Draft version 0.4

3

4

5

6

7

8

9 10

11

June 12, 2017

¹ Search for Higgs pair production in the final state of $\gamma\gamma WW^*(\rightarrow l\nu jj)$ ² using 36.1 fb⁻¹ *pp* collision data at $\sqrt{s} = 13$ TeV with the ATLAS detector

Yaquan Fang¹, Douglas Gingrich³, Qi Li¹, Xinchou Lou^{1,2}, Bruce Mellado Garcia⁴, Abdualazem Fadol Mohammed⁴, Tshidiso Sydwell Molupe⁴, Xifeng Ruan⁴, Xiaohu Sun³, Jin Wang⁵, Maosen Zhou¹, Yu Zhang¹

¹ Institute of High Energy Physics, Chinses Academy of Siences, Beijing, China ² University of Texas at Dallas, USA ³ University of Alberta, Canada ⁴ University of the Witwatersrand, ZA ⁵ University of Sydney, AU

Abstract

A search is performed for resonant and non-resonant Higgs pair production with one 12 Higgs boson decaying to semi-leptonic WW and the other to $\gamma\gamma$ using proton-proton colli-13 sion data corresponding to an integrated luminosity of 36.1 fb⁻¹ at a 13 TeV centre-of-mass 14 energy recorded with the ATLAS detector. The observed (expected) upper limit at 95% con-15 fidence level on the cross section for $qg \rightarrow hh$ is XXX pb (5.02 pb) for the non-resonant 16 Higgs pair production. For resonant Higgs pair production, the observed (expected) up-17 per limits at 95% confidence level on cross section times the branching ratio of $X \rightarrow hh$ 18 range from XXX pb (12.2 pb) to XXX pb (4.15 pb) as a function of the resonant mass from 19 260 GeV to 500 GeV assuming a narrow-width resonance. 20

© Copyright 2017 CERN for the benefit of the ATLAS Collaboration. Reproduction of this article or parts of it is allowed as specified in the CC-BY-3.0 license.

21 Contents

00	1	State	amonte
22	1	1 1	List of contributions 2
23		1.1	
24		1.2	Version 0.4
25		1.5	Version 0.4
26		1.4	Version 0.3
27		1.5	Version 0.2
28		1.6	Version 0.1
29		1.7	Version 0.0
30	2	Intro	oduction 5
31	3	Data	a and Monte Carlo samples 6
32		3.1	Data samples
33		3.2	Monte Carlo samples 6
34		0.2	3.2.1 MC samples for signals 6
35			322 MC samples for SM single Higgs backgrounds
35			3.2.2 MC samples for continuum backgrounds
30			5.2.5 We samples for continuum backgrounds
37	4	Obje	ect definition 11
38		4.1	Photons
39		4.2	Jets
40		4.3	Electrons
41		4.4	Muons
42		4.5	Missing transverse momentum
43		4.6	Overlap removal
44	5	Ever	nt selection 13
45		5.1	Selection and efficiency
46	6	Sele	ction optimizations 15
47		6.1	Optimal b-tagging working point
48		6.2	Cuts optimization
	_		
49	7	Sign	al and background estimations 17
50		7.1	Model of signals, SM single Higgs and SM di-Higgs backgrounds
51		7.2	Signal estimation
52		7.3	Single Higgs background estimation
53		7.4	Continuum background estimation
54			7.4.1 Function form
55			7.4.2 Lepton dependence
56			7.4.3 Spurious signal
57			7.4.4 $Z\gamma$ background
E 0	8	Syst	ematic uncertainties 35
50		81	Luminosity uncertainties 35
59		8.2	Theoretical uncertainties 25
00		0.2 8 2	Experimental Uncertainties 25
61		0.3	L'Appendice and a continuum background estimation
62		0.4	Oncertainty on continuum background estimation

63 64 65 66	9	Statistical interpretation 9.1 Statistical model 9.2 Model inspection 9.3 Upper limit setting	39 39 39 61
67	10	Summary	63
68	Ap	opendices	67
69	A	MadGraphs5 cards used for signals	67
70	B	Systematic uncertainties in details for one lepton region	71
71	С	Selections optimization	120
72	D	Fake lepton estimation	123
73	E	Discusssion on continuum background modeling	125
74	F	Parameters extraction for signals and SM backgrounds	125
75	G	Systematics on photon resolution and scale	130

76 **1** Statements

77 **1.1 List of contributions**

Yaquan Fang	Paper editor, supervision of IHEP students
Qi Li	Supporting note editor, main analyzer (signal, background estimations, systematics and statistics), plot production
Douglas Gingrich	Supervisor of Xiaohu
Xinchou Lou	Supervision of Yu Zhang
Bruce Mellado Garcia	Supervision of Witwatersrand students
Abdualazem Fadol Mohammed	Cross check of the cutflow
Tshidiso Sydwell Molupe	Continuum background decomposition
Xifeng Ruan	Background decomposition, spurious signal, supervision of Witwatersrand students
Xiaohu Sun	Supporting note/paper editor, analyzer, statistics, supervision of IHEP students
Jin Wang	Statistics, background modeling
Maosen Zhou	Signal and background sample validation, Wh uncertainty from jet multiplicity
Yu Zhang	Photon purity checks, derivations of MC samples, cross check of the data

78 **1.2 Version 0.X**

- ⁷⁹ Finalized analysis strategy and answered CDS comments
- Determine the fit strategy with only 1-lep region 9.1
- 81 ...

82 **1.3 Version 0.4**

⁸³ Fully updated version answering all CDS comments so far and aiming at unblinding approval.

84 1.4 Version 0.3

Please focus on the fully updated Section 7, while sections of statistics and systematics are under devel oping not ready for reading. Thanks.

- Fully update to h15 HGam framework and final CP recommendation for Moriond
- Fully update the structure and content of Section 7 "Signal and background estimations"
- Drop fully hadronic channel given no gain in sensitivity
- Apply $p_T(\gamma \gamma)$ cut
- Study photon purity
- Study spurious signal
- Study electron faking photons
- Study jet faking leptons

95 **1.5 Version 0.2**

- Upgrade to the shape fit
- Include combination and introduce orthogonal cuts between the fully hadronic and this analysis.
- Explore additional kinematic cuts besides what have been applied; no one shows promising results.

99 **1.6 Version 0.1**

Almost all the results and plots are updated to 36.47 fb^{-1} .

101 **1.7 Version 0.0**

¹⁰² This version is based on ICHEP INT note

103 2 Introduction

A Higgs boson was discovered by the ATLAS and CMS collaborations [1, 2] in 2012 and has been sub-104 sequently studied by spin and coupling measurements [3, 4, 5], which have established that its properties 105 are very similar to the ones of the Standard Model (SM) Higgs boson. These measurements are mainly 106 based on Higgs production via gluon-fusion, vector-boson-fusion and in association with a W or Z bo-107 son. Higgs pair production has not been measured and, if its cross section is similar to the SM predicted 108 value 33.41 fb [6], it is impossible to measure with the current data. However, the non-resonant Higgs 109 pair production can be significantly enhanced either by altering the Higgs boson self-coupling λ_{HHH} [7] 110 or in extended Higgs sectors such as 2-Higgs-Doublet Models (2HDM) [8] where a heavy resonance 111 decaying into a pair of SM-like Higgs bosons could exist. In RUN I, various channels were explored 112 with the ATLAS detector, such as $bb\gamma\gamma$ [9], bbbb [10], $bb\tau\tau$ and $WW\gamma\gamma$ [11]. In RUN II, $bb\gamma\gamma$ [12], 113 *bbbb* [13] and $WW_{\gamma\gamma}$ [14] continue searching for the Higgs boson pair production. 114

This note provides supporting material for the search of Higgs pair either from the non-resonant 115 production or from the resonant one, with the subsequent decay chain of $hh \rightarrow WW\gamma\gamma \rightarrow l\nu jj\gamma\gamma$, 116 namely one of the W bosons decays hadronically while the other decays leptonically, leading to a final 117 state with two jets, one charged lepton (either electron or muon), missing transverse momentum and two 118 photons. In terms of the mass scan on the resonant search, we start from 260 GeV and stop at 500 GeV 119 based on our RUN I sensitivity [11]. The object and event selections inherits the ICHEP analysis as much 120 as possible. With a set of similar selections, around two times more data are accumulated and examined 121 for the Higgs pair search. The featured update is that a shape fit on $m_{\gamma\gamma}$ is adopted rather than the simple 122 event counting method given more sufficient statistics. 123

Section 3 introduces the data and MC samples used in this analysis. Section 4 defines the objects used in the event selection. Section 5 gives the event selection definitions and relevant cut efficiencies. Section 6 describes the optimization on selection criteria. Section 7 discusses the signal and background estimations in the non-resonant and resonant Higgs pair searches. Section 8 describes the systematic uncertainties. In Section 9, statistical interpretation and relevant checks are done.

Section 10 summarizes the results and compares them to RUN I and RUN II (13.3 fb^{-1}). Appendix A gives the details of MG5 cards used for signal event generation. Appendix B records the details of systematic uncertainties related to detectors in one lepton region. Appendix C provides the discussions

132 on the cuts optimizations.

3 Data and Monte Carlo samples

134 **3.1 Data samples**

The data samples used in this analysis correspond to the data recorded by ATLAS in the whole 2015 and 2016, which sums up to an integrated luminosity of 36.1 fb⁻¹. The whole dataset is recorded with all subsystems of ATLAS operational ¹.

3.2 Monte Carlo samples

SM single Higgs backgrounds and signals are estimated with MC samples that are documented in this section, while the continuum photon background of the SM processes with multiphotons and multijets is determined with the data in sideband ² with the data-driven method. Nevertheless, two relevant MC samples are used to check and consolidate the modeling of the continuum photon background and they are described in this section.

The simulation under MC15c configuration is used in the analysis. The samples are generated with the consideration of multiple interactions per bunch crossing by introducing pileup noise at the stage of digitalization. MC15c configuration incorporates the pileup condition that is an average of the actual pileup condition in 2015 data and an estimation for 2016 data. Any residual difference in pileup conditions is corrected for through a re-weighting. The vertex z distribution is also re-weighted to better match data.

150 **3.2.1 MC samples for signals**

Signal samples are generated with MADGRAPH5_AMC@NLO [15]. For both non-resonant and resonant 151 productions, the event generation is performed using a next-to-leading-order SM Higgs pair model devel-152 oped by the Cosmology, Particle Physics and Phenomenology (CP3) theory group [16]. Events are gen-153 erated with a Higgs Effective Field Theory (HEFT) using AMC@NLO method [17] and are reweighted 154 to take into account top quark mass dependence [13]. The top mass can become an important effect [18], 155 particularly for the non-resonant case. The shower is implemented by Herwig++ [19] with UEEE5 156 underlying-event tune [20], and the PDF set CTEQ6L1 [21] is used. The heavy scalar, H, is assumed 157 to have a narrow width. Technically its decay width is set to 10 MeV in the event generation for the 158 following masses: 260 GeV, 300 GeV, 400 GeV and 500 GeV. The card used in MadGraph5 for signal 159 event generations is attached in Appendix A. Subsequently, the H boson is required to decay into a pair 160 of SM Higgs bosons, one of which decays into a pair of photons and the other into two W bosons. W 161 inclusively decays. The generator level filter ParentChildFilter implements the selection of these decay 162 products. Details on the signal samples are listed in Table 1. All signal samples are produced with the 163 Atlas fast simulation framework (AF2) 164

The kinematic distributions after hadronization and parton shower before interacting with the materials in the detector are shown for non-resonant and resonant Higgs pair productions. In Figure 1 and Figure 2, the transverse momentum p_T and pseudorapidity η distributions are shown for each object in the final state at truth level [22]. The p_T spectrum of the decay products get harder as the resonant mass rises and the non-resonant one is the hardest under the centre-of-mass energy of 13 TeV.

¹Good Run Lists are data15_13TeV.periodAllYear_DetStatus-v79-repro20-02_DQDefects-00-02-02_PHYS_StandardGRL_All_Good_25ns.xml for 2015 data and data16_13TeV.periodAllYear_DetStatus-v88-pro20-21_DQDefects-00-02-04_PHYS_StandardGRL_All_Good_25ns.xml for 2016 data

²The sideband is defined as $m_{\gamma\gamma} \in [105, 125.09 - 2\sigma_{\gamma\gamma}] \cup [125.09 + 2\sigma_{\gamma\gamma}, 160]$ GeV orthogonal to the signal region defined in Section 5. The $\sigma_{\gamma\gamma}$ is the resolution of invariant mass of di-photon and is 1.7 GeV

DSID Generators, tunes and PDFs Tags Processes 342621 non-resonance MadGraph + Herwigpp UEEE5 CTEQ6L1 e4419_a766_a821_r7676_p2691 343756 $X \rightarrow hh$, 260 GeV MadGraph + Herwigpp UEEE5 CTEQ6L1 e5153_a766_a821_r7676_p2691 343758 $X \rightarrow hh$, 300 GeV MadGraph + Herwigpp UEEE5 CTEQ6L1 e5153_a766_a821_r7676_p2691 343761 $X \rightarrow hh$, 400 GeV MadGraph + Herwigpp UEEE5 CTEQ6L1 e5153_a766_a821_r7676_p2691 343763 $X \rightarrow hh$, 500 GeV MadGraph + Herwigpp UEEE5 CTEQ6L1 e5153_a766_a821_r7676_p2691

Table 1: Simulated signal samples

Figure 1: Kinematic distributions at truth level for the production of $hh \rightarrow WW\gamma\gamma$: (a) p_T of muons, (b) η of muons, (c) p_T of electrons, (d) η of electrons, (e) p_T of neutrino. Distributions are normalized to unity. Some kinematic cuts are applied for particles. For photon : $p_T > 25GeV$, $|\eta| < 2.37$, remove crack region, truth isolation; for electron : $p_T > 10GeV$, $|\eta| < 2.47$; for muon : $p_T > 10GeV$, $|\eta| < 2.7$; for jet : $p_T > 25GeV$, $|\eta| < 4.4$

Figure 2: Kinematic distributions at truth level for the production of $hh \to WW\gamma\gamma$: (a) p_T of leading photon, (b) η of leading photon, (c) p_T of subleading photon, (b) η of subleading photon, (e) p_T of leading jet, (f) η of leading jet, (g) p_T of subleading jet, (h) η of subleading jet. For jet, the truth jet is plotted in the plots. Distributions are normalized to unity.

170

3.2.2 MC samples for SM single Higgs backgrounds

Simulated samples for SM single Higgs background are produced to investigate the components of this background in $m_{\gamma\gamma}$ and to estimate their contributions. The SM single Higgs background considered here is assumed to be produced via five production modes: ggh, VBF, Wh, Zh and tth, where h is the light (SM-like) 125 GeV Higgs boson. These samples are simulated using the full ATLAS simulation and reconstruction chain. The mass of the SM Higgs boson is set to 125 GeV. More details on generator, parton shower and simulation tags are listed in Table 2.

DRAFT

The cross sections at $\sqrt{s} = 13$ TeV corresponding to each production mode are listed in Table 3. In the analysis, these cross sections will be multiplied by the $h \rightarrow \gamma \gamma$ branching ratio of 0.00227 due to all simulated samples are produced with SM Higgs decaying into photon pairs.

DSID	Processes	Generators, tunes and PDFs	Tags
341000	ggh	Powheg+Pythia8 AZNLO CTEQ6L1	e3806_s2608_r7772_r7676_p2669
341001	VBF	Powheg+Pythia8 AZNLO CTEQ6L1	e3806_s2608_r7772_r7676_p2669
341067	Wh	Pythia8 A14 NNPDF2.3LO	<i>e</i> 3796_ <i>s</i> 2608_ <i>s</i> 2183_ <i>r</i> 7772_ <i>r</i> 7676_ <i>p</i> 2669
341068	Zh	Pythia8 A14 NNPDF2.3LO	<i>e</i> 3796_ <i>s</i> 2608_ <i>s</i> 2183_ <i>r</i> 7772_ <i>r</i> 7676_ <i>p</i> 2669
341069	tth	Pythia8 A14 NNPDF2.3LO	e3796_s2608_s2183_r7772_r7676_p2669

Table 2: Simulated SM single Higgs background samples.

production	cross sections
production	
ggh	48.52 pb
VBF	3.779 pb
Wh	1.369 pb
Zh	0.8824 pb
tth	0.5065 pb
$gg \rightarrow hh$	33.41 fb

Table 3: Cross sections for SM single Higgs processes at $\sqrt{s} = 13$ TeV with $m_h = 125.09$ GeV and the SM Higgs pair productions, $gg \rightarrow hh$ [23].

180 3.2.3 MC samples for continuum backgrounds

The simulated sample of the $pp \rightarrow l\nu jj\gamma\gamma$ background is used to study the components with the SM background with the same final states of signal. The background sample $pp \rightarrow jjj\gamma\gamma$ is generated by HGam group. The $pp \rightarrow jjj\gamma\gamma$ as well as $pp \rightarrow l\nu jj\gamma\gamma$ is used to validate the $m_{\gamma\gamma}$ modeling. These processes are listed in Table 4.

DSID	Processes	Generators, tunes and PDFs	Tags	Cross section
343363	$pp \rightarrow lv j j\gamma\gamma$	MadGraph + Pythia8 AU2 NN23LO1ME	e4852_a766_a821_r7676_p2691	31.739 fb
341065	$pp \rightarrow jjj\gamma\gamma$	Sherpa + $CT10 + 2DP20$	e4407_s2726_s2183_r7725_r7676_p2666	40.127 pb

Table 4: The simulated samples for continuum background.

4 Object definition

The photon selections follow the recommendations in HGam analysis and are exactly the same as what the team of $bb\gamma\gamma$ uses. This analysis additionally requires leptons and jets. The analysis framework of $hh \rightarrow WW\gamma\gamma$ is based on the HGamAnalysisFramework that is centrally developed by HGam group. The tag of the framework is HGamAnalysisFramework-00-02-77-01 which is used to produce official MxAOD samples of version h015.

191 4.1 Photons

- The E_T of leading (sub-leading) photon is required to be large than 35% (25%) of the invariant mass of the leading two photons.
- The $|\eta|$ of photon is considered up to 2.37, vetoing the crack region $1.37 < |\eta| < 1.52$.

Photons are required to pass the loose identification criteria on the shape of the electromagnetic shower in the LAr accordion calorimeter and on the fraction of energy leaking in the hadronic calorimeter. Photons are further required to pass the Tight ID cut to suppress the fake photon.

• The isolation working point FixedCutLoose is used. It is one of the recommended points from the isolation forum. The photons are required to satisfy both a calorimeter-based and a track-based isolation requirements. The calorimeter isolation requires $topoetcone20 < 0.065 \times E_T$ in which the 20 means a cone of $\Delta R = 0.20$. The track isolation requires $ptcone20 < 0.05 \times p_T$.

- The neural network photon pointing information that is default in HGam is used to select the primary vertex (PV) and recalculate the photons' four momenta and other quantities including JVT and track isolation. The NN training takes into account the inputs from the weighted average of the *z* position obtained from photon pointing, the beam spot position, the conversion vertex for converted photons, $log(\Sigma p_T \text{ of tracks})$, $log(\Sigma p_T^2 \text{ of tracks})$ and $\Delta \phi(\gamma \gamma, \text{PV})$.
- The invariant mass of two leading photons is required to be within [105,160] GeV.

208 **4.2** Jets

- The Anti- k_t algorithm [24] with the distance parameter of R = 0.4 is used.
- Jets are required to have $p_T > 25$ GeV and |y| < 2.5.
- Jets from pileup are rejected by applying a JVT (Jet Vertex Tagger) cut. The jet is rejected if JVT< 0.59 for $p_T < 60$ GeV and |y| < 2.4.
- Events with a jet passing the LooseBad cut are rejected. The LooseBad jet quality requirement is designed to reject fake jets caused by detector readout problems and non-collision backgrounds.

215 4.3 Electrons

Electrons are reconstructed from energy clusters in the EM calorimeter matched with tracks reconstructed in the inner detector.

- E_T is required to be larger than 10 GeV.
- $|\eta|$ is required to be less than 2.47 vetoing the transition region with $1.37 < |\eta| < 1.52$.

- The $|d_0|$ significance $(d_0/\sigma(d_0))$ with respect to the hardest vertex in the event is required to be less than 5.
- The $|z_0 \sin\theta|$ with respect to the hardest vertex in the event is required to be less than 0.5mm.
- Identification: MediumLH quality electrons are used.
- Isolation: Loose electrons are used. It requires that the calorimeter isolation in a cone size $\Delta R < 0.2$ satisfies *topoetcone*20 < $0.020 \times E_T$ as well as track isolation in a cone size $\Delta R < 0.2$ satisfing *ptcone*20 < $0.15 \times P_T$.

227 **4.4 Muons**

- ²²⁸ Muons are reconstructed from tracks in the inner detector and the muon spectrometer.
- p_T is required to be larger than 10 GeV.
- $|\eta|$ is required to be less than 2.7.
- The significance $|d_0/\sigma(d_0)|$ with respect to the hardet vertex in the event is required to be less than 3.
- The $|z_0 \sin\theta|$ with respect to the hardest vertex in the event is required to be less than 0.5mm.
- Identification: Medium quality muons are used.
- Isolation: GradientLoose is used.

4.5 Missing transverse momentum

The missing transverse momentum E_T^{miss} is calculated as the negative vector sum of the transverse momentum of the reconstructed objects including jets, electrons, muons and photons, with relevant calibrations and soft terms which are not associated to any reconstructed objects [25, 26]. Various algorithms have been explored to improve the soft term measurement. The default one used in this analysis is Trackbase Soft Term (TST) [27] thanks to its outstanding resolution performance and pileup robustness. In this algorithm, the momentum of the soft terms are calculated based on inner detector measurements.

243 **4.6 Overlap removal**

Since objects are reconstructed with different algorithms in parallel, i.e. no check to see if a same set of clusters or tracks are used for reconstructing two different object, one needs to implement a set of rules to remove objects close to each other to avoid double counting. The rule is defined as below:

- The two leading photons are always kept.
- Electrons with $\Delta R(e, \gamma) < 0.4$ are removed.
- Jets with $\Delta R(jet, \gamma) < 0.4$ are removed.
- Jets with $\Delta R(jet, e) < 0.2$ are removed.
- Muons with $\Delta R(\mu, \gamma) < 0.4$ or $\Delta R(\mu, jet) < 0.4$ are removed
- Electrons with $\Delta R(e, jet) < 0.4$ are removed.

5 Event selection

5.1 Selection and efficiency

The event selection procedure identifies two photons and then applies requirements on the multiplicities of jets and leptons in order to increase the signal purity and background rejection for events with at least 2 jets, at least 1 lepton and 2 photons. The event selection for the analysis starts with the full di-photon selection from the $h \rightarrow \gamma \gamma$ analysis in RUN II to select two high p_T isolated photons.

