
- Deep submicron (250 nm & 130 nm) saved LHC pixel R/O chips
- 65 nm has its own geometry induced radiation effects to deal with
- Requires long and tedious study program ...

RINCE = Radiation Induced Narrow Channel Effects
RISCE = Radiation Induced Short Channel Effects

RD53A alive ... (received last Wednesday)

100

Pixel R/O philosophy changes -> better architectures

- column drain R/O
- FE-I3 like

2nd generation

- 4-pixel region logic
- efficient for clusters
- FE-I4 like

talk by M. Garcia-Sciveres

3rd generation

- region architectures
 with grouped logic
 regional bit draining
 - -> regional hit draining
- surrounded by synthesized logic ("digital sea")
- RD53A like

"analog islands in digital sea"

Current favorite large system layouts ...

N. Wermes, HSTD11, OIST 12/2017

Monolithic pixel modules

☐ Monolithic pixels will never stand the LHC rates and radiation environment ...!?

☐ SOI pixel technology is fine, but it is difficult to get around the many challenges ...!?

Hybrid Pixel Detectors

- PROs (split functionality)
 - complex signal processing in readout chip
 - zero suppression and hit storage during L1 latency
 - radiation hard chips and sensors to >10¹⁵ n_{eq}/cm²
 - high rate capability (~MHz/mm²)
 - spatial resolution ≈10 15 μm
 - NEXT: 3D integration (TSVs) ... from C2W to W2W assemblies

Pixel-Implantation

Bump

☐ CONs

- relatively large material budget: >1.5% X₀ per layer
- sensor + chip + flex kapton + passive components
- support, cooling (-10°C operation), services
- resolution could be better
- complex and laborious module production
- bump-bonding / flip-chip
- many production steps
- expensive

hence: Monolithic pixels relying on commercial CMOS processes have come in focus (first outside LHC-pp -> also **for HL-LHC**)

STAR
MAPS
2014
0.16 m²

Belle II DEPFET 2018 0.014 m²

talks by W. Snoeys. H. Pernegger, I. Peric, T. Hirono, B. Hiti, D. Dannheim

Rückseitenmetallisierung

Elektronik-Chip

What is needed to realize (radhard) depleted CMOS pixels Priversität bonn

"High" Voltage add-ons to apply 50 – 200 V bias

I. Peric, NIM A582 (2007) 876-885

"High" Resistivity Substrate Wafers (100 Ω cm – $k\Omega$ cm)

from: www.xfab.com

3

Multiple (3-4) nested wells (for shielding and full CMOS)

Backside Processing (for thinning and back bias contact)

I. Mandic et al., JINST 12 (2017) no.02, P02021

The question of the fill-factor / electrode geometry

(a) Large fill-factor

Electronics inside charge collection well

- Collection node with large electrode
 - → no low field regions
 - → on average **short(er) drift** distances
 - → more radhard
- Full CMOS with isolation between NW&DNW
- Large (> 100 fF) sensor capacitance (due to DNW/PW junction!)
 - → noise & speed or power penalties
 - → x-talk possible (from digital to sensor) needs dedicated IC design

(b) Small fill-factor

Electronics outside charge collection well

- Very small sensor capacitance (~5 fF)
 - → noise low, speed high, power low
- on average longer drift distances and low field regions
 - → radhard?
- also full CMOS with addn'l deep-p implant

TJ Process modification of small electrode design

- TowerJazz 180 nm CMOS CIS
- deep PW full CMOS in pixel
- epi thickness: 18 40 μm
- Design derived from ALICE development
- Modified process to improve depletion & lateral E
 W. Snoeys et al., NIM A871 (2017) 90 96.

PWELL NWELL DEEP PWELL DEEP PWELL DEP PWELL DE

Pixel dimensions:

- 36 x 42 μm² pixel size
- 3 µm diameter electrodes
- Measured capacitance <5fF

Large (~1 cm²) full CMOS chips (=modules) w/ readout

LFoundry 150 nm substrate $\rho > 2$ kΩcm

ams 180 nm substrate $\rho \sim 0.08 - 1 \text{ k}\Omega\text{cm}$

TowerJazz 180 nm epitaxial (25 μm) substrate $\rho > k\Omega$ cm

Large (~1 cm²) full CMOS chips (=modules) w/ readout

LFoundry 150 nm substrate $\rho > 2$ kΩcm

ams 180 nm substrate $\rho \sim 0.08 - 1 k\Omega cm$

TowerJazz 180 nm epitaxial (25 μm) substrate $\rho > k\Omega$ cm

Results extremely encouraging

Charge collection time [ns27

Timing [25ns bins]

N. Wermes, HSTD11, OIST 12/2017^{TID [rad]}

10⁷

10⁸

SOI pixels

Note again dedicated workshop included in this conference

SOI monolithic pixels

- fully depleted SOI (thin film)
 - @ Lapis / KEK
- issues
 - back gate effect
 - coupling of sensor to circuit
 - radiation (TID) issues due to BOX
- cures developed in recent years
 - buried p-well, nested wells
 - "double SOI" structures
 - => TID hard to 10 Mrad

talks Y. Arai, K. Fukuda, S. Kawahito + SOI workshop

FPIX, SOFIST particle tracking

INTPIX X-ray

XRPIX, **SOIPIX-PDD** X-ray astro

SOPHIAS synchrotron rad.

