Evidence for $\eta_c \to \gamma \gamma$ and Measurement of $J/\psi \to 3\gamma$

Selected highlights

Liu Kai

Introduction: physics picture

- Decays of positronium(e+ e- system) to more than one photon are ideal environment for testing the QED
 - Leptons (e+e-) only interact through electromagnetic interaction
- The analogous processes in charmonia act as a prob of the strong interaction.
 - in the quark-antiquark bond state, c/cbar interact with each other through electromagnetic and strong interactions both. $\mathcal{R} \equiv \frac{\mathcal{B}(J/\psi \to 3\gamma)}{\mathcal{B}(J/\psi \to e^+e^-)} = \frac{64(\pi^2 - 9)}{243\pi}\alpha(1 - 7.3\frac{\alpha_s(r)}{\pi})$

Introduction: experimental status

- J/psi --> 3 gam process is firstly reported by CLEO.
- the value of *R* disagrees with the theoritical prediction
- Eta_c --> gam gam process is mainly done by the two-

photon fusion process, suffering low statistics

Event Selections

To reconstruct psi(2S) candidates from pi+ pi- 3gam final states:

The best $\psi(2S)$ candidate among all combinations of $\pi^+\pi^-\gamma\gamma\gamma$ in each event is determined by:

- 1. number of photons: $3 \le N_{photon} \le 7$,
- 2. number of charged tracks: $N_{charged-track} = 2$,
- 3. the recoiling mass against $\pi^+\pi^-$: 2.9GeV $< M_{\rm recoil}^{\pi^+\pi^-} < 3.3$ GeV,
- 4. $\chi^2_{4C} < 200$, which implies a successful vertex fit,
- 5. the smallest χ^2_{4C} .

Background study: mass spectrum of two photons

Figure 1: Scatter plots of $M(\gamma\gamma)_{\rm lg}$ versus $M(\gamma\gamma)_{\rm sm}$ for data (c) and for MC simulations on the processes $J/\psi \to \gamma \pi^0/\eta/\eta' \to 3\gamma$ (a), $J/\psi \to \gamma f(1270) \to \gamma(\gamma\gamma)_{\pi^0}(\gamma\gamma)_{\pi^0}$ (b), $J/\psi \to 3\gamma$ (d) and $J/\psi \to \gamma \eta_c \to 3\gamma$ (f). Plot (e) shows the distributions after excluding backgrounds from $J/\psi \to \gamma \pi^0/\eta/\eta'$. The vertical lines indicate the mass windows to reject π^0 , η and η' .

Background study of $J/\psi \rightarrow \gamma e^+e^-$

- if the electron and positron tracks fail to be reconstructed in the Main Drift Chamber, and the associated EMC clusters then being misidentified as photon candidates
- To reject the background
 - the number of hits in the MDC within an opening angle of five EMC crystals around the center of each photon shower is counted
 - the total number of hists from the three
 photons is required to be less than 40.

FIT

FIG. 3. (color online) Projection of the two-dimensional fit to χ^2_{4C} (left) and $M(\gamma\gamma)_{lg}$ (right) for data (points with error bars) and the fit results (thick solid line). The (dark red) dotted-dashed, (red) dashed and (blue) dotted lines show contributions from $J/\psi \rightarrow 3\gamma$, $J/\psi \rightarrow \gamma\eta_c \rightarrow 3\gamma$, and $J/\psi \rightarrow \gamma\pi^0\pi^0$, respectively. The stacked histogram represents the backgrounds from $J/\psi \rightarrow \gamma\pi^0/\eta/\eta'$ (light shaded and green) and non- J/ψ decays (dark shaded and violet).

branching fraction is calculated using

 $\mathcal{B} = \frac{n_{\rm obs}}{N_{\psi(3686)} \times \mathcal{B}(\psi(3686) \rightarrow \pi^+\pi^- J/\psi) \times \varepsilon}$

Summary and Highlights(1)

 with 106M psi(2S) data sample, Eta_c decays to 2 photons could be reconstructed with high effeciency. And signal yied is about 33

Mode	$J/\psi ightarrow 3\gamma$	$J/\psi \to \gamma \eta_c, \eta_c \to \gamma \gamma$
ε (%)	27.9 ± 0.1	20.7 ± 0.2
Yield	113.4 ± 18.1	33.2 ± 9.5
Significance	$8.3(7.3)\sigma$	$4.1(3.7)\sigma$
$\mathcal{B}(\times 10^{-6})$	$11.3\pm1.8\pm2.0$	$4.5\pm1.2\pm0.6$

 with psi(2S) data, it is more easier to suppress background.

Summary and Highlights (2)

- some interesting techniques were introduced in background study.
 - one could select good showers by requiring the number of MDC hits in an opening angle.
- this mode may be used as the normalizing channel in the possible upcoming analysis works

THANK