- **Trigger**: di-photon trigger HLT_g35_loose_g25_loose is used.
- **Good Run List and Detector Quality**: Events must belong to the luminosity blocks specified in the Good Run Lists:
- data15_13TeV.periodAllYear_DetStatus-v79-repro20-02_DQDefects-00-02-02_PHYS_
 StandardGRL_All_Good_25ns.xml for 2015 data
- data16_13TeV.periodAllYear_DetStatus-v88-pro20-21_DQDefects-00-02-04_PHYS_
 StandardGRL_All_Good_25ns.xml for 2016 data

Events with data integrity errors in the calorimeters and incomplete events where some detector information is missing are rejected, as well as events which are corrupted due to power supply trips in the tile calorimeter.

- **Primary Vertex**: The primary vertex is selected using the neural network (NN) algorithm form HGam group. The photons' four momenta, JVT and track isolation are corrected with respect to this origin, and the mass of the diphoton system is accordingly recalculated. Figure 5.1 shows the difference of NN vertex and primary vertex in z axis. The difference is very small after full selection which requires at least one lepton and two jets in the final state.
- **2 loose photons**: At least two loose photons with $E_T > 25$ GeV and within the detector acceptance are selected.
- The other cuts on photons involving Identification (tight ID), Isolation, Rel.Pt cuts and $m_{\gamma\gamma} \in [105, 160]$ GeV have been discussed in Section 4.1
- Number of jets: At least two jets.
- **b-veto**: In order to suppress backgrounds with top quarks and keep orthogonality to other hh channels $bb\gamma\gamma$, bbbb, $bb\tau\tau$ etc, the event is rejected if there is any b-jet. The b-tagger is MV2c10 with a b-tagging efficiency of 70%. The optimization is discussed in Section 6.1.
- Number of leptons: At least one muon or electron.³

• **Tight mass window**: The tight mass window is used to define the final signal region which is blinded till the background estimation is consolidated. In the final fit on the shape of $m_{\gamma\gamma}$ in Section 7, the events both in the window and out are used.

The efficiencies of event selection are listed in Table 5. These efficiencies are derived for signals from simulated samples. After the selection of the two photons, the signal efficiencies range from 35.6% to 42.2%, while after the additional selection on the jets and the leptons , the signal efficiencies range from 6.56% to 12.0%, for a resonant mass from 260 to 500 GeV.

³There is one comparison about exact one lepton and at least one lepton. See link

Figure 3: The lines show the difference of two algorithms in signal sample. If require $|Z_{PV} - Z_{NN}| < 0.3 \text{ mm}$, the efficiency is 97.7%, 98.4%, 98.3%, 98.8%, 99.0% for $m_H = 260 \text{ GeV}$, $m_H = 300 \text{ GeV}$, $m_H = 400 \text{ GeV}$, $m_H = 500 \text{ GeV}$ and non-resonant.

	SM		Resc	onant	
	Higgs pair	260 GeV	300 GeV	400 GeV	500 GeV
All Events	100.0%	100.0%	100.0%	100.0%	100.0%
Duplicate	100.0%	100.0%	100.0%	100.0%	100.0%
GRL	100.0%	100.0%	100.0%	100.0%	100.0%
Pass Trigger	73.8%	68.4%	69.4%	71.8%	74.5%
Detector Quality	73.8%	68.4%	69.4%	71.8%	74.5%
has PV	73.8%	68.4%	69.4%	71.8%	74.5%
2 loose photons	59.3%	56.6%	56.1%	57.5%	59.7%
Trig Match	59.0%	56.3%	55.8%	57.2%	59.4%
Tight ID	49.3%	46.2%	45.5%	47.5%	50.2%
Isolation	44.6%	39.3%	39.3%	42.6%	45.7%
Rel.Pt cuts	41.0%	36.6%	35.6%	38.8%	42.4%
$105 < m_{\gamma\gamma} < 160 \text{ GeV}$	40.9%	36.6%	35.6%	38.6%	42.2%
At least 2 central jets	29.7%	17.7%	20.1%	26.5%	32.1%
B-veto	27.8%	16.7%	19.0%	25.0%	30.2%
At least 1 lepton	11.1%	6.56%	7.60%	10.4%	12.0%
$pT_{\gamma\gamma} > 100 \text{ GeV}$					

Table 5: Efficiencies for event selection

ϵ (btag)	ggh	VBF	Wh	Zh	tth	Cont.	Non-res	ϵ (non-res)	Sig.
60%	0	0.001	0.042	0.016	0.093	1.60	0.128	8.7%	0.09556σ
70%	0	0.001	0.042	0.012	0.067	1.60	0.127	8.6%	0.09568σ
77%	0	0.001	0.042	0.012	0.050	1.60	0.126	8.5%	0.09548σ
85%	0	0.001	0.039	0.012	0.035	1.60	0.100	7.1%	0.07625σ

Table 6: The event yields (SM single Higgs, continuum background and non-resonant signal), signal efficiencies and the expected significance for difference b-tagging working points. Non-resonant signal is used as a benchmark. Events pass all selections defined for signal region. The backgrounds in this table were estimated with the luminosity (3.2 fb^{-1}) from 2015 data.

$p_T(\gamma\gamma)$ selection	$p_T(\gamma\gamma) > 50 \text{ GeV}$	$p_T(\gamma\gamma) > 80 \text{ GeV}$	$p_T(\gamma\gamma) > 100 \text{ GeV}$	
Limits (pb)	5.42	4.64	4.22	

Table 7: The limits scan with different $p_T(\gamma\gamma)$ cuts including all systematic uncertainties for mh = 500 GeV.

290 6 Selection optimizations

Optimizations on object or event selection are discussed in this section. In general, the expected significance formula for low-statistical analyses is used as a figure-of-merit.

$$Z = \sqrt{2 \times \left[(S+B) \times (\ln \frac{S+B}{B}) - S \right]}$$
(1)

where *S* is the signal yield and *B* is the background yield after a set of selections. The higher the significance is, the better the expected sensitivity would be. Normally, we choose the selections that give the highest expected significance. When doing the optimization, the cross section $\sigma(gg \rightarrow hh)$ for non-resonance and $\sigma(gg \rightarrow H) \times BR(X \rightarrow hh)$ for resonances are assumed to be 1 pb.

297 6.1 Optimal b-tagging working point

As recommended by the performance groups, the btagger MV2c10 is used for b-veto to suppress the background. Several working points corresponding to difference b-tagging efficiencies are tested as shown in Table 6. As expected, the b-tagging working point only affects the SM tth process significantly. Eventually, we choose working point with 70% b-tagging efficiency based on the expected significance.

302 6.2 Cuts optimization

Details of optimizations are documented in the Appdendix C. Given that the improvement is small and 303 the loss on statistics is large, there is no more cut applied except $p_T(\gamma \gamma)$, which shows significant im-304 provement on sensitivity for high mass points and non-resonance. Figure 4 shows the distribution of 305 $p_T(\gamma\gamma)$, the expected significance against the cut threshold and the signal efficiencies against the cut 306 threshold. Table 7 then shows a limit scan with several different $p_T(\gamma\gamma)$ cuts using the full statistical 307 machinary including all systematic uncertainties. A threshold of 100 GeV is chosen considering the sen-308 sitivity improvement and the loss of statistics as Figure 4(c) shown. This selection is applied to resonant 309 mass points 400 GeV and 500 GeV as well as non-resonant analysis considering the improvements as 310

shown in the Figure 4(b) for these signals.

Figure 4: (a) The distribution of $p_T(\gamma\gamma)$, (b) the expected significance as a function of $p_T(\gamma\gamma)$ cut, (c) the signal efficiencies as a function of $p_T(\gamma\gamma)$ cut.

312 7 Signal and background estimations

Previously a number counting method was used given a limit statistics, while now a shape fit on $m_{\gamma\gamma}$ is 313 performed to capture the features of signal events. The signal region is defined with all the cuts described 314 in Section 5 for both non-resonant and resonant searches, while the background region (sideband region) 315 is defined with the same selections but reversing the Tight mass window cut. A control region is defined 316 by asking exactly no lepton and 2 jets inclusively to constrain the shape and the normalization of the 317 continuum background. In the end, events in any of the above regions are used in the final fit of $m_{\gamma\gamma}$. 318 The background estimation are exactly same for non-resonance and resonances with masses larger than 319 400 GeV (inclusive), and the same for all lower masses less than 400 GeV (exclusive), respectively, 320 which differ only by a $p_T(\gamma \gamma)$ cut. 321

DRAFT

The detailed shape fit strategy is to perform the fit in the signal regions. The fit is performed to whole $m_{\gamma\gamma}$ spectrum ranging from 105 GeV to 160 GeV. The contributions from signal, SM single Higgs, SM di-Higgs and continuum background consist of the $m_{\gamma\gamma}$ shape in the whole range from 105 GeV to 160 GeV. The shape parameters for signals, SM single Higgs and SM di-Higgs are extracted from the MC and fixed in the final model. The shape parameters of continuum background and normalization are floating in the final model.

³²⁸ 7.1 Model of signals, SM single Higgs and SM di-Higgs backgrounds

The $m_{\gamma\gamma}$ distribution is modelled by the fitting a double-sided Crystal Ball (DSCB) to the MC simulation with $m_h = 125$ GeV. The analytic form of this function is presented in Eq 2.

$$CB(m_{\gamma\gamma}) = N \times \begin{cases} e^{-t^2/2}, & \text{if } -\alpha_{\text{low}} \le t \le \alpha_{\text{high}} \\ e^{-\frac{1}{2}\alpha_{\text{low}}^2} \left[\frac{1}{R_{\text{low}}} (R_{\text{low}} - \alpha_{\text{low}} - t) \right]^{-n_{\text{low}}}, & \text{if } t < -\alpha_{\text{low}} \\ e^{-\frac{1}{2}\alpha_{\text{high}}^2} \left[\frac{1}{R_{\text{high}}} (R_{\text{high}} - \alpha_{\text{high}} - t) \right]^{-n_{\text{high}}}, & \text{if } t > \alpha_{\text{high}} \end{cases}$$
(2)

Where $t = (m_{\gamma\gamma-\mu_{CB}})/\sigma_{CB}$, $R_{low} = \alpha_{low}/n_{low}$, and $R_{high} = \alpha_{high}/n_{high}$. Here *N* is a normalization parameter, μ_{CB} is mean of the Gaussian distribution, σ_{CB} is the width of the Gaussian distribution, α_{low} and α_{high} are the positions of the transitions from Gaussian core to the exponential tails on the low and high mass sides, and the n_{low} and n_{high} are the exponents of the low and high mass tails. An example of this shape is shown in Figure 5.

Each of the shape parameters is determined by performing a fit to the simulated $H \rightarrow \gamma \gamma$ decays at m_{$\gamma\gamma$} =125 GeV. The resulting μ_{CB} variables are shifted up by 0.09 GeV to simulate a Higgs boson of mass 125.09 GeV. The fits are shown in the App F.

339 7.2 Signal estimation

The contributions are estimated with MC for both non-resonant and resonant signals. The expected signal yields of non-resonance with the recommended cross section $\sigma(gg \rightarrow hh)$ [6] and the ones of resonance at each mass point with the assumption of $\sigma(gg \rightarrow H) \times BR(X \rightarrow hh) = 1 pb$ are listed in Table 8.

Signal yields	non-resonance	260 GeV	300 GeV	400 GeV	500 GeV
At least one leptons	1.732	0.964	1.12	1.623	1.873
$p_T(\gamma\gamma) > 100 \text{ GeV}$	1.357	-	-	1.233	1.631

Table 8: Event yields in one lepton region assuming the cross section $\sigma(gg \to hh)$ or $\sigma(gg \to H) \times BR(X \to hh)$ of 1 pb, with the integrated luminosity of 36.1 fb^{-1} .

Figure 5: Example of a double-sided crystal ball function.

Important kinematic distributions are shown in Figures 6, 7 and 8 for comparisons among nonresonant, 260 GeV, 300 GeV, 400GeV, 500 GeV resonant signals and data sideband.

Figure 6: (a) p_T of leading photon, (b) p_T of sub-leading photon, (c) p_T of leading jet, (d) p_T of sub-leading jet, (e) p_T of leading lepton. (f) missing transverse energy. Events pass all selections defined in signal region.

Figure 7: (a) η of leading photon, (b) η of sub-leading photon, (c) η of leading jet, (d) η of sub-leading jet, (e) η of leading lepton, (f) $\Delta \phi$ between leading lepton and MET. Events pass all selections defined in signal region.

Figure 8: (a) jet multiplicity, (b) lepton multiplicity. Events pass all selections defined in signal region.

345 7.3 Single Higgs background estimation

Backgrounds with final states similar to signal are considered including SM single Higgs boson production and continuum photon background. SM single Higgs production is estimated using MC samples. The cut efficiencies and events yields are summarized in Table 9 and 10 The tth production contributes the most among all SM single Higgs productions due to its higher jet multiplicity in the central region and real leptons from top decays.

	ooh	VBF	Wh	Zh	tth
All Events	100.007	100.007	100.007	100.007	100.007
All Events	100.0%	100.0%	100.0%	100.0%	100.0%
Duplicate	100.0%	100.0%	100.0%	100.0%	100.0%
GRL	100.0%	100.0%	100.0%	100.0%	100.0%
Pass Trigger	59.6%	61.3%	56.5 %	56.0%	72.8%
Detector Quality	59.6%	61.3%	56.5 %	56.0%	72.8%
has PV	59.6%	61.3%	56.5 %	56.0%	72.8%
2 loose photons	49.8%	51.2%	44.5 %	45.2%	58.3%
Trig Match	49.7%	51.1%	44.4 %	45.1%	57.9%
Tight ID	43.4%	43.4%	38.2 %	38.9%	48.3%
Isolation	39.0%	40.2%	33.9 %	34.4%	40.0%
Rel.Pt cuts	36.1%	36.5%	31.0 %	31.4%	36.5%
$105 < m_{\gamma\gamma} < 160 \text{ GeV}$	36.1%	36.4%	30.8 %	31.2%	36.0%
At least 2 central jets	5.51%	10.2%	14.9 %	15.8%	35.4%
B-veto	5.23%	9.65%	14.2 %	12.9%	6.18%
At least 1 lepton	0.00365%	0.0109%	0.533%	0.354%	1.89%
$pT_{\gamma\gamma} > 100 \text{ GeV}$					

Table 9: Cut efficiencies for SM single Higgs processes.

Background yields	ggh	VBF	Wh	Zh	tth	SM Higgs Pair
At least one lepton	0.153	0.032	0.58	0.25	0.74	0.055
$p_T(\gamma\gamma) > 100 \text{ GeV}$	0.079	0.018	0.31	0.12	0.44	0.045

Table 10: The yields for SM single Higgs and SM Higgs pair processes.

7.4 Continuum background estimation

The continuum background shape and normalization are determined simultaneously in the final fit to 352 the invariant mass $m_{\gamma\gamma}$. The constrain power mainly comes from the sideband by reveising tight mass 353 window as described above. Figure 9(a) shows the sideband in 1-lep region requiring at least one leptons. 354 Figure 9(b) shows the sideband in 0-lep region requeing exactly zero lepton. Similarly, Figure 10 shows 355 $m_{\gamma\gamma}$ after $p_T(\gamma\gamma)$ cut. 0-lep region was used to perform the continuum background estimation in the past. 356 Now with more data, 1-lep region turns to have sufficient statistics and it is the only region used in the 357 final fit in the current analysis. Nevertheless, 0-lep region is still studied and presented for determining 358 and examining the background modeling function given a larger statistics. 359

Figure 9: Sideband $m_{\gamma\gamma}$ distribution with data (a) in signal-like sideband (number of leptons is larger than zero) and (b) in control region sideband (number of leptons is equal to zero) where a background fit is performed.

Figure 10: Sideband $m_{\gamma\gamma}$ distribution with data (a) in signal-like sideband and (b) in control region sideband where a background fit is performed, after $p_T(\gamma\gamma)$ cut.

360 7.4.1 Function form

Different function forms are tested to choose the modeling of continuum background. Table 11 records the quality of fit. Figure 11 shows the fits in 0-lep region, Figure 12 in the same region with RevID on photons, Figure 13 with RevIso on photons. Here, RevID means at least one of the two leading photons fail the tight ID selection, and similarly, RevIso means at least one of the two leading photons fail the isolation criteria, as described in Section 4.1. The exponential function with a second-order polynomial is chosen given that it well accommodates all data in different background control regions.

Control regions	Nominal	RevID	RevIso
1 st -order polynomial	2.79	4.44	4.72
2 nd -order polynomial	1.10	1.15	1.02
Exp	1.19	1.29	0.99
ExpPoly2	1.10	1.09	0.95

Table 11: $\chi^2/ndof$ in different background control regions for various functions.

Figure 11: $m_{\gamma\gamma}$ Fits using different background modeling functions: (a) with a 1st-order polynomial function; (b) with a 2nd-order polynomial function; (c) with an exponential function; (d) with an exponential function carrying a 2nd-order polynomial.

Figure 12: $m_{\gamma\gamma}$ Fits using different background modeling functions with RevID on photons: (a) with a 1st-order polynomial function; (b) with a 2nd-order polynomial function; (c) with an exponential function; (d) with an exponential function carrying a 2nd-order polynomial.

Figure 13: $m_{\gamma\gamma}$ Fits using different background modeling functions with RevIso on photons: (a) with a 1^{st} -order polynomial function; (b) with a 2^{nd} -order polynomial function; (c) with an exponential function; (d) with an exponential function carrying a 2^{nd} -order polynomial.

367 7.4.2 Lepton dependence

Benefiting from a larger statistics, 0-lep region is used to determine and examine the continuum background modeling for 1-lep region. A validation is performed to check the consistency of the shape in both regions. Basically, the exponential with 2^{nd} -order polynomial function is freely fit to the data sideband in 0-lep region. Applying the fitted parameters which are obtained from the fit in 0-lep region to 1-lep region, the quality of fit $\chi^2/ndof$ is calculated. Effectively, the shape obtained from 0-lep is tested by $\chi^2/ndof$ in 1-lep region.

Firstly, two MC samples are used to check the consistency as shown in Figure 14. They are SM 374 processes of *lvjjyy* and *jjjyy*. The two MC samples above only mimic real photon processes whose 375 photon purity is extremely high. This is not necessarily true in real data and the lepton dependence 376 might vary with photon purity. Thus additional tests with RevIso photons and RevID-RevIso photons 377 are performed as these control regions have very low photon purity. The fits are shown in Figure 15. In 378 general, a consistent shape between 0-lep and 1-lep is seen in various scenarios. The bais observed in the 379 two plots will be covered by the spurious signal discussed in Sec 7.4.3. The detailed shape difference in 380 1-lep and 0-lep region is discussed in E. 381

Figure 14: Fits with sideband events to test lepton dependence (a) with $jjj\gamma\gamma$ MC sample and (b) with $l\nu jj\gamma\gamma$ MC sample.

Figure 15: Fits with sideband events to test lepton dependence in reversed photon ID or isolation (a) with RevIso and zero lepton, (b) with RevIso and non-zero lepton. (c) with RevID-RevIso and zero lepton, (d) with RevID-RevIso and non-zero lepton;

Component	SR no $pT_{\gamma\gamma}$ cut	CR no $pT_{\gamma\gamma}$ cut	SR $pT_{\gamma\gamma} > 100GeV$	$CR \ pT_{\gamma\gamma} > 100GeV$
data	165	54762	39	8415
γγ	146±15	46855±876	35.4±6.4	7829±120
$\gamma - jet$	6.25±5.08	4139±218	2.78 ± 1.85	501±54
$jet - \gamma$	7.37 ± 5.30	2971±129	1.00 ± 1.00	449±42
jet-jet	5.65 ± 2.72	780±43	0.22±0.25	46.6±9.5
purity	0.884 ± 0.063	0.856 ± 0.006	0.898 ± 0.074	0.881±0.010

Table 12: The purity of diphoton in one lepton SR and zero lepton CR after different $pT_{\gamma\gamma}$ cut is shown.

382 7.4.3 Spurious signal

The bias for a given background parametrization is estimated by fitting background MC samples with 383 a function combining this parametrization and signal model, and measuring the fitted number of signal 384 events N_{ss} [28]. The fits are performed in the mass range of $m_h \in [110, 160]$ GeV, in which the mean 385 of signal shape is shifted with a step of 0.5 GeV. The fitted bias is evaluated as the maximum value of 386 $|N_{ss}|$ over the fit range from 120 GeV to 130 GeV. The simultaneous fit is performed to one lepton signal 387 region and zero lepton control region and the function of ExpPoly2 is used. The irreducible background 388 is modeled by large statistic *lvyy j j* MC sample and the reducible background is modeled by reverse ID 389 or reverse ISO sample from data. They are merged according to diphoton purity. 390

The diphoton purity is measured by 2x2D sideband method described in Ref [29]. The so-called "Matrix method" is utilized to measure the photon purity. According to whether the loose leading or subleading photon passes the tight ID requirement or isolation requirement, the events can be splitted into 16 regions. The predicted yield of each region can be calculated by the absolute yield of different component like $\gamma\gamma$, $\gamma - jet$, $jet - \gamma$, jet - jet,ID and Isolation efficiency, ID and Isolation fake rate. These parameter can be estimated by minimizing the χ^2 . The result of purity measurement with 36.1 fb^{-1} 2015+2016 data is shown in Table 12.

The parametrization is kept if N_{ss} satisfies at least one of the following two criteria:

399 •
$$Max(N_{ss}/S_{ref}) < 10\%$$

400 • $Max(N_{ss}/\Delta S) < 20\%$

Where S_{ref} is the expected number of the signal events passing the "At least one lepton", and ΔS is the statistical uncertainty on the spurious signal. "Max" means the largest ratio in $m_{\gamma\gamma}$ [120, 130] GeV. The S+B fit results of maximum fitted spurious signal are shown in Figure 18and 23. The yields are summarized in Table 18.

In conclusion, current 2nd-exponential can pass the spurious signal criteria mentioned above, even though a bias can be seen in low mass and high mass region in S+B fit plots. The spurious signal will be taken as the background modeling uncertainty and added in to the statistic model. More tests on other functions are discussed in

Since the uncertainty of purity is around 7% in one lepton signal region, the comparison of purity with one sigma up and down is shown in Figure 17. The difference is about 1% and only the nominal distribution is used for spurious signal in the following part. The spurious signal test for other function is discussed in Appendix E.

