Flagging and treatment of anomalous channels

Federico Ferri for the working group

CEA-Saclay/IRFU SPP

ECAL DPG- March 17, 2009

- Identification of anomalous channels
- Reconstruction of saturated channels
- Recovery of (isolated) dead channels
- Recovery of dead Trigger Towers

S. Beauceron, A. Benaglia, F. Bostock, J. Fay, M. Malberti, A. Martelli, C. Rovelli, L. Sala

Introduction

Classification of problematic channels

	problematic channels	problematic trigger towers
Barrel	69 (41 dead)	10 (9 with trigger)
Endcap	-	5 (1 with trigger)

Problems identified so far (information that will go in the DB):

- 1 really dead channels: no signal in any kind of runs
- 2 DAC settings problems
- 3.1 channels always at fixed gain (gain 12 not working)
- 3.2 channels always at fixed gain (gain 12 and gain 6 not working)
- 3.3 channels always at fixed gain 0
 - 4 channels with no laser, ok elsewhere
 - 5 problematic VFEs
 - 6 problematic isolated trigger towers
 - 7 noisy channels 'hot' channels and large pedestal rms
 - Possibility to add more flags to the classification (hope not...)
 - ⇒ the treatment of the different flags has to be flexible and easily configurable (i.e. what to do with each flag should be specified via cfg file)

Reconstruction schema

- The DB has a run-based channel quality information and also the parameters for the reconstruction algorithms: it is accessible to both UncalibRecHitProducer and RecHitProducer
- ▶ The RecHit holds a flag summarizing the event-based reconstruction quality
- RecHit flag + DB info = severity level ≡ how reliably can I use the channel (be it reconstructed or not)?

イロト 不得 トイヨト イヨト 二日

Reconstruction strategy for anomalous channels

At the UncalibRecHit level:

saturated	\rightarrow	leading edge method
fixed gain	\rightarrow	might profit from special weight method with $3\!+\!5$ (to be investigated)
noisy	\rightarrow	to be defined

At the RecHit level:

isolated dead channel:

- if in an interesting region according to Selective Readout Process (SRP)
- if in a 3×3 matrix around the crystal with the highest energy deposit
- if $\sum E_i$ in $3 \times 3 >$ threshold
- consider neighbouring crystals, estimate the missing energy and assign it to the RecHit

for practical purposes, as the energy will anyway be (re-)clustered in a subsequent step

in dead Trigger Tower with trigger information:

- if TP energy > threshold
- use the Trigger Primitive (TP) information
- share the TP energy among the TT recHits in a first step "democratically" i.e. E_{hit} = E_{TP}/25

Reconstruction of saturated channels

- Pulse shape u(t) assumed to be known (e.g. empirically)
- Amplitude from the last unsaturated sample s(t):

$$\mathcal{A}=\frac{s(t)}{u(t)}$$

- The resolution basically depends only on the jitter of the signal
- A precise time-calibration can make the biases negligible

ECAL DPG - March 17, 2009

Reconstruction of saturated channels

The method has been included in CMSSW: preliminary results

- There is still a 1% bias under investigation and very likely due to a not yet identified time-shift between the reconstruction and the digitazion step
- **N.B** The approach is independent from other methods based on the crystals adjacent to the saturated one \Rightarrow can be combined (at the RecHit level)

(日) (同) (三) (三)

Recovery of (isolated) dead channels

Requirements:

- criteria to determine where the dead crystal is w.r.t. the electromagnetic shower
- criteria to decide whether or not it is significant to recover the dead channel
- algorithm to recover the energy

Algorithm currently investigated:

- Neural Network approach
- parametrization as a function of the impact point on the crystal with the maximum energy
- recovery based on neighbouring crystals à la "saturated case"

- 本間 と くき とくき とうき

Recovery of (isolated) dead channels

Algorithm example: Neural Networks

- One NN to select which case we are facing (i.e. where is the dead crystal w.r.t. the shower)
- One NN per case to recover the energy

Example of results: recovery and physics impact (preliminary!)

Recovery of (isolated) dead channels

New inputs for the recovery procedure

- ▶ Given the energy and the impact point on a crystal, we can predict the energy deposits in a matrix of crystals (e.g. 5 × 5)
- ⇒ from the deposit of the energy in the matrix we can fit the shower energy (and the impact point) and predict the energy deposited in the missing crystal(s)

Advantages

- should be easy, fast and general (few parameters)
- could work even for > 1 missing crystals (\Rightarrow missing VFE)
- optimistic approach: can even be used for missing crystals in a region with overlapping showers?

Recovery of dead Trigger Towers

Reminder from one of Pascal's talks:

Handles to recover the energy information:

- TPG linearizer: fixes the saturation scale (i.e. the dynamic range) for the ET of a tower (10 bit information)
- TPG compressor pass from 10 bit information to 8 bit information: fix the dynamic range and the Look-Up Table (LUT) mapping 10 bit to 8 bit (which can be nonlinear)

Recovery of dead Trigger Towers

Present status

- current status of the detector reproduced
- started to look at the physics impact on fully simulated events
- started to look at the trigger emulator (scale/LUT optimization)

Near future

- Optimize the TP saturation scale and the LUT to have the best possible resolution on the most useful range
 - study on physics channels are needed
 - be careful as the optimization goes in the opposite direction the trigger would like (extend the scale)
- Decide how to re-assign energy to the recHits (can affect further reconstruction steps)
- Handle the cases in which we exceed the saturation scale (look at neighbouring crystals/trigger towers?)

Conclusions

- Flags for the DB ready to be deployed
- An initial reconstruction schema will be adopted to handle all anomalous channels
- Further steps:
 - saturated channels:
 - adopt the leading edge method (with ad-hoc bias correction)
 - check the digitization sequence to understand the observed 1% bias

isolated dead channels:

- finalize studies on the physics impact
- investigate the parametric shower method
- converge on the easiest and best performing method
- dead Trigger Towers:
 - recover using the current LUT and share the energy among the hits "democratically"
 - start the studies on the physics impact
 - optimize the choice of saturation energy and LUT (a study also relevant for the trigger itself ⇒ profit from collaboration)
 - optimize the energy sharing among the channels

イロト 不得 トイヨト イヨト 二日