cryogenic far infrared

CNTPIX counting -> biomed

MALPIX ion spectroscopy

SOI monolithic pixels

- fully depleted SOI (thin film)@ Lapis/KEK
- issues
 - back gate effect
 - coupling of sensor to circuit
 - radiation (TID) issues due to BOX
- cures developed in recent years
 - buried p-well, nested wells
 - "double SOI" structures

SOI monolithic pixels

- fully depleted SOI (thin film)@ Lapis/KEK
- issues
 - back gate effect
 - coupling of sensor to circuit
 - radiation (TID) issues due to BOX
- cures developed in recent years
 - buried p-well, nested wells
 - "double SOI" structures

- HV-SOI (thick film)
- a promising alternative
- doped, non-depleted P- and N-wells prevent back gate effect and increase the radiation tolerance

Time measurement with Si detectors

- Sub-ns timing with Si detectors is not possible ...!?
- Not with pixel detectors …!?

4D tracking ... $\Delta t = 30 \text{ ps } <-> \Delta x = 1 \text{ cm}$

Exploit charge amplification

- ☐ in "Geiger Mode" fashion (like in gas RPCs or in SiPMs)
 - $=> \sigma_t$ governed by avalanche fluctuations
- ☐ OR in "linear mode" fashion -> Low Gain Avalanche Detectors (LGADs)

- ☐ Separate the "collection" of charge from the signal gain
- **□** Figure of merit for σ_t is the "slew rate" dV/dt ≈ Signal/ τ_{rise}

$$\sigma_t^2 = \underbrace{\left(\frac{V_{th}}{dV/dt}\Big|_{rms}\right)^2}_{\sigma_{\text{time walk}}^2} + \underbrace{\left(\frac{\text{Noise}}{dV/dt}\right)^2}_{\sigma_{\text{noise}}^2} + \sigma_{\text{arrival}}^2 + \sigma_{\text{dist}}^2 + \sigma_{\text{TDC}}^2$$
 arrival distortion fluct. low w-field

Need: fast drift + large S/N

- thin (!!)
- H\/
- intr. amplification
- (small electrodes)
- broad-band amplifier 33

LGAD – successes so far ... and current challenges

- Ultimate Goal: simultaneous space (~10μm) AND time resolution (< 50 ps) ... no pixels yet!</p>
- ☐ Concrete application: ATLAS (HighGranularityTimingDetector; Forward) -> pile-up killer CMS-TOTEM (in Roman Pots)

LGAD
pad (~1 mm²)
detectors

- G. Pellegrini et. al, NIM A 765 (2014) 12–16.
- G. Pellegrini et al., HSTD 2015, arXiv:1511.07175
- H. Sadrozinski et al., NIM A730 (2013) 226-231, NIM A831 (2016) 18-23
 N. Cartiglia et al., NIM A796:141–148, 2015; NIM A845 (2017) 47-51

- main problem: gain variation with fluence (due to high doping of amplification region)

 (especially annoying in varying radiation fields)
 - also: amplification no longer in metallurgical p-n junction only (so what!)
- current directions:
 - (1) substitute B with Ga as acceptor dopant ->?
 - (2) Carbon-enriched p-silicon wafers ...?

Pixel Imaging SYSTEMS (!!)

Hybrid Pixels for SLS @ PSI

Hybrid Pixels for SLS @ PSI

AGIPD (adaptive gain) ... EU XFEL Pixel Detector

- ☐ addressing >10⁴ dynamic range @ EU XFEL
- ☐ by "adaptive gain stages" (as JUNGFRAU)
- ☐ first XFEL Light has been seen ...

X-ray imaging with Monolithic SOI Pixels

Double SOI pixel detector with > 10 Mrad TID tolerance

Image taken with single SOI pixel detector 17 x 17 μ m² pixels, **500** μ m bulk thickness

Conclusions

- ☐ Silicon detectors remain the working horse for tracking and imaging detectors, especially in high rate and/or high radiation environments.
- ☐ This HSTD11 (2017) Conference is an excellent forum presenting the current state of the art.

BACKUP

Radiation effects in 65 nm CMOS small channel devices

W = moderate size

W = minimum size

L = moderate size

Regions strongly influenced by the trapped charge

L = minimum size

cartoons: F. Faccio, TWEPP2015

Performance of sensor fabricated in CMOS

- IV curves of all samples ok (bias 120 V -> 500 V)
- about 220 μm depletion depth
- leakage current **20 μA / cm³** (IBL: 15 μA/cm³)
- noise as in standard sensors
 - planar sensors ($C_D = 117 \text{ fF}$): ENC = 120 e-
 - 3D-Si sensors ($C_D = 180 \text{ fF}$): ENC = 140 e-
- high efficiency after irradiation (1 x 10¹⁵ n_{eq}/cm²)

compare IBL

- planar sensors ($C_D = 117 \text{ fF}$): ENC = 120 e-
- 3D-Si sensors ($C_D = 180 \text{ fF}$): ENC = 140 e-

D.-L. Pohl et al., JINST 12 (2017) no.06, P06020