Function	Max(S)	Max(S/DeltaS)	Max(S/RefS)	Result
Exponential	0.81309	0.160835	1.57252	pass
ExpPoly2	-0.438693	-0.105086	-0.848438	pass
Poly1	-1.69689	-0.448545	-3.28181	fail
Poly2	-1.11274	-0.291617	-2.15205	fail

Table 13: The spurious signal test for $m_H = 260 GeV$. ExpPoly2 and Exponential function pass the criteria.

Function	Max(S)	Max(S/DeltaS)	Max(S/RefS)	Result
Exponential	0.826848	0.162524	1.45369	pass
ExpPoly2	-0.45901	-0.109038	-0.806992	pass
Poly1	-1.73049	-0.454291	-3.0424	fail
Poly2	-1.13824	-0.296309	-2.00116	fail

Table 14: The spurious signal test for $m_H = 300 GeV$. ExpPoly2 and Exponential function pass the criteria.

Function	Max(S)	Max(S/DeltaS)	Max(S/RefS)	Result
Exponential	0.24593	0.105271	0.318951	pass
ExpPoly2	-0.264615	-0.106127	-0.343184	pass
Poly1	-0.272567	-0.118275	-0.353496	pass
Poly2	-0.277345	-0.11856	-0.359693	pass

Table 15: The spurious signal test for $m_H = 400 GeV$. All the function pass the criteria.

Function	Max(S)	Max(S/DeltaS)	Max(S/RefS)	Result
Exponential	0.240416	0.10547	0.280103	pass
ExpPoly2	-0.259126	-0.107353	-0.301901	pass
Poly1	-0.269504	-0.120466	-0.313992	pass
Poly2	-0.253425	-0.11074	-0.295259	pass

Table 16: The spurious signal test for $m_H = 500 GeV$. All the functions pass the criteria.

Function	Max(S)	Max(S/DeltaS)	Max(S/RefS)	Result
Exponential	0.243031	0.105582	0.300664	pass
ExpPoly2	-0.260077	-0.106422	-0.321752	pass
Poly1	-0.274957	-0.121043	-0.340161	pass
Poly2	-0.261354	-0.113135	-0.323331	pass

Table 17: The spurious signal test for non-resonant. All the functions pass the criteria.

Mass	$Max(N_{ss})$	$Max(N_{ss}/\Delta S)$	Max(ss/Sref)
$m_H = 260 GeV$	0.845848	0.194842	1.6359
$m_H = 300 GeV$	0.826406	0.189248	1.45292
$m_H = 400 GeV$	-0.398046	-0.169399	-0.516232
$m_H = 500 GeV$	-0.395486	-0.172747	-0.460771
non-resonant	-0.402366	-0.174128	-0.497784

Table 18: The difference between low mass and high mass is due to $pT_{\gamma\gamma}$ cut.

Figure 16: S+B fit 1-lep SR for difference mass point.

Figure 17: Left plot is for low mass search and right plot is for high mass search. In the ratio plot, the difference is 1%.

Figure 18: The S+B fit to background only dataset. Left is one lepton signal region, right is zero lepton control region. The shape is constrained by control region, which has higher statistic. The blue line is background-only function and the green is the fitted signal. (a)(b) for m(H)=260 GeV, (c)(d) for m(H)=300 GeV,

Figure 19: The S+B fit to background only dataset. Left is one lepton signal region, right is zero lepton control region. The shape is constrained by control region, which has higher statistic. The blue line is background-only function and the green is the fitted signal. (a)(b) for m(H)=400 GeV, (c)(d) for m(H)=500 GeV, (e)(f) for non-resonant

(f)

(e)

Figure 20: 20(a): Invariant mass of electron and leading photon in data sideband. 20(b): Invariant mass of electron and subleading photon. 20(c) The sum of previous two plots. 20(d): A second order exponential fit to Z peak events in data sideband.

413 7.4.4 $Z\gamma$ background

The $Z(\rightarrow ee)\gamma$ events are also considered as background since one of the electron could be misidentified 414 as a photon. The yield of Zy events could be estimated from $M_{e\gamma}$ spectrum in data sideband and the $m_{\gamma\gamma}$ 415 shape could be obtained with events in Z peak. Figure 20 shows the $m_{e\gamma}$ distribution and the estimated 416 yield is 13.7. Since the statistic is very low, the selection of at least 2 central jets is dropped to enlarge the 417 statistic. Figure 22 shows the fit of $m_{\gamma\gamma}$ shape in Z peak. Since there is no Z peak in $M_{e\gamma}$ spectrum after 418 $pT_{\gamma\gamma} > 100 GeV$ in Figure 21, Z γ component is only added to the search of $m_H = 260 GeV$ and $m_H =$ 419 300 GeV. The $\gamma\gamma$, γ -jet and jet-jet are normalized to yields in data sideband after $Z\gamma$ subtraction. In this 420 case, the sum of all the background components is corresponding to data sideband. This normalization 421 is same as VH leptonic analysis in HGam group. 422

Figure 21: These two plots show the invariant mass of electron and leading or subleading photon with $p_{T\gamma\gamma} > 100 GeV$. No Z peak is observed.

Figure 22: 22(a) shows the comparison before and after dropping 2 jets requirements to demonstrate this loose selection does not change the $m_{\gamma\gamma}$ shape. 22(b) 22(c) 22(d) show the exponential, 2nd exponential, 3rd exponential fit to $m_{\gamma\gamma}$ shape in Z peak.

423 8 Systematic uncertainties

424 **8.1** Luminosity uncertainties

The uncertainty in the combined 2015+2016 integrated luminosity is 3.2%. It is derived, following a methodology similar to that detailed in Ref. [30], from a preliminary calibration of the luminosity scale using x-y beam-separation scans performed in August 2015 and May 2016.

8.2 Theoretical uncertainties

The LHCHXSWG recommended scale and PDF uncertainties on SM single Higgs processes are documented in Ref [31], and they are used in the analysis as presented in Table 19.

Processes	+QCD Scale %	-QCD Scale %	±PDF %	$\pm \alpha_s \%$
ggh	+3.9	-3.9	± 1.9	± 2.6
VBF	+0.4	-0.3	± 2.1	± 0.5
Wh	+0.5	-0.7	± 1.7	± 0.9
Zh	+3.8	-3.0	± 1.3	± 0.9
tth	+5.8	-9.2	± 3.0	± 2.0

Table 19:	SM	single	Higgs	scale and	PDF	uncertainties.
-----------	----	--------	-------	-----------	-----	----------------

The LHCHXSWG recommended scale and PDF uncertainties on SM Higgs pair production are used in the analysis as presented in Table 20.

\sqrt{s}	$\sigma^{NNLO}_{gg ightarrow hh}$	Scale	$\pm PDF \%$	$\pm \alpha_s \%$	EFT
13 TeV	33.41 fb	+4.3% -6.0%	±2.1%	±2.3%	±5%

Table 20: SM Higgs pair process (ggF) scale and PDF uncertainties, taken from Ref [32], only applied to the non-resonant analysis

Additional uncertainty of +2.1%/-2.0% applies to the $h \rightarrow \gamma\gamma$ branching ratio, and +1.5%/-1.5% to the $h \rightarrow WW$ branching ratio according to recommendations from Ref [23], since the final upper limits is set on $\sigma(gg \rightarrow hh)$ and $\sigma(gg \rightarrow H) \times BR(X \rightarrow hh)$.

The Wh process is generated with Pythia8, which uses parton shower to model the additional jets. To take into account the uncertainties that is caused by parton-shower originated jets, we generate the Wh+jj (jets from matrix element) process with MadGraph5 and compare the difference in 2-jet-inclusive bin. This result is in a 37.5% uncertainty for Wh process. Also, the Zh sample generated by MadGraph5 is produced to compare the difference in 2-jet-inclusive bin. 6.02% uncertainty is introduced for Zh process.

442 8.3 Experimental Uncertainties

The uncertainties from trigger efficiency, photon energy scale, lepton efficiency, jet energy scale/resolution and b-tagging efficiency are estimated following CP group recommendations (Moriond2017) and the rate

variations are summarized in Table 21 for signals and Tables 22, 23 for SM single Higgs backgrounds
and SM Higgs pair process. In the tables, the numbers in each line are the quadratic sum of their respec-446 tive individual components. In these tables, the uncertainty due to the photon identification efficiency 447 is computed by varying the indendification efficiency scale factors, obtained from control samples of 448 photons from radiative Z boson decays and from γ +jet evnets and of electrons from $Z \rightarrow ee$ by $\pm \sigma$. The 449 photons isolation uncertainty is obtained as the sum of two contributions. For the track isolation, the 450 corresponding efficiency scale factors are varied by $\pm \sigma$. For the calorimeter isolation, the data-MC shifts 451 are used to correct the simulation are truned off $(PH_Iso_DDonof f)$. The extrapolation uncertainties in 452 b-tagging include two components: one is from the extrapolation to high- p_T ($p_T > 300$ GeV) jets and the 453 other one is from extrapolating c-jets to τ -jets. The further breakdowns are documented in Appendix B. 454

Source of u	uncertainties	Non-resonance	260 GeV	300 GeV	400 GeV	500 GeV
Photon	identification	1.664	1.447	1.439	1.462	1.670
FIIOIOII	isolation	0.765	0.748	0.745	0.751	0.728
Lat	energy resolution	0.146	1.494	0.229	1.009	0.198
JEL	energy scale	4.017	9.849	7.242	4.589	3.370
Source of u Photon Jet b-tagging Lepton Pileup re-w	<i>b</i> -jets	0.058	0.089	0.057	0.082	0.056
	<i>c</i> -jets	1.541	1.047	1.194	1.366	1.523
	light jets	0.293	0.310	0.300	0.293	0.291
	extrapolation	Non-resonance 260 GeV 300 GeV 1.664 1.447 1.439 0.765 0.748 0.745 n 0.146 1.494 0.229 4.017 9.849 7.242 0.058 0.089 0.057 1.541 1.047 1.194 0.293 0.310 0.300 0.018 0.001 0.001 0.530 0.708 0.626 0.459 0.707 0.623 0.494 0.714 0.670	0.004	0.010		
T t	electron	0.530	0.708	0.626	0.545	0.482
Lepton	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.623	0.578	0.406		
Pileup re-v	veighting	0.494	0.714	0.670	0.058	1.392

Table 21: Summary of systematic uncertainties propagated to the yields, in percent, for signals in one lepton region.

Source of u	incertainties	ggh	VBF	Wh	Zh	tth	SM Higgs pair
Photon	identification	1.563	1.434	1.690	1.707	1.707	1.664
FIIOtoII	isolation	0.786	3.439	0.837	0.821	0.800	0.765
Lot	energy resolution	6.199	1.563	5.958	1.976	0.149	0.146
JEI	energy scale	3.527	2.690	7.425	6.131	2.115	4.017
1.4	<i>b</i> -jets	0.553	0.110	0.096	0.273	8.622	0.058
	<i>c</i> -jets	0.487	1.663	0.595	0.630	1.605	1.541
<i>D</i> -tagging	light jets	0.287	0.265	0.288	0.260	0.270	0.293
	extrapolation	0	0.076	0.021	0.095	0.436	0.018
Lonton	electron	0.638	0.668	0.511	0.470	0.510	0.530
Lepton	muon	4.067	0.424	0.809	0.465	0.408	0.459
Pileup re-w	eighting	10.834	2.832	0.849	0.476	1.177	0.494

Table 22: Summary of systematic uncertainties propagated to the yields, in percent, for SM single Higgs and SM Higgs pair processes in one lepton region with $p_T(\gamma\gamma)$ cut applied. The ggH sample has large pileup reweighting uncertainty here. It quite depends on the selection and https://cds.cern.ch/record/2137502/files/ATL-COM-PHYS-2016-222.pdf has similar results in certain categories.

The uncertainty from egamma calibration including energy scale and resolution can have impact on signal $m_{\gamma\gamma}$ shape, particularly on the parameters of μ (mean) and σ (width) of the Gaussian core. The

Source of u	incertainties	ggh	VBF	Wh	Zh	tth	SM Higgs pair
Dhoton	identification	1.564	1.451	1.621	1.589	1.612	1.625
FIIOIOII	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.796	0.768				
Int	energy resolution	7.446	3.299	5.205	3.861	1.941	0.232
Jei	energy scale	13.020	3.691	9.704	8.541	1.621	4.275
h togging	<i>b</i> -jets	0.953	0.434	0.092	0.445	8.700	0.056
	<i>c</i> -jets	0.375	1.204	0.572	0.639	1.568	1.503
D-tagging	light jets	0.306	0.278	0.288	0.269	0.264	0.294
	extrapolation	0	0.042	0.012	0.080	0.284	0.015
Lopton	electron	0.428	0.477	0.462	0.448	0.488	0.538
Lepton	muon	5.411	1.692	0.617	0.425	0.414	0.526
Pileup re-w	reighting	2.845	2.760	0.523	1.641	1.386	0.554

Table 23: Summary of systematic uncertainties propagated to the yields, in percent, for SM single Higgs and SM Higgs pair processes in one lepton region without $p_T(\gamma\gamma)$ cut applied.

variation are calculated and shown in Tables 24, 25, 26 and 27.

	Non-resonane	260 GeV	300 GeV	400 GeV	500 GeV
Variation on <i>u</i> in 1 lanton ragion	+0.503%	+0.415%	+0.434%	+0.474%	+0.510%
Variation on μ in 1 lepton region	-0.500%	-0.414%	-0.444%	-0.477%	-0.502%

Table 24: The variation on μ due to the uncertainty of energy scale in egamma calibration for signals.

	Non-resonane	260 GeV	300 GeV	400 GeV	500 GeV
Variation on σ in 1 lanton ragion	+8.24%	+4.58%	+5.76%	+7.92%	+8.95%
Variation on σ in 1 lepton region	-7.22%	-5.78%	-6.07%	-8.02%	-7.32%

Table 25: The variation on σ due to the uncertainty of energy resolution in egamma calibration for signals.

	SM single Higgs	SM di-Higgs
Variation on u in 1 lonton ragion with n (an) out applied	+0.541%	+0.503%
variation on μ in T lepton region with $p_T(\gamma\gamma)$ cut applied	-0.557%	-0.500%
Variation on u in 1 lenton ragion without n (an) out applied	+0.509%	+0.491%
variation on μ in a repton region without $p_T(\gamma\gamma)$ cut applied	-0.512%	-0.496%

Table 26: The variation on μ due to the uncertainty of energy scale in egamma calibration for SM backgrounds.

	SM single Higgs	SM di-Higgs
Variation on σ in 1 lenton ration with $n_{\alpha}(\alpha n)$ out applied	+11.6%	+8.24%
Variation on σ in T lepton region with $p_T(\gamma\gamma)$ cut applied	-11.1%	-7.22%
Variation on σ in 1 lenton ragion without n (an) out applied	+11.7%	+8.12%
variation on σ in T lepton region without $p_T(\gamma\gamma)$ cut applied	-6.9 %	-6.23%

Table 27: The variation on σ due to the uncertainty of energy resolution in egamma calibration for SM backgrounds.

458 8.4 Uncertainty on continuum background estimation

The uncertainty on the continuum background modeling depends how much the background function can fake signal from background only fits, i.e. the so-called spurious signal. The spurious signals are calculated by performing a signal plus background fit on the background only sample as described in Section 7.4.3. The results are shown in the Table 18. The relevent spurious signal numbers are taken into account as the uncertainty by adding in the statistical model a spurious signal component that shares a same shape as our signal.

Figure 23: The fitted number of spurious signal. Left is one lepton signal region, right is zero lepton control region. The shape is constrained by control region, which has higher statistic. The blue line is background-only function and the green is the fitted signal. (a)(b) for m(H)=400 GeV, (c)(d) for m(H)=500 GeV, (e)(f) for non-resonant

Expected	Non-res	mh260	mh300	mh400	mh500
Case1	7.78	13.5	11.6	8.42	7.09
Case2	6.74	12.2	10.4	7.35	6.42
Case3	6.77	12.2	10.4	7.39	6.44
Case4	6.38	11.6	9.88	6.94	6.09
Case5	6.69	12.2	10.4	7.3	6.42

Table 28: Expected upper limit with different fit strategies. Full systematic is applied in all cases. Case 1: counting; Case 2: fit to the 1Lep region with parameters c1 and c2 fixed in ExpPoly2. The fixed value is from 1-lep signal region; Case 3: fit to the 1Lep region with floating parameters c1 and c2; Case 4: fit to the 1Lep and 0Lep regions with nConBkg (continuum BKG in 1Lep) constrained with nConBkgCR (continuum BKG in 0Lep), nConBkg = Transfer factor * nCongBkgCR; Case 5: fit to the 1Lep and 0Lep regions with floating nConBkg and nConBkgCR.

9 Statistical interpretation

466 9.1 Statistical model

The statistical model is built up with an unbinned likelihood function. The model is constructed in the following form.

$$\mathcal{L}(\mu,\theta) = \frac{\prod_{i} (n_{BSM}(\mu,\theta) \times f_{DSCB}(m_{\gamma\gamma}^{i},\theta) + n_{SM}(\theta) \times f_{DSCB}(m_{\gamma\gamma}^{i},\theta)}{+n_{Cont} \times f_{Cont}(m_{\gamma\gamma}^{i},\theta) + n_{ss} \times f_{DSCB}(m_{\gamma\gamma}^{i},\theta)) \prod Norm(\theta|0,1)}$$
(3)

where i stands for the event index, n_{BSM} the number of expected signal events, n_{SM} the number of 469 expected single Higgs events, n_{Cont} the number of expected continuum background events, f_{DSCB} the 470 pdf of a double-sided crystal ball function shared by both BSM signal and SM Higgs, f_{Cont} the pdf of the 471 continuum background i.e. the second order exponential, n_{ss} the expected spurious signal yield, μ the 472 cross section (time the branching ratio of $X \rightarrow hh$) of non-resonant (resonant) production, and Norm the 473 probability density function of a Gaussian distribution used for constraining the nuisance parameters. The 474 systematic uncertainties are introduced by a set of nuisance parameters θ which can vary the acceptance 475 of signal and single Higgs processes as well as the function parameters of either f_{DSCB} or f_{Cont} . 476

Possible fit strategies are studied and compared. The expected upper limit is used to choose the best strategy as presented in Table 28. From case3 to case5, compared with direct fit to 1-lep signal region, the shape difference in simultaneous fit does not affect the limit very much. From case5 to case4, the constrain on normalization factor improves the limit by about 5%, which is very limited. In conclusion, case3 is chosen given its simplicity and no obvious improvement from adding 0-lep region.

482 9.2 Model inspection

To test the S+B fit performance, a signal injection is performed. Table 29 shows the fitted signal strength and upper limit of signal injection.

To inspect the statistical model and the behaviour of nuisance parameters, checks on the pull of nuisance parameters $(\theta_{fit} - \theta_0)/\Delta\theta$ are performed with an unconditional fit to the amount of expected backgrounds, as shown in Figures 24, 25, 26, 27 and 28. The values of the pull of nuisance parameteres are always close to 0, which suggests a correct implementation of the statistical model. Similar checkes are done with the observed data in order to check the data constraints on nuisance parameters, as shown in Figures 29, 30,31, 32 and 33.

Then, checks on the correlation between all parameters in the statistical model are performed, as shown in Figure 34, 35, 36, 37 and 38, with an unconditional fit to the amount of expected backgrounds,

	Bands	Non-res	mh260	mh300	mh400	mh500
	Median	5.3401	13.352	11.3597	5.97878	4.38764
$\mu = 0$	Observed	5.34409	13.3682	11.3681	5.98912	4.39495
	μ	-0.00396	0.077449	0.0447662	0.0269317	0.0179568
	Median	5.42712	13.4182	11.426	6.06536	4.47178
$\mu = 2$	Observed	7.40385	15.113	13.1348	8.01421	6.47877
	$\hat{\mu}$	2.00019	2.08285	2.05854	2.00257	1.9984

Table 29: The number is the 95% CL upper limit on $\sigma(pp \to H \to hh)$ for resonance or on the $\sigma(pp \to hh)$ for non-resonance. The number after signal injection. $\hat{\mu}$ is the best fited value for certain signal injection.

and in Figure 42, 43, 44, 45 and 46, with an unconditional fit to observed data. Additionally, the reduced correlation matrix for all the signal mass points are shown in the Figures 39, 40 and 41. Also, the Figures 47, 49, 51, 53 and 55 show the ranking of the nuisance parameters.

Figure 24: Nuisance parameter pull checks for non-resonance with a fit to expected backgrounds only.

Figure 25: Nuisance parameter pull checks for resonance $m_H = 260$ GeV with a fit to expected backgrounds only.

Figure 26: Nuisance parameter pull checks for resonance $m_H = 300$ GeV with a fit to expected backgrounds only.

Figure 27: Nuisance parameter pull checks for resonance $m_H = 400$ GeV with a fit to expected backgrounds only.

Figure 28: Nuisance parameter pull checks for resonance $m_H = 500$ GeV with a fit to expected backgrounds only.

Figure 29: Nuisance parameter pull checks for non-resonance with a fit to observed data.

Figure 30: Nuisance parameter pull checks for resonance $m_H = 260$ GeV with a fit to observed data.

Figure 31: Nuisance parameter pull checks for resonance $m_H = 300$ GeV with a fit to observed data.

Figure 32: Nuisance parameter pull checks for resonance $m_H = 400$ GeV with a fit to observed data.

Figure 33: Nuisance parameter pull checks for resonance $m_H = 500$ GeV with a fit to observed data.

Figure 34: Correlation matrix for nuisance parameters for non-resonance with a fit to expected backgrounds only.

Figure 35: Correlation matrix for nuisance parameters for resonance $m_H = 260 \text{ GeV}$ with a fit to expected backgrounds only.

Figure 36: Correlation matrix for nuisance parameters for resonance $m_H = 300$ GeV with a fit to expected backgrounds only.

Figure 37: Correlation matrix for nuisance parameters for resonance $m_H = 400$ GeV with a fit to expected backgrounds only.

Figure 38: Correlation matrix for nuisance parameters for resonance $m_H = 500$ GeV with a fit to expected backgrounds only.

Figure 39: Reduced correlation matrix for nuisance parameters for non-resonance.

Figure 40: Reduced correlation matrix for nuisance parameters for (a) $m_H = 260 \text{ GeV}$, (b) $m_H = 300 \text{ GeV}$.

Figure 41: Reduced correlation matrix for nuisance parameters for (a) $m_H = 400$ GeV, (b) $m_H = 500$ GeV.

Figure 42: Correlation matrix for nuisance parameters for non-resonance with a fit to observed data.

Figure 43: Correlation matrix for nuisance parameters for resonance $m_H = 260$ GeV with a fit to observed data.

Figure 44: Correlation matrix for nuisance parameters for resonance $m_H = 300 \text{ GeV}$ with a fit to observed data.

Figure 45: Correlation matrix for nuisance parameters for resonance $m_H = 400$ GeV with a fit to observed data.

Figure 46: Correlation matrix for nuisance parameters for resonance $m_H = 500$ GeV with a fit to observed data.

Figure 47: Nuisance parameters ranking and pulls for non-resonance on (a) asimov data

Placeholder

DRAFT

Image

(a)

Figure 48: Nuisance parameters ranking and pulls for non-resonance on data

Figure 49: Nuisance parameters ranking and pulls for $m_H = 260$ GeV on (a) asimov data

Placeholder

DRAFT

Image

(a)

Figure 50: Nuisance parameters ranking and pulls for $m_H = 260 \text{ GeV}$ on data

Figure 51: Nuisance parameters ranking and pulls for $m_H = 300$ GeV on (a) asimov data

Placeholder

DRAFT

Image

(a)

Figure 52: Nuisance parameters ranking and pulls for $m_H = 300$ GeV on data

Figure 53: Nuisance parameters ranking and pulls for $m_H = 400$ GeV on (a) asimov data

Placeholder

DRAFT

Image

(a)

Figure 54: Nuisance parameters ranking and pulls for $m_H = 400 \text{ GeV}$ on data

Figure 55: Nuisance parameters ranking and pulls for $m_H = 500$ GeV on (a) asimov data

(a)

Figure 56: Nuisance parameters ranking and pulls for $m_H = 500$ GeV on data

496 9.3 Upper limit setting

⁴⁹⁷ A likelihood ratio based test statistic is used in the statistical analysis. It is defined as follows:

$$\tilde{q}_{\mu} = \begin{cases} -2\ln\frac{\mathcal{L}(\mu,\hat{\theta}(\mu))}{\mathcal{L}(0,\hat{\theta}(0))} & \text{if } \hat{\mu} < 0\\ -2\ln\frac{\mathcal{L}(\mu,\hat{\theta}(\mu))}{\mathcal{L}(\hat{\mu},\hat{\theta})} & \text{if } 0 \le \hat{\mu} \le \mu\\ 0 & \text{if } \hat{\mu} > \mu \end{cases}$$

$$\tag{4}$$

where \mathcal{L} stands for the likelihood function for the statistic model of the analysis, θ a set of nuisance pa-498 rameters through which the systematic uncertainties are introduced, and the parameter of interest (POI) 499 μ the cross section of non-resonant production or the cross section of resonant production times the 500 branching ratio of $X \rightarrow hh$. Single hat stands for unconditional fit and double hat for conditional fit, i.e., 501 POI μ is fixed to a certain value. With this test statistic, one derives the upper limits of the cross section 502 for non-resonant production and the cross section times the branching ratio of $X \rightarrow hh$ for resonant pro-503 duction at 95% confidence level by using the CL_s method [33] under the asymptotic approximation [34]. 504 The results are shown in Figure 57 and the numbers are summarized in Table 30. 505

Figure 57: Upper limits at the 95% confidence level for resonance as a function of the mass of the heavy scalar.

	non-resonance	260 GeV	300 GeV	400 GeV	500 GeV
$+2\sigma$	11.78	29.86	25.13	13.28	9.73
$+1\sigma$	8.11	20.89	17.67	9.14	6.69
-1σ	4.01	10.44	8.86	4.52	3.30
-2σ	2.99	7.78	6.60	3.37	2.46
Median	5.57	14.49	12.30	6.27	4.58

Table 30: Upper limits at the 95% confidence level for the cross section of the gluon fusion production of the non-resonance and the cross section of the gluon fusion production of the resonance times the branching ratio of $X \rightarrow hh$.

506 10 Summary

In this note, a search is performed for non-resonant and resonant Higgs pair production with the one 507 Higgs boson decaying to semi-leptonic WW and the other to $\gamma\gamma$. For the non-resonant Higgs pair pro-508 duction, the observed (expected) upper limit $qq \rightarrow hh$ is XXX pb (5.57 pb). For resonant Higgs pair 509 production, the observed (expected) upper limits range from XXX pb (14.49 pb) to XXX pb (4.59 pb) as 510 a function of the resonant mass under the assumption of the narrow-width approximation. The expected 511 limits are compared to RUN I results [11] under 8 TeV in Table 31. Comparing the limit of Run1 and 512 Run2, if the same parameter space is setup, the expected cross section from 8 TeV to 13 TeV should be 513 2 3 times larger. However, the current expected limit in Run2 is similar with Run1. This means that we 514 have better exclusion power in Run2. A rough estimation of upper limit could be $\frac{\sqrt{N_b}}{eff_s * L}$. The yields in 515 data sideband in [120, 130] GeV is 9 in Run1 [35] and 119 in Run2 and the signal efficiency is from 3.9% 516 to 7.4% in Run1 and from 6.56% to 12.0% in Run2 for different mass point. As a result, for instance 517 the ratio of limit in Run2 over Run1 could be $\frac{sqrt_{119/9}}{(6.56/3.9)\times(36.1/20.3)} = 1.22$ for $m_H = 260GeV$, which is 518 comparable with the expectation in the table. 519

	Non-resonance	260 GeV	300 GeV	400 GeV	500 GeV
RUN II limits (36.1 fb^{-1})	5.57	14.49	12.30	6.27	4.58
RUN II limits (13.3 fb^{-1})	13.8	24.30	20.6	15.0	12.7
RUN I limits (20.3 fb^{-1})	6.7	11.2	9.3	6.9	5.9

Table 31: The expected limits obtained in this analysis (RUN II 13 TeV) compared to RUN I 8 TeV. The SM non-resonant production is expected to increase by a factor of 3.3 from 8 TeV to 13 TeV.

520 **References**

- [1] ATLAS Collaboration, *Observation of a new particle in the search for the Standard Model Higgs* boson with the ATLAS detector at the LHC, Phys. Lett. B **716** (2012) 1–29.
- http://www.sciencedirect.com/science/article/pii/S037026931200857X.
- [2] CMS Collaboration, *Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC*, Phys. Lett. B **716** (2012) 30–61.
- http://www.sciencedirect.com/science/article/pii/S0370269312008581.
- [3] ATLAS Collaboration, *Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC*, Phys.Lett. **B726** (2013) 88–119.
- [4] The CMS Collaboration, Combination of standard model Higgs boson searches and
- measurements of the properties of the new boson with a mass near 125 GeV,
- ⁵³¹ CMS-PAS-HIG-13-005, CERN, Geneva, 2013. http://cdsweb.cern.ch/record/1542387.
- [5] ATLAS and CMS Collaborations ATLAS-CONF-2015-044, Sep, 2015. https:
 //atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2015-044/.
- [6] LHC Higgs Cross Section HH Sub-group,
 https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWGHH.
- [7] J. Baglio, A. Djouadi, R. Gröber, M.M. Mühlleitner, J. Quevillon et al., *The measurement of the Higgs self-coupling at the LHC: theoretical status*, JHEP 1304 (2013) 151.
- [8] G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher, and J. P. Silva, *Theory and phenomenology of two-Higgs-doublet models*, Phys. Rept. 516 (2012) 1–102, arXiv:1106.0034
 [hep-ph].
- [9] ATLAS Collaboration, G. Aad et al., Search For Higgs Boson Pair Production in the $\gamma\gamma b\bar{b}$ Final State using pp Collision Data at $\sqrt{s} = 8$ TeV from the ATLAS Detector, Phys. Rev. Lett. **114** (2015) no. 8, 081802, arXiv:1406.5053 [hep-ex].
- [10] ATLAS Collaboration, G. Aad et al., Search for Higgs boson pair production in the $b\bar{b}b\bar{b}$ final state from pp collisions at $\sqrt{s} = 8$ TeVwith the ATLAS detector, Eur. Phys. J. C75 (2015) no. 9, 412, arXiv:1506.00285 [hep-ex].
- [11] ATLAS Collaboration, G. Aad et al., Searches for Higgs boson pair production in the hh \rightarrow bb $\tau\tau$, $\gamma\gamma WW^*$, $\gamma\gamma bb$, bbbb channels with the ATLAS detector, Phys. Rev. **D92** (2015) 092004, arXiv:1509.04670 [hep-ex].
- [12] T. A. collaboration, Search for Higgs boson pair production in the $b\bar{b}\gamma\gamma$ final state using pp collision data at $\sqrt{s} = 13$ TeV with the ATLAS detector, .
- [13] ATLAS Collaboration, T. A. collaboration, Search for pair production of Higgs bosons in the $b\bar{b}b\bar{b}$ final state using proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, .
- [14] ATLAS Collaboration, T. A. collaboration, Search for Higgs boson pair production in the final state of $\gamma\gamma WW^*(\rightarrow l\nu jj)$ using 13.3 fb⁻¹ of pp collision data recorded at $\sqrt{s} = 13$ TeV with the ATLAS detector, .
- [15] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, and T. Stelzer, *MadGraph 5 : Going Beyond*,
 JHEP 06 (2011) 128, arXiv:1106.0522 [hep-ph].

- 559 [16] Web pages. F. Maltoni, Higgs pair production.
- https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/HiggsPairProduction, Dec 2013.
- [17] S. Frixione and B. R. Webber, *Matching NLO QCD computations and parton shower simulations*,
 JHEP 06 (2002) 029, arXiv:hep-ph/0204244 [hep-ph].
- [18] J. Grigo, J. Hoff, and M. Steinhauser, *Higgs boson pair production: top quark mass effects at NLO and NNLO*, Nucl. Phys. B900 (2015) 412–430, arXiv:1508.00909 [hep-ph].
- ⁵⁶⁵ [19] J. Bellm et al., *Herwig++ 2.7 Release Note*, arXiv:1310.6877 [hep-ph].
- [20] S. Gieseke, C. Rohr, and A. Siodmok, *Colour reconnections in Herwig++*, Eur. Phys. J. C72 (2012) 2225, arXiv:1206.0041 [hep-ph].
- [21] P. M. Nadolsky, H.-L. Lai, Q.-H. Cao, J. Huston, J. Pumplin, D. Stump, W.-K. Tung, and C. P.
 Yuan, *Implications of CTEQ global analysis for collider observables*, Phys. Rev. D78 (2008)
 013004, arXiv:0802.0007 [hep-ph].
- [22] A. Collaboration, *Measurement of fiducial and differential cross sections in the* $H \rightarrow \gamma \gamma$ *decay channel with 36.1 fb*⁻¹ *of 13 TeV proton-proton collision data with the ATLAS detector*, ATL-COM-PHYS-2017-145, CERN, 2017. https://cds.cern.ch/record/2252597.
- [23] LHC Higgs Cross Section Working Group Collaboration, D. de Florian et al., *Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector*, arXiv:1610.07922
 [hep-ph].
- [24] M. Cacciari, G. P. Salam, and G. Soyez, *The anti- k t jet clustering algorithm*, Journal of High
 Energy Physics **2008** (2008) no. 04, 063.
- [25] Performance of missing transverse momentum reconstruction for the ATLAS detector in the first proton-proton collisions at at $\sqrt{s} = 13$ TeV, ATL-PHYS-PUB-2015-027, CERN, Geneva, Jul, 2015. https://cds.cern.ch/record/2037904.
- [26] T. J. Khoo, M. H. Klein, H. Okawa, D. Schaefer, S. Williams, M. Begel, D. Cavalli, P. Francavilla, F. Hariri, C. A. Lee, T.-H. Lin, B. Liu, P. Loch, D. Lopez Mateos, R. Mazini, C. Pizio, S. Resconi, R. Simoniello, M. Smith, M. Testa, and I. Vichou, *Performance of algorithms that reconstruct missing transverse momentum in* $\sqrt{s} = 8$ *TeV proton–proton collisions in the ATLAS detector*,
- $\begin{array}{l} \text{ATL-COM-PHYS-2015-341, CERN, Geneva, Apr, 2015.} \end{array}$
- 587 https://cds.cern.ch/record/2012749.
- [27] D. Cavalli, P. Francavilla, F. Hariri, T. J. Khoo, M. H. Klein, C. A. Lee, T.-h. Lin, B. Liu,
 R. Mazini, C. Pizio, S. Resconi, D. Schaefer, M. Smith, and M. Testa, *Reconstruction of Soft Missing Transverse Momentum with Inner Detector Tracks*, ATL-COM-PHYS-2015-209, CERN,
 Geneva, Mar, 2015. https://cds.cern.ch/record/2002888. Intended as backup for MET
 paper.
- [28] ATLAS Collaboration, Supporting Note: Selection and performance for the $H \rightarrow \gamma\gamma$ and $H \rightarrow Z\gamma$ analyses, ATL-COM-PHYS-2016-862 (2015). https://cds.cern.ch/record/2196102.
- ⁵⁹⁵ [29] L. C. et al., *Measurement of the isolated di-photon cross section in 4.9 fb1 of pp collisions at ps* = ⁵⁹⁶ *7 TeV with the ATLAS detecto*, ATL-COM-PHYS-2012-592, CERN, 2012.
- ⁵⁹⁷ https://cds.cern.ch/record/1450063.

- [30] ATLAS Collaboration, M. Aaboud et al., *Luminosity determination in pp collisions at* $\sqrt{s} = 8 \ TeV$ using the ATLAS detector at the LHC, Eur. Phys. J. **C76** (2016) no. 12, 653, arXiv: 1608.03953
- 600 [hep-ex].
- 601 [31] CERN Yellow Report 4, https:
- 602 //twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageAt13TeV.
- [32] LHC Higgs Cross Section HH Sub-group, https://twiki.cern.ch/twiki/bin/view/
 LHCPhysics/LHCHXSWGHH#Current_recommendations_for_di_H.
- [33] A. L. Read, Presentation of search results: The CL(s) technique, J.Phys. G28 (2002) 2693–2704.
- [34] G. Cowan et al., Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C71
 (2011) 1554, arXiv:1007.1727 [physics.data-an].
- [35] X. Sun, H. Zhang, and Y. Fang, *Search for Higgs pair production with decays to WW and* $\gamma\gamma$ *in* 20.3 fb^{-1} proton-proton data at 8 TeV, ATL-COM-PHYS-2014-1446, CERN, Geneva, Nov, 2014.
- 610 https://cds.cern.ch/record/1967498.
- [36] Isolation working points, https://twiki.cern.ch/twiki/bin/view/AtlasProtected/
 IsolationSelectionTool#Leptons.

Appendices

614 A MadGraphs5 cards used for signals

Here, the cards used for generating heavy scalar resonant at the mass point of 300 GeV are given. The cards for other mass points are basically the same except the mass setting.

```
617
  #
                  MadGraph5_aMC@NL0
                                                 *
618
                                                 *
  #
619
                 run_card.dat aMC@NLO
  #
                                                 *
620
  #
621
    This file is used to set the parameters of the run.
  #
622
  #
623
    Some notation/conventions:
624
  #
  #
                                                 ÷
625
  #
    Lines starting with a hash (#) are info or comments
626
  #
627
  #
    mind the format:
                 value
                       = variable
                                 ! comment
628
  629
  #
630
  #******
631
  # Running parameters
632
  #******
633
  #
634
  635
                                                 *
  # Tag name for the run (one word)
636
  637
          = run_tag ! name of the run
   tag_1
638
  639
                                                 *
  # Number of LHE events (and their normalization) and the required
640
                                                 *
  # (relative) accuracy on the Xsec.
641
                                                 *
  # These values are ignored for fixed order runs
642
  643
   15000
           = nevents ! Number of unweighted events requested
644
    -1 = req_acc ! Required accuracy (-1=auto determined from nevents)
645
    -1 = nevt_job! Max number of events per job in event generation.
646
               (-1= no split).
             1
647
  648
  # Normalize the weights of LHE events such that they sum or average to *
649
                                                 *
  # the total cross section
650
  651
  average = event_norm
                    ! average or sum
652
  653
  # Number of points per itegration channel (ignored for aMC@NLO runs)
                                                 *
654
  655
                    ! Required accuracy (-1=ignored, and use the
  0.01
       = req_acc_F0
656
                    ! number of points and iter. below)
657
```

June 12, 2017 – 16:24

DRAFT

```
# These numbers are ignored except if req_acc_FO is equal to -1
658
   5000
        = npoints_F0_grid ! number of points to setup grids
659
   Δ
        = niters_F0_grid
                      ! number of iter. to setup grids
660
                      ! number of points to compute Xsec
   10000
       = npoints_F0
661
   6
        = niters FO
                      ! number of iter. to compute Xsec
662
  663
                                                      *
  # Random number seed
664
  665
           = iseed ! rnd seed (0=assigned automatically=default))
    234
666
  667
                                                      *
  # Collider type and energy
888
  669
        = 1pp1
               ! beam 1 type (0 = \text{no PDF})
     1
670
               ! beam 2 type (0 = \text{no PDF})
     1
        = 1pp2
671
                  ! beam 1 energy in GeV
    6500
           = ebeam1
672
    6500
           = ebeam2 ! beam 2 energy in GeV
673
  674
  # PDF choice: this automatically fixes also alpha_s(MZ) and its evol.
                                                      *
675
  676
   lhapdf
          = pdlabel
                   ! PDF set
677
                  ! if pdlabel=lhapdf, this is the lhapdf number
   11000
         = lhaid
678
  679
                                                      *
  # Include the NLO Monte Carlo subtr. terms for the following parton
680
                                                      *
  # shower (HERWIG6 | HERWIGPP | PYTHIA60 | PYTHIA6PT | PYTHIA8)
681
  # WARNING: PYTHIA6PT works only for processes without FSR!!!!
                                                      *
682
  683
   HERWIGPP
           = parton_shower
684
  685
  # Renormalization and factorization scales
                                                      *
686
                                                      *
  # (Default functional form for the non-fixed scales is the sum of
687
  # the transverse masses of all final state particles and partons. This *
688
  # can be changed in SubProcesses/set_scales.f)
689
  690
         = fixed_ren_scale ! if .true. use fixed ren scale
   .true.
691
         = fixed_fac_scale ! if .true. use fixed fac scale
   .true.
692
   150.0
         = muR_ref_fixed
                       ! fixed ren reference scale
693
   150.0
         = muF1_ref_fixed
                       ! fixed fact reference scale for pdf1
694
         = muF2_ref_fixed
                       ! fixed fact reference scale for pdf2
   150.0
695
  696
                                                      *
  # Renormalization and factorization scales (advanced and NLO options)
697
  698
         = fixed_QES_scale ! if .true. use fixed Ellis-Sexton scale
   .true.
699
                       ! fixed Ellis-Sexton reference scale
   150.0
         = QES_ref_fixed
700
                       ! ratio of current muR over reference muR
         = muR_over_ref
   1
701
                       ! ratio of current muF1 over reference muF1
   1
         = muF1_over_ref
702
   1
         = muF2_over_ref
                       ! ratio of current muF2 over reference muF2
703
   1
         = QES_over_ref
                       ! ratio of current QES over reference QES
704
  705
```

68

```
# Reweight flags to get scale dependence and PDF uncertainty
                                                          *
706
                                                          *
  # For scale dependence: factor rw_scale_up/down around central scale
707
  # For PDF uncertainty: use LHAPDF with supported set
708
  709
   .true.
          = reweight_scale
                         ! reweight to get scale dependence
710
                         ! lower bound for ren scale variations
    0.5
          = rw_Rscale_down
711
    2.0
          = rw_Rscale_up
                         ! upper bound for ren scale variations
712
                         ! lower bound for fact scale variations
    0.5
          = rw_Fscale_down
713
                         ! upper bound for fact scale variations
    2.0
          = rw_Fscale_up
714
                         ! reweight to get PDF uncertainty
   .false.
          = reweight_PDF
715
   11001
          = PDF_set_min
                         ! First of the error PDF sets
716
          = PDF_set_max
                         ! Last of the error PDF sets
   11052
717
  718
                                                          *
  # Merging - WARNING! Applies merging only at the hard-event level.
719
                                                          *
  # After showering an MLM-type merging should be applied as well.
720
  # See http://amcatnlo.cern.ch/FxFx_merging.htm for more details.
                                                          *
721
  722
   0
          = ickkw
                         ! 0 no merging, 3 FxFx merging, 4 UNLOPS
723
  724
  #
725
  726
                                                          *
  # BW cutoff (M+/-bwcutoff*Gamma)
727
  728
      = bwcutoff
   15
729
  730
                                                          *
  # Cuts on the jets
731
  # Jet clustering is performed by FastJet.
732
  # When matching to a parton shower, these generation cuts should be
                                                          *
733
  # considerably softer than the analysis cuts.
                                                          *
734
                                                          *
  # (more specific cuts can be specified in SubProcesses/cuts.f)
735
  736
                ! FastJet jet algorithm (1=kT, 0=C/A, -1=anti-kT)
      = jetalgo
737
    -1
   0.4 = jetradius ! The radius parameter for the jet algorithm
738
                ! Min jet transverse momentum
    10
      = ptj
739
      = etaj
                ! Max jet abs(pseudo-rap) (a value .lt.0 means no cut)
    -1
740
  741
                                                          *
  # Cuts on the charged leptons (e+, e-, mu+, mu-, tau+ and tau-)
742
                                                         *
   (more specific gen cuts can be specified in SubProcesses/cuts.f)
  #
743
  744
    0 = ptl
               ! Min lepton transverse momentum
745
       = etal
               ! Max lepton abs(pseudo-rap) (a value .lt.0 means no cut)
    -1
746
       = drll
               ! Min distance between opposite sign lepton pairs
747
      = drll_sf ! Min distance between opp. sign same-flavor lepton pairs
    0
748
               ! Min inv. mass of all opposite sign lepton pairs
       = mll
     0
749
      = mll_sf ! Min inv. mass of all opp. sign same-flavor lepton pairs
    30
750
  751
  # Photon-isolation cuts, according to hep-ph/9801442
                                                          *
752
                                                          *
  # When ptgmin=0, all the other parameters are ignored
753
```

754	#**************************************
755	20 = ptgmin ! Min photon transverse momentum
756	-1 = etagamma ! Max photon abs(pseudo-rap)
757	0.4 = R0gamma ! Radius of isolation code
758	1.0 = xn ! n parameter of eq.(3.4) in hep-ph/9801442
759	1.0 = epsgamma ! epsilon_gamma parameter of eq.(3.4) in hep-ph/9801442
760	.true. = isoEM ! isolate photons from EM energy (photons and leptons)
761	#**************************************
762	<pre># Maximal PDG code for quark to be considered a jet when applying cuts.*</pre>
763	# At least all massless quarks of the model should be included here. *
764	#**************************************
765	4 = maxjetflavor
766	#****************************
767	<pre># For aMCfast+APPLGRID use in PDF fitting (http://amcfast.hepforge.org)*</pre>
768	#****************************
769	<pre>0 = iappl ! aMCfast switch (0=OFF, 1=prepare APPLgrids, 2=fill grids)</pre>
770	#**********************

771 B Systematic uncertainties in details for one lepton region
Uncertainty Source	Relative Variations
EL_EFF_ID_TOTAL_1NPCOR_PLUS_UNCOR1down	-0.451016
EL_EFF_ID_TOTAL_1NPCOR_PLUS_UNCOR_1up	0.451016
EL_EFF_Iso_TOTAL_1NPCOR_PLUS_UNCOR1down	-0.133728
EL_EFF_Iso_TOTAL_1NPCOR_PLUS_UNCOR1up	0.133728
EL_EFF_Reco_TOTAL_1NPCOR_PLUS_UNCOR1down	-0.129689
EL_EFF_Reco_TOTAL_1NPCOR_PLUS_UNCOR1up	0.129689
MUON_EFF_STAT1down	-0.106279
MUON_EFF_STAT1up	0.106279
MUON_EFF_SYS1down	-0.370158
MUON_EFF_SYS1up	0.37089
MUON_ID1down	0.000119605
MUON_ID1up	0.000733227
MUON_IS O_S TAT1 down	-0.0389021
MUON_ISO_STAT1up	0.0389024
MUON_IS O_S YS1down	-0.108095
MUON_IS O_S YS1up	0.108094
MUON_MS1down	-0.000245242
MUON_MS1up	0.000212413
MUON_SAGITTA_RESBIAS1down	0
MUON_SAGITTA_RESBIAS1up	0
MUON_SAGITTA_RHO1down	0
MUON_SAGITTA_RHO1up	0
MUON_SCALE1down	0.000220205
MUON_SCALE1up	8.1122e-05
MUON_TTVA_STAT1down	-0.0859512
MUON_TTVA_STAT1up	0.0859513
MUON_TTVA_SYS1down	-0.0475225
MUON_TTVA_SYS1up	0.0475225
PH_EFF_ID_Uncertainty1down	-1.60531
PH_EFF_ID_Uncertainty1up	1.61899
PH_EFF_TRKISO_Uncertainty1down	-0.793959
PH_EFF_TRKISO_Uncertainty1up	0.797364
PH_Iso_DDonoff	0
PRW_DATAS F1down	2.01762
PRW_DATAS F1up	-0.754502

Table 32: Systematic uncertainties for *tth* in percent in one lepton region without $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variations
JET_BJES_Response_1up	-0.157433
JET_BJES_Response_1down	1.04427
JET_EffectiveNP_11up	0.193596
JET_EffectiveNP_11down	0.798998
JET_EffectiveNP_21up	0.247317
JET_EffectiveNP_21down	-0.0860637
JET_EffectiveNP_31up	-0.00955768
JET_EffectiveNP_31down	0.231497
JET_EffectiveNP_41up	0.108658
JET_EffectiveNP_41down	-0.0105294
JET_EffectiveNP_51up	0.0996838
JET_EffectiveNP_51down	0.000330823
JET_EffectiveNP_61up	-4.77404e-05
JET_EffectiveNP_61down	0.110949
JET_EffectiveNP_71up	0.11223
JET_EffectiveNP_71down	-0.00443503
JET_EffectiveNP_8restTerm_1up	0.00571768
JET_EffectiveNP_8restTerm1down	0.0947025
JET_EtaIntercalibration_Modelling1up	0.121217
JET_EtaIntercalibration_Modelling1down	0.129124
JET_EtaIntercalibration_NonClosure1up	0.0589713
JET_EtaIntercalibration_NonClosure1down	0.172692
JET_EtaIntercalibration_TotalStat1up	-0.000765441
JET_EtaIntercalibration_TotalStat1down	0.219402
JET_Flavor_Composition1up	0.611893
JET_Flavor_Composition1down	-0.632818
JET_Flavor_Response1up	-0.416163
JET_Flavor_Response1down	0.0937692
JET_JER_SINGLE_NP1up	1.94117
JET_JvtEfficiency_1down	-0.637365
JET_JvtEfficiency1up	0.641024
JET_Pileup_OffsetMu_1up	-0.0895751
JET_Pileup_OffsetMu_1down	0.00392801
JET_Pileup_OffsetNPV1up	0.186438
JET_Pileup_OffsetNPV_1down	0.168446
JET_Pileup_PtTerm1up	0.0266119
JET_Pileup_PtTerm_1down	-0.0192852
JET_Pileup_RhoTopology1up	-0.41469
JET_Pileup_RhoTopology1down	1.2558
JET_PunchThrough_MC151up	-7.46248e-06
JET_PunchThrough_MC151down	7.74158e-06
JET_S ingleParticle_HighPt1up	0
JET SinaleParticle HighPt 1down	0

Table 33: Systematic uncertainties for *tth* in percent in one lepton region without $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variations
FT_EFF_Eigen_B_01down	-7.70771
FT_EFF_Eigen_B_01up	8.00219
FT_EFF_Eigen_B_11down	-3.48614
FT_EFF_Eigen_B_11up	3.54596
FT_EFF_Eigen_B_21down	1.28256
FT_EFF_Eigen_B_21up	-1.271
FT_EFF_Eigen_C_01down	-1.53147
FT_EFF_Eigen_C_01up	1.53868
FT_EFF_Eigen_C_11down	-0.308604
FT_EFF_Eigen_C_11up	0.308658
FT_EFF_Eigen_C_21down	-0.0429205
FT_EFF_Eigen_C_21up	0.042953
FT_EFF_Eigen_C_31down	0.0677539
FT_EFF_Eigen_C_31up	-0.0677471
FT_EFF_Eigen_Light_01down	-0.258585
FT_EFF_Eigen_Light_01up	0.259169
FT_EFF_Eigen_Light_11down	0.034444
FT_EFF_Eigen_Light_11up	-0.0344342
FT_EFF_Eigen_Light_21down	0.00771715
FT_EFF_Eigen_Light_21up	-0.00771943
FT_EFF_Eigen_Light_31down	-0.00525147
FT_EFF_Eigen_Light_31up	0.00525617
FT_EFF_Eigen_Light_41down	0.0406427
FT_EFF_Eigen_Light_41up	-0.0406249
$FT_EFF_extrapolation_1down$	0.285664
FT_EFF_extrapolation_1up	-0.28172
FT_EFF_extrapolation_from_charm1down	0.0187249
FT_EFF_extrapolation_from_charm1up	-0.0187249

Table 34: Systematic uncertainties for *tth* in percent in one lepton region without $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variations
EL_EFF_ID_TOTAL_1NPCOR_PLUS_UNCOR1down	-0.429647
EL_EFF_ID_TOTAL_1NPCOR_PLUS_UNCOR1up	0.429647
EL_EFF_Iso_TOTAL_1NPCOR_PLUS_UNCOR1down	-0.125978
EL_EFF_Iso_TOTAL_1NPCOR_PLUS_UNCOR1up	0.125978
EL_EFF_Reco_TOTAL_1NPCOR_PLUS_UNCOR1down	-0.111956
EL_EFF_Reco_TOTAL_1NPCOR_PLUS_UNCOR1up	0.111956
MUON_EFF_STAT1down	-0.266439
MUON_EFF_STAT1up	0.266439
MUON_EFF_SYS1down	-0.533756
MUON_EFF_SYS1up	0.534663
MUON_ID1down	0.000102204
MUON_ID1up	0.000120072
MUON_IS O_S TAT1 down	-0.0340592
MUON_ISO_STAT1up	0.0340595
MUON_IS O_S YS1down	-0.107535
MUON_IS O_S YS1up	0.107534
MUON_MS1down	0.0820036
MUON_MS1up	-0.000151071
MUON_SAGITTA_RESBIAS1down	0
MUON_SAGITTA_RESBIAS1up	0
MUON_SAGITTA_RHO1down	0
MUON_SAGITTA_RHO1up	0
MUON_SCALE1down	0.000269336
MUON_SCALE1up	-0.000151427
MUON_TTVA_STAT1down	-0.0829736
MUON_TTVA_STAT1up	0.0829736
MUON_TTVA_SYS1down	-0.0442062
MUON_TTVA_SYS1up	0.0442062
PH_EFF_ID_Uncertainty1down	-1.61419
PH_EFF_ID_Uncertainty1up	1.62741
PH_EFF_TRKISO_Uncertainty1down	-0.81737
PH_EFF_TRKISO_Uncertainty1up	0.821081
PH_Iso_DDonoff	0.135907
PRW_DATAS F1down	0.786437
PRW_DATAS F1up	0.259293

Table 35: Systematic uncertainties for *Wh* in percent in one lepton region without $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variations
JET_BJES_Response1up	-0.0231078
JET_BJES_Response_1down	0.0572327
JET_EffectiveNP_11up	3.36971
JET_EffectiveNP_11down	-2.68823
JET_EffectiveNP_21up	-0.881462
JET_EffectiveNP_21down	0.796042
JET_EffectiveNP_31up	0.199223
JET_EffectiveNP_31down	-0.405274
JET_EffectiveNP_41up	-0.324853
JET_EffectiveNP_41down	-0.00144804
JET_EffectiveNP_51up	-0.25006
JET_EffectiveNP_51down	0.00252444
JET_EffectiveNP_61up	0.174614
JET_EffectiveNP_61down	-0.407023
JET_EffectiveNP_71up	-0.486339
JET_EffectiveNP_71down	0.167234
JET_EffectiveNP_8restTerm_1up	0.00133669
JET_EffectiveNP_8restTerm_1down	-0.328113
JET_EtaIntercalibration_Modelling1up	0.742413
JET_EtaIntercalibration_Modelling1down	-1.48479
JET_EtaIntercalibration_NonClosure1up	-0.372728
JET_EtaIntercalibration_NonClosure1down	0.150208
JET_EtaIntercalibration_TotalStat1up	0.408175
JET_EtaIntercalibration_TotalStat1down	-0.712647
JET_Flavor_Composition1up	8.16721
JET_Flavor_Composition_1down	-7.1441
JET_Flavor_Response1up	-1.97008
JET_Flavor_Response_1down	1.72342
JET_JER_SINGLE_NP_1up	5.20475
JET_JvtEfficiencu_1down	-0.538754
JET_JvtEfficiencu_1up	0.540548
JET_Pileup_OffsetMu_1up	-0.43289
JET_Pileup_OffsetMu_1down	0.0941849
JET_Pileup_OffsetNPV1up	0.980575
JET_Pileup_OffsetNPV1down	-0.507806
JET_Pileup_PtTerm1up	0.0112159
JET_Pileup_PtTerm_1down	0.0248859
JET_Pileup_RhoTopoloau_1up	4.79589
JET_Pileup_RhoTopoloau_1down	-3.90133
JET_PunchThrouah_MC151up	-2.36746e-07
JET_PunchThrough_MC151down	9.09924e-06
JET_SinaleParticle HiahPt 1up	0
	0

Table 36: Systematic uncertainties for *Wh* in percent in one lepton region without $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variations
FT_EFF_Eigen_B_01down	-0.0899175
FT_EFF_Eigen_B_01up	0.0927434
FT_EFF_Eigen_B_11down	-0.0113505
FT_EFF_Eigen_B_11up	0.0113367
FT_EFF_Eigen_B_21down	0.00236481
FT_EFF_Eigen_B_21up	-0.00237557
FT_EFF_Eigen_C_01down	-0.565789
FT_EFF_Eigen_C_01up	0.569621
FT_EFF_Eigen_C_11down	-0.0488319
FT_EFF_Eigen_C_11up	0.0488954
$FT_EFF_Eigen_C_2_1down$	-0.0345158
FT_EFF_Eigen_C_21up	0.0344119
FT_EFF_Eigen_C_31down	0.0292769
FT_EFF_Eigen_C_31up	-0.0292754
FT_EFF_Eigen_Light_01down	-0.283082
FT_EFF_Eigen_Light_01up	0.283586
FT_EFF_Eigen_Light_11down	0.0466426
FT_EFF_Eigen_Light_11up	-0.0466286
FT_EFF_Eigen_Light_21down	-0.00889927
FT_EFF_Eigen_Light_21up	0.00890185
FT_EFF_Eigen_Light_31down	0.0170021
FT_EFF_Eigen_Light_31up	-0.0169984
FT_EFF_Eigen_Light_41down	0.0197891
FT_EFF_Eigen_Light_41up	-0.0197856
FT_EFF_extrapolation1down	0.0120396
FT_EFF_extrapolation_1up	-0.0120397
FT_EFF_extrapolation_from_charm1down	0
FT_EFF_extrapolation_from_charm1up	0

Table 37: Systematic uncertainties for *Wh* in percent in one lepton region without $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variations
EL_EFF_ID_TOTAL_1NPCOR_PLUS_UNCOR1down	-0.414868
EL_EFF_ID_TOTAL_1NPCOR_PLUS_UNCOR_1up	0.414867
EL_EFF_Iso_TOTAL_1NPCOR_PLUS_UNCOR1down	-0.115012
EL_EFF_Iso_TOTAL_1NPCOR_PLUS_UNCOR1up	0.115012
EL_EFF_Reco_TOTAL_1NPCOR_PLUS_UNCOR1down	-0.1248
EL_EFF_Reco_TOTAL_1NPCOR_PLUS_UNCOR1up	0.1248
MUON_EFF_STAT1down	-0.103181
MUON_EFF_STAT1up	0.103181
MUON_EFF_SYS1down	-0.372604
MUON_EFF_SYS1up	0.373514
MUON_ID1down	-0.000281855
MUON_ID1up	-0.000269726
MUON_IS O_S TAT1 down	-0.046463
MUON_ISO_STAT1up	0.0464629
MUON_IS O_S YS1down	-0.111914
MUON_IS O_S YS1up	0.111913
MUON_MS1down	0.0910969
MUON_MS1up	-0.000299612
MUON_SAGITTA_RESBIAS1down	0
MUON_SAGITTA_RESBIAS1up	0
MUON_SAGITTA_RHO1down	0
MUON_SAGITTA_RHO1up	0
MUON_SCALE1down	-3.37733e-05
MUON_SCALE1up	7.05483e-06
MUON_TTVA_STAT1down	-0.0949855
MUON_TTVA_STAT1up	0.0949854
MUON_TTVA_SYS1down	-0.055563
MUON_TTVA_SYS1up	0.055563
PH_EFF_ID_Uncertainty1down	-1.58318
PH_EFF_ID_Uncertainty1up	1.59573
PH_EFF_TRKISO_Uncertainty1down	-0.809736
PH_EFF_TRKISO_Uncertainty1up	0.813497
PH_Iso_DDonoff	0
PRW_DATAS F1down	-1.20557
PRW_DATAS F1up	2.07656

Table 38: Systematic uncertainties for *Zh* in percent in one lepton region without $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variations
JET_BJES_Response1up	0.00104824
JET_BJES_Response_1down	0.113495
JET_EffectiveNP_11up	3.0441
JET_EffectiveNP_11down	-2.31258
JET_EffectiveNP_21up	-0.324077
JET_EffectiveNP_21down	0.280546
JET_EffectiveNP_31up	0.036392
JET_EffectiveNP_31down	0.185793
JET_EffectiveNP_41up	0.185825
JET_EffectiveNP_41down	0.0330047
JET_EffectiveNP_51up	-0.000989775
JET_EffectiveNP_51down	0.221169
JET_EffectiveNP_61up	0.0356397
JET_EffectiveNP_61down	0.0049169
JET_EffectiveNP_71up	0.165148
JET_EffectiveNP_71down	0.0281939
JET_EffectiveNP_8restTerm_1up	0.200961
JET_EffectiveNP_8restTerm_1down	-0.000877335
JET_EtaIntercalibration_Modelling1up	0.578097
JET_EtaIntercalibration_Modelling1down	-0.522543
JET_EtaIntercalibration_NonClosure1up	-0.220832
JET_EtaIntercalibration_NonClosure1down	0.477048
JET_EtaIntercalibration_TotalS tat1up	0.344507
JET_EtaIntercalibration_TotalStat1down	-0.361741
JET_Flavor_Composition1up	8.31211
JET_Flavor_Composition1down	-5.43258
JET_Flavor_Response1up	-1.39873
JET_Flavor_Response1down	1.0571
JET_JER_SINGLE_NP1up	3.86087
JET_JvtEfficiency_1down	-0.535541
JET_JvtEf ficiency1up	0.537396
JET_Pileup_OffsetMu_1up	-0.208226
JET_Pileup_OffsetMu1down	0.131217
JET_Pileup_OffsetNPV1up	0.980307
JET_Pileup_OffsetNPV1down	-0.748568
JET_Pileup_PtTerm_1up	0.248664
JET_Pileup_PtTerm_1down	-0.0163349
JET_Pileup_RhoTopology1up	4.60248
JET_Pileup_RhoTopology1down	-3.16769
JET_PunchThrough_MC151up	-1.88973e-05
JET_PunchThrough_MC151down	0
JET_S ingleParticle_HighPt1up	0
IFT SinaleParticle HighPt 1down	0

Table 39: Systematic uncertainties for *Zh* in percent in one lepton region without $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variations
FT_EFF_Eigen_B_01down	-0.425695
FT_EFF_Eigen_B_01up	0.427555
FT_EFF_Eigen_B_11down	-0.0986619
FT_EFF_Eigen_B_11up	0.0985928
FT_EFF_Eigen_B_21down	0.0817472
FT_EFF_Eigen_B_21up	-0.0817576
FT_EFF_Eigen_C_01down	-0.634753
FT_EFF_Eigen_C_01up	0.641572
FT_EFF_Eigen_C_11down	0.00426713
FT_EFF_Eigen_C_11up	-0.00396342
$FT_EFF_Eigen_C_2_1down$	-0.0166689
FT_EFF_Eigen_C_21up	0.0167306
FT_EFF_Eigen_C_31down	0.027708
FT_EFF_Eigen_C_31up	-0.0276889
FT_EFF_Eigen_Light_01down	-0.26381
FT_EFF_Eigen_Light_01up	0.264258
FT_EFF_Eigen_Light_1_1down	0.0416827
FT_EFF_Eigen_Light_11up	-0.0416709
FT_EFF_Eigen_Light_21down	0.00335586
FT_EFF_Eigen_Light_21up	-0.00335263
FT_EFF_Eigen_Light_31down	0.0248221
FT_EFF_Eigen_Light_31up	-0.0248169
FT_EFF_Eigen_Light_41down	0.019197
FT_EFF_Eigen_Light_41up	-0.019194
$FT_EFF_extrapolation_1down$	0.00881996
FT_EFF_extrapolation_1up	-0.00881999
FT_EFF_extrapolation_from_charm1down	0.0795361
FT_EFF_extrapolation_from_charm1up	-0.0795184

Table 40: Systematic uncertainties for Zh in percent in one lepton region without $p_T(\gamma\gamma)$ cut applied.

_

Uncertainty Source	Relative Variations
nominal	0
EG_RESOLUTION_ALL1down	0.953526
EG_RESOLUTION_ALL1up	-0.0170817
EG_SCALE_ALL1down	-0.0081652
EG_SCALE_ALL1up	0.017471
EL_EFF_ID_TOTAL_1NPCOR_PLUS_UNCOR1down	-0.460155
EL_EFF_ID_TOTAL_1NPCOR_PLUS_UNCOR1up	0.460155
EL_EFF_Iso_TOTAL_1NPCOR_PLUS_UNCOR1down	-0.0205882
EL_EFF_Iso_TOTAL_1NPCOR_PLUS_UNCOR1up	0.0205883
EL_EFF_Reco_TOTAL_1NPCOR_PLUS_UNCOR1down	-0.125262
EL_EFF_Reco_TOTAL_1NPCOR_PLUS_UNCOR1up	0.125262
MUON_EFF_STAT1down	-1.1394
MUON_EFF_STAT1up	1.1394
MUON_EFF_SYS1down	-1.16159
MUON_EFF_SYS1up	1.16159
MUON_ID1down	0.00185505
MUON_ID1up	0
MUON_ISO_STAT1down	-0.242427
MUON_ISO_STAT1up	0.242427
MUON_IS O_S YS1 down	-0.129533
MUON_IS O_S YS1up	0.12953
MUON_MS1down	0
MUON_MS1up	0
MUON_SAGITTA_RESBIAS1 down	0
MUON_SAGITTA_RESBIAS1up	0
MUON_SAGITTA_RHO1down	0
MUON_SAGITTA_RHO1up	0
MUON_SCALE1down	0
MUON_SCALE1up	0
MUON_TTVA_STAT1down	-0.348912
MUON_TTVA_STAT1up	0.348912
MUON_TTVA_SYS1down	-0.134795
MUON_TTVA_SYS1up	0.134795
PH_EFF_ID_Uncertainty1down	-1.44564
PH_EFF_ID_Uncertainty1up	1.45674
PH_EFF_TRKISO_Uncertainty1down	-0.778027
PH_EFF_TRKISO_Uncertainty1up	0.781359
PH_Iso_DDonoff	1.84745
PRW_DATAS F1down	-5.42056
PRW_DATAS F1up	0.0998584

Table 41: Systematic uncertainties for *VBF* in percent in one lepton region without $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variations
JET_BJES_Response_1up	-0.00115359
JET_BJES_Response_1down	0.000674515
JET_EffectiveNP_11up	1.7242
JET_EffectiveNP_1_1down	-0.852597
JET_EffectiveNP_21up	0.0911839
JET_EffectiveNP_21down	0.0188812
JET_EffectiveNP_31up	-0.000429948
JET_EffectiveNP_31down	0.0395022
JET_EffectiveNP_41up	0.0396718
JET_EffectiveNP_41down	-0.000422317
JET_EffectiveNP_51up	0.0390791
JET_EffectiveNP_51down	1.6845e-05
JET_EffectiveNP_61up	-5.81832e-05
JET_EffectiveNP_61down	0.0397225
JET_EffectiveNP_71up	0.0396621
JET_EffectiveNP_71down	-1.18535e-05
JET_EffectiveNP_8restTerm1up	-9.21712e-05
JET_EffectiveNP_8restTerm1down	0.039757
JET_EtaIntercalibration_Modelling1up	0.0375552
JET_EtaIntercalibration_Modelling_1down	0.0275318
JET_EtaIntercalibration_NonClosure1up	0.0917713
JET_EtaIntercalibration_NonClosure1down	-0.00113144
JET_EtaIntercalibration_TotalS tat1up	0.0172232
JET_EtaIntercalibration_TotalStat1down	0.0912086
JET_Flavor_Composition1up	2.90203
JET_Flavor_Composition1down	-3.49921
JET_Flavor_Response1up	0.0839987
JET_Flavor_Response1down	0.69675
JET_JER_S INGLE_NP1up	3.29864
JET_JvtEf ficiency1down	-0.353969
JET_JvtEf ficiency_1up	0.355176
JET_Pileup_OffsetMu_1up	0.0933344
JET_Pileup_OffsetMu_1down	0.0167256
JET_Pileup_Of f setNPV1up	0.0659938
JET_Pileup_OffsetNPV_1down	0.0271697
JET_Pileup_PtTerm1up	0.0162876
JET_Pileup_PtTerm1down	0.000520467
JET_Pileup_RhoTopology1up	0.807597
JET_Pileup_RhoTopology1down	-1.22965
JET_PunchThrough_MC151up	0
JET_PunchThrough_MC151down	0
JET_S ingleParticle_HighPt1up	0
JET_S ingleParticle_HighPt1down	0

Table 42: Systematic uncertainties for *VBF* in percent in one lepton region without $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variations
FT_EFF_Eigen_B_01down	-0.422985
FT_EFF_Eigen_B_01up	0.422985
FT_EFF_Eigen_B_11down	-0.0615609
FT_EFF_Eigen_B_11up	0.0615609
FT_EFF_Eigen_B_21down	0.0764919
FT_EFF_Eigen_B_21up	-0.0764918
FT_EFF_Eigen_C_01down	-1.14275
FT_EFF_Eigen_C_01up	1.14302
$FT_EFF_Eigen_C_1_1down$	-0.358197
FT_EFF_Eigen_C_11up	0.358184
$FT_EFF_Eigen_C_2_1down$	-0.09607
FT_EFF_Eigen_C_21up	0.0960775
FT_EFF_Eigen_C_31down	0.0704578
FT_EFF_Eigen_C_31up	-0.070459
FT_EFF_Eigen_Light_01down	-0.269741
FT_EFF_Eigen_Light_01up	0.270273
FT_EFF_Eigen_Light_1_1down	0.0333681
FT_EFF_Eigen_Light_11up	-0.0333578
FT_EFF_Eigen_Light_21down	0.0400058
FT_EFF_Eigen_Light_21up	-0.0399928
FT_EFF_Eigen_Light_31down	0.0249126
FT_EFF_Eigen_Light_31up	-0.0249168
FT_EFF_Eigen_Light_41down	0.0339202
FT_EFF_Eigen_Light_41up	-0.0339144
$FT_EFF_extrapolation_1down$	0.0419485
FT_EFF_extrapolation_1up	-0.041949
FT_EFF_extrapolation_from_charm1down	0
FT_EFF_extrapolation_from_charm1up	0

Table 43: Systematic uncertainties for *VBF* in percent in one lepton region without $p_T(\gamma\gamma)$ cut applied.

_

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Uncertainty Source	Relative Variations
$\begin{array}{llllllllllllllllllllllllllllllllllll$	nominal	0
$\begin{array}{llllllllllllllllllllllllllllllllllll$	EG_RESOLUTION_ALL1down	-1.52823
$\begin{array}{llllllllllllllllllllllllllllllllllll$	EG_RESOLUTION_ALL1up	1.4768
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	EG_SCALE_ALL1down	1.48157
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	EG_S CALE_ALL1up	-1.53195
$\begin{array}{llllllllllllllllllllllllllllllllllll$	EL_EFF_ID_TOTAL_1NPCOR_PLUS_UNCOR1down	-0.409569
$\begin{array}{llllllllllllllllllllllllllllllllllll$	EL_EFF_ID_TOTAL_1NPCOR_PLUS_UNCOR1up	0.409569
$\begin{array}{llllllllllllllllllllllllllllllllllll$	EL_EFF_Iso_TOTAL_1NPCOR_PLUS_UNCOR1down	-0.0170324
EL_EFF_Reco_TOTAL_1NPCOR_PLUS_UNCOR_110p -0.121955 MUON_EFF_STAT_100vn -3.66996 MUON_EFF_STAT_110p 3.66996 MUON_EFF_STAT_10p 3.66996 MUON_EFF_SYS_110vn -3.68086 MUON_EFF_SYS_10vn -3.68086 MUON_EFF_SYS_10vn 0 MUON_EFF_SYS_10vn 0 MUON_ID_10vn 0 MUON_IS_O_STAT_10vn 0.242024 MUON_IS_O_SYS_10vn -0.128764 MUON_IS_O_SYS_10vn 0 MUON_SO_SYS_10vn 0 MUON_SO_SYS_10vn 0 MUON_SAGITTA_RESBIAS_10vn 0 MUON_SAGITTA_RESBIAS_10vn 0 MUON_SAGITTA_RHO_10vn 0 MUON_SCALE_10vn 0 MUON_SCALE_10vn 0 MUON_SCALE_10vn 0 MUON_TTVA_STAT_10vn -0.120652 MUON_TTVA_STAT_10vn -0.120652 MUON_TTVA_STAT_10vn -0.120652 MUON_TTVA_STAT_10vn -0.120652 MUON_TTVA_STAT_10vn -0.120652 MUON_TTVA_STAT_10vn -0.743886	EL_EFF_Iso_TOTAL_1NPCOR_PLUS_UNCOR1up	0.0170323
EL_EFF_Reco_TOTAL_INPCOR_PLUS_UNCOR_1up 0.121955 MUON_EFF_STAT_1up 3.66996 MUON_EFF_STAT_1up 3.66996 MUON_EFF_STS_1down -3.68086 MUON_EFF_SYS_1up 3.68086 MUON_EFF_SYS_1up 3.68086 MUON_ID_1down 0 MUON_ID_1up 0 MUON_IS_O_STAT_1up 0.242024 MUON_IS_O_SYS_1down -0.128764 MUON_IS_O_SYS_1down 0 MUON_SO_SYS_1down 0 MUON_SO_SYS_1down 0 MUON_SO_SYS_1down 0 MUON_SAGITTA_RES BIAS_1down 0 MUON_SAGITTA_RES BIAS_1up 0 MUON_SAGITTA_RES BIAS_1up 0 MUON_SAGITTA_RES BIAS_1up 0 MUON_SCALE_1down 0 MUON_TTVA_STAT_1up 0.369052 MUON_TTVA_STAT_1up 0.120651 PH_EFF_ID_Uncertainty_1down -1.55782 PH_EFF_ID_Uncertainty_1up 1.57051 PH_EFF_TRKIS O_Uncertainty_1up 0.74468 PH_ISo_DDonoff 0 PRW_DATASF_1up -	EL_EFF_Reco_TOTAL_1NPCOR_PLUS_UNCOR_1down	-0.121956
MUON_EFF_STATlup -3.66996 MUON_EFF_SYSlown -3.68086 MUON_EFF_SYSlup 3.68086 MUON_IDlown 0 MUON_IDlown 0 MUON_IDlown 0 MUON_IS_STATlown -0.242024 MUON_IS_O_STATlown -0.242025 MUON_IS_O_STATlown -0.128764 MUON_IS_O_SYSlown -0.128764 MUON_MSlown 0 MUON_S_STSlown 0 MUON_S_STSlown 0 MUON_S_STSlown 0 MUON_S_STSlown 0 MUON_S_STSlown 0 MUON_SAGITTA_RES_BIASlown 0 MUON_SAGITTA_RHOlown 0 MUON_SCALElown 0 MUON_TTVA_STATlown -0.369052 MUON_TTVA_STATlown -0.120651 MUON_TTVA_SYSlown -0.120652 MUON_TTVA_SYSlown -0.120652 MUON_TTVA_SYSlown -0.120652 MUON_TTVA_SYSlown -0.120651 PH_EFF_ID_Uncertaintylown -1.55782	EL_EFF_Reco_TOTAL_1NPCOR_PLUS_UNCOR1up	0.121955
MUON_EFF_STATlup 3.66996 MUON_EFF_SYSlown -3.68086 MUON_IDlown 0 MUON_IDlown 0 MUON_ISO_STATlown -0.242024 MUON_ISO_STATlown -0.242025 MUON_ISO_STATlown -0.128764 MUON_ISO_SYSlown -0.12876 MUON_MSlown 0 MUON_SG_SYSlown 0 MUON_SG_SYSlown 0 MUON_SG_SYSlown 0 MUON_SAGITTA_RESBIASlown 0 MUON_SAGITTA_RESBIASlown 0 MUON_SAGITTA_RESBIASlown 0 MUON_SAGITTA_RESBIASlown 0 MUON_SAGITTA_RESBIASlown 0 MUON_SCALElown 0 MUON_TVA_STATlown -0.369052 MUON_TVA_STATlown -0.120652 MUON_TVA_STATlown -0.120652 MUON_TVA_STATlown -0.120652 MUON_TVA_STATlown -0.120652 MUON_TVA_STATlown -0.120652 MUON_TVA_STATlown -0.120652 MUON_TVA_STATlown -0.120	MUON_EFF_STAT1down	-3.66996
MUON_EFF_SYS_1down -3.68086 MUON_ID_1D_1down 0 MUON_ID_1lp_0 0 MUON_ISO_STAT_1down -0.242024 MUON_ISO_STAT_1up 0.242025 MUON_ISO_SYS_1down -0.128764 MUON_MS_SYS_1down 0 MUON_SO_SYS_1down 0 MUON_SAGITTA_RES BIAS_1down 0 MUON_SAGITTA_RHO_1down 0 MUON_SCALE_1down 0 MUON_TVA_STAT_1down -0.120652 MUON_TVA_STAT_1down -0.120652 MUON_TVA_STAT_1down -0.120652 MUON_TVA_SYS_1down -0.120652 MUON_TVA_SYS_1down -0.120652 MUON_TVA_STAT_1up 0.120651 PH_EFF_ID_Uncertainty_1down	MUON_EFF_STAT1up	3.66996
MUON_EFF_SYS1up 3.68086 MUON_ID1down 0 MUON_ID1up 0 MUON_IS_O_STAT1down -0.242024 MUON_IS_O_STAT1up 0.242025 MUON_IS_O_SYS1down -0.128764 MUON_IS_O_SYS1up 0.12876 MUON_MS1down 0 MUON_MS1down 0 MUON_S_CAGITTA_RES_BIAS1down 0 MUON_SAGITTA_RES_BIAS1up 0 MUON_SAGITTA_RES_BIAS1up 0 MUON_SAGITTA_RES_BIAS1up 0 MUON_SAGITTA_RES_BIAS1up 0 MUON_SAGITTA_RES_BIAS1up 0 MUON_SCALE1lown 0 MUON_SCALE1up 0 MUON_TTVA_STAT1up 0.369052 MUON_TTVA_STAT1up 0.120651 PH_EFF_ID_Uncertainty1up 0.120651 PH_EFF_ID_Uncertainty1up 0.7468 PH_EFF_TRKISO_Uncertainty1up 0.7468 PH_Iso_DDonoff 0 O 0 PRW_DATASF1up -1.10324	MUON_EFF_SYS1down	-3.68086
MUON_ID1down 0 MUON_ID1up 0 MUON_IS_O_STAT1down -0.242024 MUON_IS_O_STAT1up 0.242025 MUON_IS_O_SYS1down -0.128764 MUON_IS_O_SYS1up 0.12876 MUON_MS1own 0 MUON_MS1up 2.03383 MUON_SAGITTA_RES_BIAS1down 0 MUON_SAGITTA_RES_BIAS1up 0 MUON_SAGITTA_RES_BIAS1up 0 MUON_SAGITTA_RES_BIAS1up 0 MUON_SAGITTA_RES_BIAS1up 0 MUON_SAGITTA_RHO1up 0 MUON_SCALE1up 0 MUON_SCALE1up 0 MUON_TTVA_STAT1up 0.369052 MUON_TTVA_STAT1up 0.120651 PH_EFF_ID_Uncertainty1up 0.120651 PH_EFF_ID_Uncertainty1up 0.7468 PH_EFF_TRKIS_O_Uncertainty1up 0.7468 PH_Iso_DDonoff 0 PRW_DATAS_F1up -1.10324	MUON_EFF_SYS1up	3.68086
$\begin{array}{llllllllllllllllllllllllllllllllllll$	MUON_ID1down	0
$\begin{array}{llllllllllllllllllllllllllllllllllll$	MUON_ID1up	0
MUON_IS_O_STAT1up 0.242025 MUON_IS_O_SYS_1down -0.128764 MUON_IS_O_SYS_1up 0.12876 MUON_MS_1down 0 MUON_MS_1up 2.03383 MUON_SAGITTA_RES_BIAS_1down 0 MUON_SAGITTA_RES_BIAS_1up 0 MUON_SAGITTA_RES_BIAS_1up 0 MUON_SAGITTA_RES_BIAS_1up 0 MUON_SAGITTA_RHO_1down 0 MUON_SAGITTA_RHO_1down 0 MUON_SCALE_1down 0 MUON_SCALE_1up 0 MUON_TTVA_STAT_1down -0.369052 MUON_TTVA_STAT_1up 0.369052 MUON_TTVA_SYS_1down -0.120651 PH_EFF_ID_Uncertainty_1down -1.55782 PH_EFF_ID_Uncertainty_1down -0.743886 PH_EFF_TRKISO_Uncertainty_1up 0.7468 PH_Iso_DDonoff 0 PRW_DATASF_1up -1.10324	MUON_ISO_STAT1down	-0.242024
MUON_ISO_SYS1up -0.128764 MUON_ISO_SYS1up 0.12876 MUON_MS1down 0 MUON_SAGITTA_RESBIAS1up 0 MUON_SAGITTA_RESBIAS1up 0 MUON_SAGITTA_RESBIAS1up 0 MUON_SAGITTA_RESBIAS1up 0 MUON_SAGITTA_RHO1down 0 MUON_SAGITTA_RHO1up 0 MUON_SCALE1down 0 MUON_SCALE1up 0 MUON_TTVA_STAT1down -0.369052 MUON_TTVA_STAT1up 0.369052 MUON_TTVA_STAT1up 0.120651 PH_EFF_ID_Uncertainty1down -1.55782 PH_EFF_ID_Uncertainty1up 0.743886 PH_EFF_TRKISO_Uncertainty1up 0.7468 PH_Iso_DDonoff 0 PRW_DATASF1up -1.10324	MUON_ISO_STAT1up	0.242025
$\begin{array}{llllllllllllllllllllllllllllllllllll$	MUON_IS O_S YS1down	-0.128764
MUON_MS10wn 0 MUON_MS1up 2.03383 MUON_S AGITTA_RES BIAS11down 0 MUON_S AGITTA_RES BIAS1up 0 MUON_S AGITTA_RES BIAS1up 0 MUON_S AGITTA_RHO1down 0 MUON_S AGITTA_RHO1down 0 MUON_S AGITTA_RHO1up 0 MUON_S CALE1lop 0 MUON_S CALE1lop 0 MUON_TTVA_STAT1down -0.369052 MUON_TTVA_STAT1lop 0.369052 MUON_TTVA_SYS1down -0.120652 MUON_TTVA_SYS1lop 0.120651 PH_EFF_ID_Uncertainty1down -1.55782 PH_EFF_ID_Uncertainty1up 0.743886 PH_EFF_TRKIS O_Uncertainty1up 0.7468 PH_Iso_DDonof f 0 0 0 PRW_DATAS F1down -4.58649 PRW_DATAS F1up -1.10324	MUON_IS O_S YS1up	0.12876
$\begin{array}{llllllllllllllllllllllllllllllllllll$	MUON_MS1down	0
MUON_SAGITTA_RES BIAS10wn 0 MUON_SAGITTA_RES BIAS1up 0 MUON_SAGITTA_RHO10wn 0 MUON_SAGITTA_RHO1up 0 MUON_SCALE1down 0 MUON_SCALE1down 0 MUON_SCALE1down 0 MUON_SCALE1up 0 MUON_TTVA_STAT1down -0.369052 MUON_TTVA_STAT1up 0.369052 MUON_TTVA_STAT1up 0.120652 MUON_TTVA_SYS1down -0.120652 MUON_TTVA_SYS1up 0.120651 PH_EFF_ID_Uncertainty1down -1.55782 PH_EFF_ID_Uncertainty1up 0.743886 PH_EFF_TRKISO_Uncertainty1up 0.7468 PH_Iso_DDonof f 0 PRW_DATASF1up -1.10324	MUON_MS1up	2.03383
MUON_SAGITTA_RESBIAS1up 0 MUON_SAGITTA_RHO1down 0 MUON_SAGITTA_RHO1up 0 MUON_SCALE1down 0 MUON_SCALE1up 0 MUON_SCALE1up 0 MUON_SCALE1up 0 MUON_SCALE1up 0 MUON_TTVA_STAT1down -0.369052 MUON_TTVA_STAT1up 0.369052 MUON_TTVA_SYS1down -0.120652 MUON_TTVA_SYS1up 0.120651 PH_EFF_ID_Uncertainty1down -1.55782 PH_EFF_ID_Uncertainty1up 1.57051 PH_EFF_TRKISO_Uncertainty1up 0.7468 PH_Iso_DDonoff 0 PRW_DATASF1up -4.58649 PRW_DATASF1up -1.10324	MUON_SAGITTA_RESBIAS1down	0
MUON_SAGITTA_RHO10own 0 MUON_SAGITTA_RHO1up 0 MUON_SCALE10own 0 MUON_SCALE1up 0 MUON_TTVA_STAT10own -0.369052 MUON_TTVA_STAT1up 0.369052 MUON_TTVA_STAT10own -0.120652 MUON_TTVA_SYS10own -0.120651 PH_EFF_ID_Uncertainty10own -1.55782 PH_EFF_ID_Uncertainty10own -0.743886 PH_EFF_TRKISO_Uncertainty11up 0.7468 PH_ISo_DDonoff 0 PRW_DATASF10p -4.58649 PRW_DATASF10p -1.10324	MUON_SAGITTA_RESBIAS1up	0
MUON_SAGITTA_RHO1up 0 MUON_SCALE1down 0 MUON_SCALE1up 0 MUON_TTVA_STAT1down -0.369052 MUON_TTVA_STAT1up 0.369052 MUON_TTVA_STAT1up 0.120652 MUON_TTVA_SYS1up 0.120651 PH_EFF_ID_Uncertainty1down -1.55782 PH_EFF_ID_Uncertainty1up 1.57051 PH_EFF_TRKIS O_Uncertainty1up 0.743886 PH_Iso_DDonof f 0 PRW_DATAS F1up -4.58649 PRW_DATAS F1up -1.10324	MUON_SAGITTA_RHO1down	0
MUON_SCALE1down 0 MUON_SCALE1up 0 MUON_TTVA_STAT1down -0.369052 MUON_TTVA_STAT1up 0.369052 MUON_TTVA_SYS1down -0.120652 MUON_TTVA_SYS1up 0.120651 PH_EFF_ID_Uncertainty1down -1.55782 PH_EFF_ID_Uncertainty1up 1.57051 PH_EFF_TRKISO_Uncertainty1up 0.7468 PH_Iso_DDonoff 0 PRW_DATASF1up -4.58649 PRW_DATASF1up -1.10324	MUON_SAGITTA_RHO1up	0
MUON_SCALE1up 0 MUON_TTVA_STAT1down -0.369052 MUON_TTVA_STAT1up 0.369052 MUON_TTVA_SYS1down -0.120652 MUON_TTVA_SYS1up 0.120651 PH_EFF_ID_Uncertainty1down -1.55782 PH_EFF_ID_Uncertainty1up 1.57051 PH_EFF_TRKISO_Uncertainty1up 0.743886 PH_EFF_TRKISO_Uncertainty1up 0.7468 PH_Iso_DDonof f 0 PRW_DATASF1up -4.58649 PRW_DATASF1up -1.10324	MUON_SCALE1down	0
MUON_TTVA_STAT1down -0.369052 MUON_TTVA_STAT1up 0.369052 MUON_TTVA_SYS1down -0.120652 MUON_TTVA_SYS1up 0.120651 PH_EFF_ID_Uncertainty1down -1.55782 PH_EFF_ID_Uncertainty1up 1.57051 PH_EFF_TRKISO_Uncertainty1down -0.743886 PH_EFF_TRKISO_Uncertainty1up 0.7468 PH_Iso_DDonof f 0 PRW_DATASF1down -4.58649 PRW_DATASF1up -1.10324	MUON_SCALE1up	0
MUON_TTVA_STAT1up 0.369052 MUON_TTVA_SYS1down -0.120652 MUON_TTVA_SYS1up 0.120651 PH_EFF_ID_Uncertainty1down -1.55782 PH_EFF_ID_Uncertainty1up 1.57051 PH_EFF_TRKISO_Uncertainty1down -0.743886 PH_EFF_TRKISO_Uncertainty1up 0.7468 PH_Iso_DDonof f 0 PRW_DATASF1down -4.58649 PRW_DATASF1up -1.10324	MUON_TTVA_STAT1down	-0.369052
MUON_TTVA_SYS1down -0.120652 MUON_TTVA_SYS1up 0.120651 PH_EFF_ID_Uncertainty1down -1.55782 PH_EFF_ID_Uncertainty1up 1.57051 PH_EFF_TRKISO_Uncertainty1down -0.743886 PH_EFF_TRKISO_Uncertainty1up 0.7468 PH_Iso_DDonoff 0 PRW_DATASF1down -4.58649 PRW_DATASF1up -1.10324	MUON_TTVA_STAT1up	0.369052
MUON_TTVA_SYS1up 0.120651 PH_EFF_ID_Uncertainty1down -1.55782 PH_EFF_ID_Uncertainty1up 1.57051 PH_EFF_TRKIS O_Uncertainty1down -0.743886 PH_EFF_TRKIS O_Uncertainty1up 0.7468 PH_Iso_DDonof f 0 PRW_DATAS F1down -4.58649 PRW_DATAS F1up -1.10324	MUON_TTVA_SYS1down	-0.120652
PH_EFF_ID_Uncertainty1down -1.55782 PH_EFF_ID_Uncertainty1up 1.57051 PH_EFF_TRKIS O_Uncertainty1down -0.743886 PH_EFF_TRKIS O_Uncertainty1up 0.7468 PH_Iso_DDonof f 0 PRW_DATAS F1down -4.58649 PRW_DATAS F1up -1.10324	MUON_TTVA_SYS1up	0.120651
PH_EFF_ID_Uncertainty1up 1.57051 PH_EFF_TRKIS O_Uncertainty1down -0.743886 PH_EFF_TRKIS O_Uncertainty1up 0.7468 PH_Iso_DDonof f 0 PRW_DATAS F1down -4.58649 PRW_DATAS F1up -1.10324	PH_EFF_ID_Uncertainty1down	-1.55782
PH_EFF_TRKIS O_Uncertainty1down-0.743886PH_EFF_TRKIS O_Uncertainty1up0.7468PH_Iso_DDonof f0PRW_DATAS F1down-4.58649PRW_DATAS F1up-1.10324	PH_EFF_ID_Uncertainty1up	1.57051
PH_EFF_TRKIS O_Uncertainty1up 0.7468 PH_Iso_DDonof f 0 PRW_DATAS F1down -4.58649 PRW_DATAS F1up -1.10324	PH_EFF_TRKISO_Uncertainty1down	-0.743886
PH_Iso_DDonoff 0 PRW_DATAS F1down -4.58649 PRW_DATAS F1up -1.10324	PH_EFF_TRKISO_Uncertainty1up	0.7468
PRW_DATAS F1down -4.58649 PRW_DATAS F1up -1.10324	PH_Iso_DDonoff	0
$PRW_DATASF__1up -1.10324$	PRW_DATAS F1down	-4.58649
	PRW_DATAS F1up	-1.10324

Table 44: Systematic uncertainties for *ggh* in percent in one lepton region without $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variation
JET_BJES_Response1up	-0.00631053
JET_BJES_Response1down	0.00433381
JET_EffectiveNP_11up	3.23323
JET_EffectiveNP_11down	-1.54428
JET_EffectiveNP_21up	-0.0278767
JET_EffectiveNP_21down	0.012819
JET_EffectiveNP_31up	0.000246504
JET_EffectiveNP_31down	-0.0004208
JET_EffectiveNP_41up	-0.000422317
JET_EffectiveNP_41down	0.00119528
JET_EffectiveNP_51up	0.000955996
JET_EffectiveNP_51down	0.0127971
JET_EffectiveNP_61up	0.0128347
JET_EffectiveNP_61down	-4.27755e-06
JET_EffectiveNP_71up	-7.39217e-05
JET_EffectiveNP_71down	-0.000100238
JET_EffectiveNP_8restTerm_1up	-0.000232008
JET_EffectiveNP_8restTerm_1down	0.000166624
JET_EtaIntercalibration_Modelling1up	1.46294
JET_EtaIntercalibration_Modelling1down	0.00627484
JET_EtaIntercalibration_NonClosure1up	0.00547038
JET_EtaIntercalibration_NonClosure_1down	-0.0415511
JET_EtaIntercalibration_TotalStat1up	0.0124268
JET_EtaIntercalibration_TotalStat1down	-0.026268
JET_Flavor_Composition1up	15.3552
JET_Flavor_Composition1down	-5.95582
JET_Flavor_Response1up	-0.0376125
JET_Flavor_Response1down	1.46414
JET_JER_SINGLE_NP1up	7.44641
JET_JvtEfficiency1down	-0.592277
JET_JvtEfficiencu_1up	0.594901
JET_Pileup_OffsetMu1up	0.0136958
JET_Pileup_OffsetMu_1down	0.00419188
JET_Pileup_OffsetNPV1up	0.0113038
JET_Pileup_OffsetNPV_1down	-0.0301702
JET_Pileup_PtTerm_1up	0.0117992
JET_Pileup_PtTerm_1down	-0.0387644
JET_Pileup_RhoTopologu_1up	9.71342
JET_Pileup_RhoTopology_1down	-4.01986
JET_PunchThrough_MC151up	-1.42016e-07
JET_PunchThrough_MC151down	0
JET_S inaleParticle_HiahPt1up	0
IFT SinaleParticle HighPt 1 down	0 0

Table 45: Systematic uncertainties for *ggh* in percent in one lepton region without $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variations
FT_EFF_Eigen_B_01down	-0.931471
FT_EFF_Eigen_B_01up	0.941972
FT_EFF_Eigen_B_11down	-0.131991
FT_EFF_Eigen_B_11up	0.131921
FT_EFF_Eigen_B_21down	0.118169
FT_EFF_Eigen_B_21up	-0.118099
FT_EFF_Eigen_C_01down	-0.372185
FT_EFF_Eigen_C_01up	0.372185
FT_EFF_Eigen_C_11down	0.0345223
FT_EFF_Eigen_C_11up	-0.0345222
FT_EFF_Eigen_C_21down	0.00270721
FT_EFF_Eigen_C_21up	-0.00270707
FT_EFF_Eigen_C_31down	0.0306874
FT_EFF_Eigen_C_31up	-0.0306873
FT_EFF_Eigen_Light_01down	-0.297775
FT_EFF_Eigen_Light_01up	0.298343
FT_EFF_Eigen_Light_11down	0.0559665
FT_EFF_Eigen_Light_11up	-0.0559454
FT_EFF_Eigen_Light_21down	-0.0223491
FT_EFF_Eigen_Light_21up	0.022373
FT_EFF_Eigen_Light_31down	0.0294458
FT_EFF_Eigen_Light_31up	-0.0294438
FT_EFF_Eigen_Light_41down	0.0149886
FT_EFF_Eigen_Light_41up	-0.0149892
FT_EFF_extrapolation1down	0
FT_EFF_extrapolation_1up	0
FT_EFF_extrapolation_from_charm1down	0
FT_EFF_extrapolation_from_charm1up	0

Table 46: Systematic uncertainties for ggh in percent in one lepton region without $p_T(\gamma\gamma)$ cut applied.

_

Uncertainty Source	Relative Variations
nominal	0
EG_RESOLUTION_ALL1down	-0.0556198
EG_RESOLUTION_ALL1up	0.0406091
EG_SCALE_ALL1down	0.0494382
EG_SCALE_ALL1up	0.012464
EL_EFF_ID_TOTAL_1NPCOR_PLUS_UNCOR1down	-0.512883
EL_EFF_ID_TOTAL_1NPCOR_PLUS_UNCOR1up	0.512883
EL_EFF_Iso_TOTAL_1NPCOR_PLUS_UNCOR_1down	-0.0738717
EL_EFF_Iso_TOTAL_1NPCOR_PLUS_UNCOR1up	0.0738716
EL_EFF_Reco_TOTAL_1NPCOR_PLUS_UNCOR_1down	-0.14291
EL_EFF_Reco_TOTAL_1NPCOR_PLUS_UNCOR1up	0.14291
MUON_EFF_STAT1down	-0.23046
MUON_EFF_STAT1up	0.23046
MUON_EFF_SYS1down	-0.439572
MUON_EFF_SYS1up	0.440034
MUON_ID1down	-0.050929
MUON_ID1up	-0.0265046
MUON_ISO_STAT1down	-0.0484389
MUON_ISO_STAT1up	0.0484395
MUON_IS O_S YS1down	-0.100503
MUON_ISO_SYS1up	0.100502
MUON_MS1down	-0.0613195
MUON_MS1up	-0.00824064
MUON_S AGITTA_RES BIAS1 down	0
MUON_SAGITTA_RESBIAS1up	0
MUON_SAGITTA_RHO1down	0
MUON_SAGITTA_RHO1up	0
MUON_SCALE1down	0.0181895
MUON_SCALE1up	-0.0112826
MUON_TTVA_STAT1down	-0.103894
MUON_TTVA_STAT1up	0.103894
MUON_TTVA_SYS1down	-0.0530074
MUON_TTVA_SYS1up	0.0530074
PH_EFF_ID_Uncertainty1down	-1.61819
PH_EFF_ID_Uncertainty1up	1.6315
PH_EFF_TRKISO_Uncertainty1down	-0.765879
PH_EFF_TRKISO_Uncertainty1up	0.769051
PH_Iso_DDonoff	0.0178505
PRW_DATAS F1down	1
	0.272447

Table 47: Systematic uncertainties for SM Higgs pair process in percent in one lepton region without $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variations
JET_BJES_Response_1up	-0.00634441
JET_BJES_Response_1down	0.00742968
JET_EffectiveNP_11up	1.47043
JET_EffectiveNP_11down	-1.35102
JET_EffectiveNP_21up	-0.382535
JET_EffectiveNP_21down	0.280547
JET_EffectiveNP_31up	0.076654
JET_EffectiveNP_31down	-0.0544159
JET_EffectiveNP_41up	-0.0256944
JET_EffectiveNP_41down	0.0320802
JET_EffectiveNP_51up	-0.0357717
JET_EffectiveNP_51down	0.0426226
JET_EffectiveNP_61up	0.102353
JET_EffectiveNP_61down	-0.0615842
JET_EffectiveNP_71up	-0.0567163
JET_EffectiveNP_71down	0.137102
JET_EffectiveNP_8restTerm1up	0.0382057
JET_EffectiveNP_8restTerm_1down	-0.0367334
JET_EtaIntercalibration_Modelling1up	0.658323
JET_EtaIntercalibration_Modelling1down	-0.485387
JET_EtaIntercalibration_NonClosure1up	-0.275345
JET_EtaIntercalibration_NonClosure1down	0.210464
JET_EtaIntercalibration_TotalStat1up	0.226605
JET_EtaIntercalibration_TotalStat1down	-0.312316
JET_Flavor_Composition1up	2.98393
JET_Flavor_Composition1down	-3.28335
JET_Flavor_Response1up	-0.982917
JET_Flavor_Response1down	0.920792
JET_JER_SINGLE_NP1up	-0.23153
JET_JvtEfficiency1down	-0.636952
JET_JvtEfficiency1up	0.640118
JET_Pileup_OffsetMu1up	-0.131008
JET_Pileup_OffsetMu_1down	0.151986
JET_Pileup_OffsetNPV1up	0.327895
JET_Pileup_OffsetNPV1down	-0.386444
JET_Pileup_PtTerm1up	0.0752004
JET_Pileup_PtTerm_1down	0.0128304
JET_Pileup_RhoTopology1up	2.05416
JET_Pileup_RhoTopology1down	-2.12867
JET_PunchThrough_MC151up	6.6676e-07
JET_PunchThrough_MC151down	1.59135e-07
JET_S ingleParticle_HighPt1up	0
JET_S ingleParticle_HighPt1down	0

Table 48: Systematic uncertainties for SM Higgs pair process in percent in one lepton region without $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variations
FT_EFF_Eigen_B_01down	-0.0532314
FT_EFF_Eigen_B_01up	0.0537035
FT_EFF_Eigen_B_11down	-0.0146869
FT_EFF_Eigen_B_11up	0.014721
FT_EFF_Eigen_B_21down	0.00851813
FT_EFF_Eigen_B_21up	-0.00855245
FT_EFF_Eigen_C_01down	-1.49871
FT_EFF_Eigen_C_01up	1.50474
FT_EFF_Eigen_C_11down	-0.0293429
FT_EFF_Eigen_C_11up	0.0293359
FT_EFF_Eigen_C_21down	0.0139937
FT_EFF_Eigen_C_21up	-0.0139421
FT_EFF_Eigen_C_31down	0.0469302
FT_EFF_Eigen_C_31up	-0.0469171
FT_EFF_Eigen_Light_01down	-0.287233
FT_EFF_Eigen_Light_01up	0.287862
FT_EFF_Eigen_Light_11down	0.0484868
FT_EFF_Eigen_Light_11up	-0.0484688
FT_EFF_Eigen_Light_21down	-0.00950244
FT_EFF_Eigen_Light_21up	0.00950951
FT_EFF_Eigen_Light_31down	0.00915347
FT_EFF_Eigen_Light_31up	-0.00915217
FT_EFF_Eigen_Light_41down	0.0345496
FT_EFF_Eigen_Light_41up	-0.0345427
FT_EFF_extrapolation1down	0.0154917
FT_EFF_extrapolation1up	-0.015497
$FT_EFF_extrapolation_from_charm_1down$	0.000400323
FT_EFF_extrapolation_from_charm1up	-0.000400322

Table 49: Systematic uncertainties for SM Higgs pair process in percent in one lepton region without $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variations
EL_EFF_ID_TOTAL_1NPCOR_PLUS_UNCOR_1down	-0.675097
EL_EFF_ID_TOTAL_1NPCOR_PLUS_UNCOR1up	0.675097
EL_EFF_Iso_TOTAL_1NPCOR_PLUS_UNCOR1down	-0.0340512
EL_EFF_Iso_TOTAL_1NPCOR_PLUS_UNCOR1up	0.0340511
EL_EFF_Reco_TOTAL_1NPCOR_PLUS_UNCOR1down	-0.211155
EL_EFF_Reco_TOTAL_1NPCOR_PLUS_UNCOR1up	0.211155
MUON_EFF_STAT1down	-0.357493
MUON_EFF_STAT1up	0.357493
MUON_EFF_SYS1down	-0.526677
MUON_EFF_SYS1up	0.526877
MUON_ID1down	-0.0117811
MUON_ID1up	0.218636
MUON_ISO_STAT1down	-0.0823346
MUON_ISO_STAT1up	0.0823355
MUON_IS O_S YS1down	-0.10736
MUON_IS O_S YS1up	0.107358
MUON_MS1down	0.146137
MUON_MS1up	-0.0591802
MUON_SAGITTA_RESBIAS1down	0
MUON_SAGITTA_RES BIAS1up	0
MUON_SAGITTA_RHO1down	0
MUON_SAGITTA_RHO1up	0
MUON_SCALE1down	0.151976
MUON_SCALE1up	-0.044551
MUON_TTVA_STAT1down	-0.154042
MUON_TTVA_STAT1up	0.154042
MUON_TTVA_SYS1down	-0.0595999
MUON_TTVA_SYS1up	0.0595998
PH_EFF_ID_Uncertainty1down	-1.44218
PH_EFF_ID_Uncertainty1up	1.45227
PH_EFF_TRKISO_Uncertainty1down	-0.745629
PH_EFF_TRKISO_Uncertainty1up	0.748551
PH_Iso_DDonoff	0.0364698
PRW_DATAS F1down	0.581876
PRW_DATAS F1up	-0.846425

Table 50: Systematic uncertainties for $m_H = 260$ GeV in percent in one lepton region without $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variations
JET_BJES_Response1up	0.0364481
JET_BJES_Response_1down	0.0298853
JET_EffectiveNP_11up	3.90888
JET_EffectiveNP_11down	-2.81555
JET_EffectiveNP_21up	-1.01169
JET_EffectiveNP_21down	0.885465
JET_EffectiveNP_31up	0.0867493
JET_EffectiveNP_31down	-0.276057
JET_EffectiveNP_41up	-0.140511
JET_EffectiveNP_41down	0.115769
JET_EffectiveNP_51up	-0.0796343
JET_EffectiveNP_51down	0.111172
JET_EffectiveNP_61up	0.131941
JET_EffectiveNP_61down	-0.238467
JET_EffectiveNP_71up	-0.318684
JET_EffectiveNP_71down	0.155867
JET_EffectiveNP_8restTerm1up	0.108097
JET_EffectiveNP_8restTerm1down	-0.116121
JET_EtaIntercalibration_Modelling1up	1.66683
JET_EtaIntercalibration_Modelling1down	-1.48712
JET_EtaIntercalibration_NonClosure1up	-0.593932
JET_EtaIntercalibration_NonClosure1down	0.459304
JET_EtaIntercalibration_TotalStat1up	0.746444
JET_EtaIntercalibration_TotalStat1down	-0.914741
JET_Flavor_Composition1up	7.67199
JET_Flavor_Composition1down	-6.94799
JET_Flavor_Response1up	-2.07578
JET_Flavor_Response1down	2.67387
JET_JER_SINGLE_NP1up	1.4945
JET_JvtEfficiency_1down	-0.812107
JET_JvtEfficiency1up	0.816614
JET_Pileup_OffsetMu1up	-0.232676
JET_Pileup_OffsetMu_1down	0.0576072
JET_Pileup_OffsetNPV1up	0.982825
JET_Pileup_OffsetNPV_1down	-0.229665
JET_Pileup_PtTerm1up	0.107061
JET_Pileup_PtTerm1down	-0.0323359
JET_Pileup_RhoTopology1up	5.07353
JET_Pileup_RhoTopology1down	-3.97922
JET_PunchThrough_MC151up	-7.99705e-07
JET_PunchThrough_MC151down	-5.90278e-06
JET_S ingleParticle_HighPt1up	0
JET_S ingleParticle_HighPt1down	0

Table 51: Systematic uncertainties for $m_H = 260$ GeV in percent in one lepton region without $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variations
FT_EFF_Eigen_B_01down	-0.0879983
FT_EFF_Eigen_B_01up	0.0880971
FT_EFF_Eigen_B_11down	-0.00363612
FT_EFF_Eigen_B_11up	0.00363082
FT_EFF_Eigen_B_21down	0.0115458
FT_EFF_Eigen_B_21up	-0.0115437
FT_EFF_Eigen_C_01down	-1.00556
FT_EFF_Eigen_C_01up	1.00861
FT_EFF_Eigen_C_11down	0.275929
FT_EFF_Eigen_C_11up	-0.275868
FT_EFF_Eigen_C_21down	-0.0328963
FT_EFF_Eigen_C_21up	0.0329065
FT_EFF_Eigen_C_31down	0.0675572
FT_EFF_Eigen_C_31up	-0.0675511
FT_EFF_Eigen_Light_01down	-0.300506
FT_EFF_Eigen_Light_01up	0.301124
FT_EFF_Eigen_Light_11down	0.0595976
FT_EFF_Eigen_Light_11up	-0.0595734
FT_EFF_Eigen_Light_21down	-0.0408728
FT_EFF_Eigen_Light_21up	0.0408841
FT_EFF_Eigen_Light_31down	0.0194861
FT_EFF_Eigen_Light_31up	-0.0194826
FT_EFF_Eigen_Light_41down	0.00791545
FT_EFF_Eigen_Light_41up	-0.00791426
FT_EFF_extrapolation1down	0.000959514
FT_EFF_extrapolation1up	-0.00095951
FT_EFF_extrapolation_from_charm1down	0.000281282
FT_EFF_extrapolation_from_charm1up	-0.000281283

Table 52: Systematic uncertainties for $m_H = 260$ GeV in percent in one lepton region without $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variations
EL_EFF_ID_TOTAL_1NPCOR_PLUS_UNCOR1down	-0.598587
EL_EFF_ID_TOTAL_1NPCOR_PLUS_UNCOR_1up	0.598586
EL_EFF_Iso_TOTAL_1NPCOR_PLUS_UNCOR1down	-0.0346488
EL_EFF_Iso_TOTAL_1NPCOR_PLUS_UNCOR1up	0.0346487
EL_EFF_Reco_TOTAL_1NPCOR_PLUS_UNCOR1down	-0.178384
EL_EFF_Reco_TOTAL_1NPCOR_PLUS_UNCOR1up	0.178383
MUON_EFF_STAT1down	-0.311864
MUON_EFF_STAT1up	0.311864
MUON_EFF_SYS1down	-0.494398
MUON_EFF_SYS1up	0.494666
MUON_ID1down	0.0558797
MUON_ID1up	-0.0513436
MUON_IS O_S TAT1 down	-0.0697496
MUON_ISO_STAT1up	0.0697505
MUON_IS O_S YS1down	-0.107505
MUON_IS O_S YS1up	0.107503
MUON_MS1down	0.0522322
MUON_MS1up	0.0337712
MUON_SAGITTA_RESBIAS1down	0
MUON_SAGITTA_RESBIAS1up	0
MUON_SAGITTA_RHO1down	0
MUON_SAGITTA_RHO1up	0
MUON_SCALE1down	-0.000712263
MUON_SCALE1up	0.0763127
MUON_TTVA_STAT1down	-0.137214
MUON_TTVA_STAT1up	0.137214
MUON_TTVA_SYS1down	-0.0588281
MUON_TTVA_SYS1up	0.058828
PH_EFF_ID_Uncertainty1down	-1.4338
PH_EFF_ID_Uncertainty1up	1.44397
PH_EFF_TRKISO_Uncertainty1down	-0.736472
PH_EFF_TRKISO_Uncertainty1up	0.73942
PH_Iso_DDonoff	0.1021
PRW_DATAS F1down	-0.491422
PRW_DATAS F1up	0.848256

Table 53: Systematic uncertainties for $m_H = 300$ GeV in percent in one lepton region without $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variations
JET_BJES_Response1up	0.0421141
JET_BJES_Response_1down	0.000190441
JET_EffectiveNP_11up	2.45987
JET_EffectiveNP_11down	-2.46367
JET_EffectiveNP_21up	-0.493623
JET_EffectiveNP_21down	0.790901
JET_EffectiveNP_31up	0.0550125
JET_EffectiveNP_31down	-0.0746209
JET_EffectiveNP_41up	-0.0382735
JET_EffectiveNP_41down	-0.0255607
JET_EffectiveNP_51up	-0.000960952
JET_EffectiveNP_51down	-0.00316738
JET_EffectiveNP_61up	0.0719043
JET_EffectiveNP_61down	-0.08383
JET_EffectiveNP_71up	-0.11911
JET_EffectiveNP_71down	0.0918789
JET_EffectiveNP_8restTerm1up	-0.0229668
JET_EffectiveNP_8restTerm1down	-0.0117085
JET_EtaIntercalibration_Modelling1up	0.828874
JET_EtaIntercalibration_Modelling1down	-0.760503
JET_EtaIntercalibration_NonClosure1up	-0.316261
JET_EtaIntercalibration_NonClosure1down	0.209625
JET_EtaIntercalibration_TotalS tat1up	0.592365
JET_EtaIntercalibration_TotalStat1down	-0.37779
JET_Flavor_Composition1up	5.00248
JET_Flavor_Composition1down	-5.61561
JET_Flavor_Response1up	-1.48493
JET_Flavor_Response1down	1.56974
JET_JER_SINGLE_NP1up	-0.228524
JET_JvtEfficiency_1down	-0.766822
JET_JvtEfficiency1up	0.771121
JET_Pileup_OffsetMu1up	-0.0958275
JET_Pileup_OffsetMu_1down	0.160604
JET_Pileup_OffsetNPV1up	0.600908
JET_Pileup_OffsetNPV_1down	-0.214525
JET_Pileup_PtTerm1up	-0.00156443
JET_Pileup_PtTerm1down	-0.0104321
JET_Pileup_RhoTopology1up	3.50705
JET_Pileup_RhoTopology1down	-3.87193
JET_PunchThrough_MC151up	8.09011e-05
JET_PunchThrough_MC151down	8.0908e-05
JET_S ingleParticle_HighPt1up	8.09055e-05
JET_S ingleParticle_HighPt1down	8.09055e-05

Table 54: Systematic uncertainties for $m_H = 300$ GeV in percent in one lepton region without $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variations
FT_EFF_Eigen_B_01down	-0.0553237
FT_EFF_Eigen_B_01up	0.056147
FT_EFF_Eigen_B_11down	-0.00842724
FT_EFF_Eigen_B_11up	0.00859039
FT_EFF_Eigen_B_21down	0.00826442
FT_EFF_Eigen_B_21up	-0.00810305
FT_EFF_Eigen_C_01down	-1.16152
FT_EFF_Eigen_C_01up	1.16588
FT_EFF_Eigen_C_11down	0.25652
FT_EFF_Eigen_C_11up	-0.256384
FT_EFF_Eigen_C_21down	0.00200085
FT_EFF_Eigen_C_21up	-0.00187498
FT_EFF_Eigen_C_31down	0.0672032
FT_EFF_Eigen_C_31up	-0.0670332
FT_EFF_Eigen_Light_01down	-0.29042
FT_EFF_Eigen_Light_01up	0.291187
FT_EFF_Eigen_Light_11down	0.0575667
FT_EFF_Eigen_Light_11up	-0.0573813
FT_EFF_Eigen_Light_21down	-0.0363534
FT_EFF_Eigen_Light_21up	0.0365251
FT_EFF_Eigen_Light_31down	0.0163624
FT_EFF_Eigen_Light_31up	-0.0161963
FT_EFF_Eigen_Light_41down	0.0168745
FT_EFF_Eigen_Light_41up	-0.0167099
FT_EFF_extrapolation1down	0.00137358
FT_EFF_extrapolation1up	-0.00121176
$FT_EFF_extrapolation_from_charm_1down$	0.000246475
FT_EFF_extrapolation_from_charm1up	-8.46635e-05

Table 55: Systematic uncertainties for $m_H = 300$ GeV in percent in one lepton region without $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variations
EL_EFF_ID_TOTAL_1NPCOR_PLUS_UNCOR1down	-0.468124
EL_EFF_ID_TOTAL_1NPCOR_PLUS_UNCOR1up	0.468123
EL_EFF_Iso_TOTAL_1NPCOR_PLUS_UNCOR1down	-0.159928
EL_EFF_Iso_TOTAL_1NPCOR_PLUS_UNCOR1up	0.159928
EL_EFF_Reco_TOTAL_1NPCOR_PLUS_UNCOR1down	-0.12334
EL_EFF_Reco_TOTAL_1NPCOR_PLUS_UNCOR1up	0.123339
MUON_EFF_STAT1down	-0.104575
MUON_EFF_STAT1up	0.104574
MUON_EFF_SYS1down	-0.364745
MUON_EFF_SYS1up	0.365491
MUON_ID1down	2.38855e-05
MUON_ID1up	2.95481e-05
MUON_IS O_S TAT1 down	-0.0389071
MUON_IS O_STAT1up	0.0389073
MUON_IS O_S YS1down	-0.110032
MUON_IS O_S YS1up	0.110031
MUON_MS1down	3.27003e-05
MUON_MS1up	0.000171115
MUON_SAGITTA_RESBIAS1down	0
MUON_SAGITTA_RESBIAS1up	0
MUON_SAGITTA_RHO1down	0
MUON_SAGITTA_RHO1up	0
MUON_SCALE1down	0.000203282
MUON_SCALE1up	0.000162128
MUON_TTVA_STAT1down	-0.0810245
MUON_TTVA_STAT1up	0.0810246
MUON_TTVA_SYS1down	-0.0483897
MUON_TTVA_SYS1up	0.0483898
PH_EFF_ID_Uncertainty1down	-1.69952
PH_EFF_ID_Uncertainty1up	1.71528
PH_EFF_TRKISO_Uncertainty1down	-0.798445
PH_EFF_TRKISO_Uncertainty1up	0.801916
PH_Iso_DDonoff	0
PRW_DATAS F1down	0.899056
PRW_DATAS F1up	1.45491

Table 56: Systematic uncertainties for *tth* in percent in one lepton region with $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variation
JET_BJES_Response_1up	0.116704
JET_BJES_Response1down	1.02055
JET_EffectiveNP_11up	0.0260266
JET_EffectiveNP_11down	1.12423
JET_EffectiveNP_21up	0.554732
JET_EffectiveNP_21down	-0.0121425
JET_EffectiveNP_31up	-0.0097391
JET_EffectiveNP_31down	0.190938
JET_EffectiveNP_41up	0.181098
JET_EffectiveNP_41down	-0.00650626
JET_EffectiveNP_51up	0.17517
JET_EffectiveNP_51down	0.00552037
JET_EffectiveNP_61up	0.00573145
JET_EffectiveNP_61down	0.177531
JET_EffectiveNP_71up	0.177666
JET_EffectiveNP_71down	-0.00470705
JET_EffectiveNP_8restTerm_1up	0.0082096
JET_EffectiveNP_8restTerm_1down	0.1718
JET_EtaIntercalibration_Modelling1up	0.147767
JET_EtaIntercalibration_Modelling1down	0.279977
JET_EtaIntercalibration_NonClosure1up	0.297457
JET_EtaIntercalibration_NonClosure1down	0.199687
JET_EtaIntercalibration_TotalS tat1up	0.124901
JET_EtaIntercalibration_TotalStat1down	0.531413
JET_Flavor_Composition_1up	-0.210492
JET_Flavor_Composition_1down	-0.257702
JET_Flavor_Response1up	-0.188936
JET_Flavor_Response_1down	-0.00456546
JET_JER_SINGLE_NP1up	0.148948
JET_JvtEfficiency_1down	-0.611652
JET_JvtEfficiencu_1up	0.614949
JET_Pileup_OffsetMu_1up	0.365325
JET_Pileup_OffsetMu_1down	0.00619168
JET_Pileup_OffsetNPV 1up	0.980268
JET_Pileup_OffsetNPV_1down	0.292719
JET_Pileup_PtTerm_1up	0.0248392
JET_Pileup_PtTerm_1down	-0.0196737
JET_Pileup_RhoTopoloau_1up	-0.9715
JET_Pileup_RhoTopoloau_1down	1.68904
JET_PunchThrouah_MC151up	-1.17779e-05
JET_PunchThrough_MC15 1down	1.19382e-05
JET_S inaleParticle_HiahPt1up	0
IET Single Dantiele High Dt 1 down	ů ů

Table 57: Systematic uncertainties for *tth* in percent in one lepton region with $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variations
FT_EFF_Eigen_B_01down	-7.50226
FT_EFF_Eigen_B_01up	7.78766
FT_EFF_Eigen_B_11down	-3.80002
FT_EFF_Eigen_B_11up	3.86351
FT_EFF_Eigen_B_21down	1.1075
FT_EFF_Eigen_B_21up	-1.0957
FT_EFF_Eigen_C_01down	-1.54641
FT_EFF_Eigen_C_01up	1.55049
FT_EFF_Eigen_C_11down	-0.401379
FT_EFF_Eigen_C_11up	0.401753
FT_EFF_Eigen_C_21down	-0.0952325
FT_EFF_Eigen_C_21up	0.0952413
FT_EFF_Eigen_C_31down	0.0809451
FT_EFF_Eigen_C_31up	-0.0809383
FT_EFF_Eigen_Light_01down	-0.264276
FT_EFF_Eigen_Light_01up	0.264882
FT_EFF_Eigen_Light_11down	0.0310648
FT_EFF_Eigen_Light_11up	-0.0310573
FT_EFF_Eigen_Light_21down	0.0127531
FT_EFF_Eigen_Light_21up	-0.0127529
FT_EFF_Eigen_Light_31down	-0.0109577
FT_EFF_Eigen_Light_31up	0.0109615
FT_EFF_Eigen_Light_41down	0.0413153
FT_EFF_Eigen_Light_41up	-0.0412986
FT_EFF_extrapolation_1down	0.438676
FT_EFF_extrapolation1up	-0.432021
FT_EFF_extrapolation_from_charm1down	0.0203165
FT_EFF_extrapolation_from_charm1up	-0.0203165

Table 58: Systematic uncertainties for *tth* in percent in one lepton region with $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variations
EL_EFF_ID_TOTAL_1NPCOR_PLUS_UNCOR1down	-0.459169
EL_EFF_ID_TOTAL_1NPCOR_PLUS_UNCOR1up	0.459169
EL_EFF_Iso_TOTAL_1NPCOR_PLUS_UNCOR1down	-0.192462
EL_EFF_Iso_TOTAL_1NPCOR_PLUS_UNCOR1up	0.192461
EL_EFF_Reco_TOTAL_1NPCOR_PLUS_UNCOR1down	-0.115181
EL_EFF_Reco_TOTAL_1NPCOR_PLUS_UNCOR1up	0.115181
MUON_EFF_STAT1down	-0.40472
MUON_EFF_STAT1up	0.40472
MUON_EFF_SYS1down	-0.67767
MUON_EFF_SYS1up	0.678804
MUON_ID1down	0.000681681
MUON_ID1up	0.000187764
MUON_IS O_S TAT1 down	-0.0298554
MUON_IS O_STAT1up	0.0298552
MUON_IS O_S YS1down	-0.103595
MUON_IS O_S YS1up	0.103594
MUON_MS1down	0.153027
MUON_MS1up	6.65609e-07
MUON_SAGITTA_RESBIAS1down	0
MUON_SAGITTA_RESBIAS1up	0
MUON_SAGITTA_RHO1down	0
MUON_SAGITTA_RHO1up	0
MUON_SCALE1down	0.000502843
MUON_SCALE1up	0
MUON_TTVA_STAT1down	-0.0714486
MUON_TTVA_STAT1up	0.0714487
MUON_TTVA_SYS1down	-0.0444063
MUON_TTVA_SYS1up	0.0444063
PH_EFF_ID_Uncertainty1down	-1.68313
PH_EFF_ID_Uncertainty1up	1.69783
PH_EFF_TRKISO_Uncertainty1down	-0.832118
PH_EFF_TRKISO_Uncertainty1up	0.835942
PH_Iso_DDonoff	0.0707
PRW_DATAS F1down	0.19209
PRW_DATAS F1up	1.50642

Table 59: Systematic uncertainties for *Wh* in percent in one lepton region with $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variations
JET_BJES_Response_1up	-0.000739321
JET_BJES_Response_1down	0.000607054
JET_EffectiveNP_11up	2.44203
JET_EffectiveNP_11down	-1.59259
JET_EffectiveNP_21up	-0.357732
JET_EffectiveNP_21down	0.612856
JET_EffectiveNP_31up	0.256942
JET_EffectiveNP_31down	-0.243125
JET_EffectiveNP_41up	-0.240448
JET_EffectiveNP_41down	-0.00102691
JET_EffectiveNP_51up	-0.246931
JET_EffectiveNP_51down	0.00476418
JET_EffectiveNP_61up	0.257532
JET_EffectiveNP_61down	-0.246549
JET_EffectiveNP_71up	-0.241363
JET_EffectiveNP_71down	0.250735
JET_EffectiveNP_8restTerm_1up	0.0025712
JET_EffectiveNP_8restTerm1down	-0.246587
JET_EtaIntercalibration_Modelling1up	0.268124
JET_EtaIntercalibration_Modelling1down	-0.879592
JET_EtaIntercalibration_NonClosure1up	-0.237776
JET_EtaIntercalibration_NonClosure1down	0.0358525
JET_EtaIntercalibration_TotalStat1up	0.307637
JET_EtaIntercalibration_TotalStat1down	-0.36696
JET_Flavor_Composition1up	7.00842
JET_Flavor_Composition_1down	-5.13212
JET_Flavor_Response1up	-1.04271
JET_Flavor_Response1down	1.17845
JET_JER_SINGLE_NP1up	5.95771
JET_JvtEfficiency_1down	-0.503824
JET_JvtEfficiency1up	0.505436
JET_Pileup_OffsetMu1up	-0.315455
JET_Pileup_OffsetMu_1down	-0.0646503
JET_Pileup_OffsetNPV1up	1.67684
JET_Pileup_OffsetNPV_1down	-0.0911143
JET_Pileup_PtTerm1up	0.0150916
JET_Pileup_PtTerm1down	-0.0110644
JET_Pileup_RhoTopology1up	4.11459
JET_Pileup_RhoTopology1down	-2.21226
JET_PunchThrough_MC151up	-4.32844e-07
JET_PunchThrough_MC151down	1.69772e-05
JET_SingleParticle_HighPt1up	0
JET_S ingleParticle_HighPt1down	0

Table 60: Systematic uncertainties for *Wh* in percent in one lepton region with $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variations
FT_EFF_Eigen_B_01down	-0.0928038
FT_EFF_Eigen_B_01up	0.0928037
FT_EFF_Eigen_B_11down	-0.0260989
FT_EFF_Eigen_B_11up	0.0260988
FT_EFF_Eigen_B_21down	5.94007e-05
FT_EFF_Eigen_B_21up	-5.94302e-05
FT_EFF_Eigen_C_01down	-0.572625
FT_EFF_Eigen_C_01up	0.576667
FT_EFF_Eigen_C_11down	-0.13346
FT_EFF_Eigen_C_11up	0.133559
$FT_EFF_Eigen_C_2_1down$	-0.0635219
FT_EFF_Eigen_C_21up	0.0634261
FT_EFF_Eigen_C_31down	0.039372
FT_EFF_Eigen_C_31up	-0.0393811
FT_EFF_Eigen_Light_01down	-0.283136
FT_EFF_Eigen_Light_01up	0.283668
FT_EFF_Eigen_Light_11down	0.0415218
FT_EFF_Eigen_Light_11up	-0.0415106
FT_EFF_Eigen_Light_21down	0.00112038
FT_EFF_Eigen_Light_21up	-0.00111277
FT_EFF_Eigen_Light_31down	0.00767927
FT_EFF_Eigen_Light_31up	-0.00767395
FT_EFF_Eigen_Light_41down	0.0261144
FT_EFF_Eigen_Light_41up	-0.0261089
FT_EFF_extrapolation1down	0.0205549
FT_EFF_extrapolation1up	-0.0205549
$FT_EFF_extrapolation_from_charm_1down$	0
FT_EFF_extrapolation_from_charm1up	0

Table 61: Systematic uncertainties for *Wh* in percent in one lepton region with $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variations
EL_EFF_ID_TOTAL_1NPCOR_PLUS_UNCOR_1down	-0.418701
EL_EFF_ID_TOTAL_1NPCOR_PLUS_UNCOR1up	0.418701
EL_EFF_Iso_TOTAL_1NPCOR_PLUS_UNCOR1down	-0.174594
EL_EFF_Iso_TOTAL_1NPCOR_PLUS_UNCOR1up	0.174593
EL_EFF_Reco_TOTAL_1NPCOR_PLUS_UNCOR1down	-0.123409
EL_EFF_Reco_TOTAL_1NPCOR_PLUS_UNCOR1up	0.123409
MUON_EFF_STAT1down	-0.101132
MUON_EFF_STAT1up	0.101132
MUON_EFF_SYS1down	-0.426728
MUON_EFF_SYS1up	0.428032
MUON_ID1down	-0.000382584
MUON_ID1up	-0.000456538
MUON_IS O_S TAT1 down	-0.0380428
MUON_IS O_STAT1up	0.0380425
MUON_IS O_S YS1down	-0.11216
MUON_IS O_S YS1up	0.11216
MUON_MS1down	-0.000272997
MUON_MS1up	-9.55645e-05
MUON_SAGITTA_RESBIAS1down	0
MUON_SAGITTA_RESBIAS1up	0
MUON_SAGITTA_RHO1down	0
MUON_SAGITTA_RHO1up	0
MUON_SCALE1down	0
MUON_SCALE1up	0
MUON_TTVA_STAT1down	-0.0787769
MUON_TTVA_STAT1up	0.0787766
MUON_TTVA_SYS1down	-0.055877
MUON_TTVA_SYS1up	0.0558768
PH_EFF_ID_Uncertainty1down	-1.6994
PH_EFF_ID_Uncertainty1up	1.71404
PH_EFF_TRKISO_Uncertainty1down	-0.81872
PH_EFF_TRKISO_Uncertainty1up	0.822643
PH_Iso_DDonoff	0
PRW_DATAS F1down	-0.390702
PRW_DATAS F1up	-0.562202

Table 62: Systematic uncertainties for *Zh* in percent in one lepton region with $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variations
JET_BJES_Response_1up	0.000910606
JET_BJES_Response1down	0.00131423
JET_EffectiveNP_11up	2.41145
JET_EffectiveNP_11down	-1.64196
JET_EffectiveNP_21up	-0.0603545
JET_EffectiveNP_21down	0.317473
JET_EffectiveNP_31up	0.0779391
JET_EffectiveNP_31down	-0.000160185
JET_EffectiveNP_41up	-8.70834e-05
JET_EffectiveNP_41down	0.0764308
JET_EffectiveNP_51up	-0.0022544
JET_EffectiveNP_51down	0.0798774
JET_EffectiveNP_61up	0.067637
JET_EffectiveNP_61down	-0.000194322
JET_EffectiveNP_71up	-4.56486e-05
JET_EffectiveNP_71down	0.0588003
JET_EffectiveNP_8restTerm1up	0.0797736
JET_EffectiveNP_8restTerm_1down	-0.00213968
JET_EtaIntercalibration_Modelling1up	0.666787
JET_EtaIntercalibration_Modelling1down	-0.149423
JET_EtaIntercalibration_NonClosure1up	-0.00663997
JET_EtaIntercalibration_NonClosure1down	0.393235
JET_EtaIntercalibration_TotalStat1up	0.0665094
JET_EtaIntercalibration_TotalStat1down	-0.0115115
JET_Flavor_Composition1up	5.46873
JET_Flavor_Composition1down	-4.25065
JET_Flavor_Response1up	-0.479069
JET_Flavor_Response_1down	1.09514
JET_JER_SINGLE_NP1up	1.97601
JET_JvtEfficiencu_1down	-0.495114
JET_JvtEfficiencu_1up	0.496769
JET Pileup OffsetMu lup	0.0780539
JET Pileup OffsetMu 1down	0.101962
JET Pileup OffsetNPV 1up	0.332277
JET_Pileup_OffsetNPV_1down	-0.617625
JET_Pileup_PtTerm1up	0.131809
JET_Pileup_PtTerm_1down	-0.0103645
JET_Pileup_RhoTopoloau_1up	3,46397
JET_Pileup_RhoTopoloau 1down	-2.22175
JET_PunchThrough MC15 1up	-3.94491e-05
JET_PunchThrough MC15 1down	0
JET_SinaleParticle HighPt 1un	0
IET Single Dantiele High Leinp	ů ů

Table 63: Systematic uncertainties for *Zh* in percent in one lepton region with $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variations
FT_EFF_Eigen_B_01down	-0.241225
FT_EFF_Eigen_B_01up	0.241225
FT_EFF_Eigen_B_11down	-0.119394
FT_EFF_Eigen_B_11up	0.119394
FT_EFF_Eigen_B_21down	0.0442263
FT_EFF_Eigen_B_21up	-0.0442262
FT_EFF_Eigen_C_01down	-0.624151
FT_EFF_Eigen_C_01up	0.629149
FT_EFF_Eigen_C_11down	-0.0528085
FT_EFF_Eigen_C_11up	0.0534747
FT_EFF_Eigen_C_21down	-0.0253924
FT_EFF_Eigen_C_21up	0.0255068
FT_EFF_Eigen_C_31down	0.0293245
FT_EFF_Eigen_C_31up	-0.0292885
FT_EFF_Eigen_Light_01down	-0.256349
FT_EFF_Eigen_Light_01up	0.256777
FT_EFF_Eigen_Light_11down	0.0348109
FT_EFF_Eigen_Light_11up	-0.0348036
FT_EFF_Eigen_Light_21down	0.0107007
FT_EFF_Eigen_Light_21up	-0.0106896
FT_EFF_Eigen_Light_31down	0.0113036
FT_EFF_Eigen_Light_31up	-0.0113024
FT_EFF_Eigen_Light_41down	0.0217286
FT_EFF_Eigen_Light_41up	-0.0217252
FT_EFF_extrapolation_1down	0.0137011
FT_EFF_extrapolation1up	-0.0137011
$FT_EFF_extrapolation_from_charm_1down$	0.0944637
FT_EFF_extrapolation_from_charm1up	-0.0944267

Table 64: Systematic uncertainties for *Zh* in percent in one lepton region with $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variations
EL_EFF_ID_TOTAL_1NPCOR_PLUS_UNCOR_1down	-0.639214
EL_EFF_ID_TOTAL_1NPCOR_PLUS_UNCOR_1up	0.639214
EL_EFF_Iso_TOTAL_1NPCOR_PLUS_UNCOR1down	-0.0309921
EL_EFF_Iso_TOTAL_1NPCOR_PLUS_UNCOR1up	0.0309922
EL_EFF_Reco_TOTAL_1NPCOR_PLUS_UNCOR1down	-0.19099
EL_EFF_Reco_TOTAL_1NPCOR_PLUS_UNCOR1up	0.190991
MUON_EFF_STAT1down	-0.00405988
MUON_EFF_STAT1up	0.0040597
MUON_EFF_SYS1down	-0.0155657
MUON_EFF_SYS1up	0.0155741
MUON_ID1down	0
MUON_ID1up	0
MUON_IS O_S TAT1 down	-0.218406
MUON_IS O_STAT1up	0.218405
MUON_IS O_S YS1down	-0.114691
MUON_IS O_S YS1up	0.114688
MUON_MS1down	0
MUON_MS1up	0
MUON_SAGITTA_RESBIAS1down	0
MUON_SAGITTA_RESBIAS1up	0
MUON_SAGITTA_RHO1down	0
MUON_SAGITTA_RHO1up	0
MUON_SCALE1down	0
MUON_SCALE1up	0
MUON_TTVA_STAT1down	-0.311455
MUON_TTVA_STAT1up	0.311456
MUON_TTVA_SYS1down	-0.146917
MUON_TTVA_SYS1up	0.146917
PH_EFF_ID_Uncertainty1down	-1.42756
PH_EFF_ID_Uncertainty1up	1.43949
PH_EFF_TRKISO_Uncertainty1down	-0.702767
PH_EFF_TRKISO_Uncertainty1up	0.705647
PH_Iso_DDonoff	3.36629
PRW_DATAS F1down	-5.24319
PRW_DATAS F1up	0.42167

Table 65: Systematic uncertainties for *VBF* in percent in one lepton region with $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variations
JET_BJES_Response1up	-0.000460298
JET_BJES_Response_1down	-0.000388933
JET_EffectiveNP_11up	1.22385
JET_EffectiveNP_11down	0.168464
JET_EffectiveNP_21up	0.169763
JET_EffectiveNP_21down	0.000237186
JET_EffectiveNP_31up	-0.000877919
JET_EffectiveNP_31down	0.0720759
JET_EffectiveNP_41up	0.0723827
JET_EffectiveNP_41down	-0.000923619
JET_EffectiveNP_51up	0.0710834
JET_EffectiveNP_51down	0.000153569
JET_EffectiveNP_61up	-1.56119e-05
JET_EffectiveNP_61down	0.072288
JET_EffectiveNP_71up	0.0722906
JET_EffectiveNP_71down	-4.35122e-05
JET_EffectiveNP_8restTerm_1up	-7.69105e-05
JET_EffectiveNP_8restTerm_1down	0.0723504
JET_EtaIntercalibration_Modelling1up	0.0240121
JET_EtaIntercalibration_Modelling_1down	0.0709149
JET_EtaIntercalibration_NonClosure1up	0.169917
JET_EtaIntercalibration_NonClosure1down	-0.00107816
JET_EtaIntercalibration_TotalStat1up	-0.0024083
JET_EtaIntercalibration_TotalStat1down	0.168846
JET_Flavor_Composition1up	1.64423
JET_Flavor_Composition_1down	-1.84326
JET_Flavor_Response1up	0.167798
JET_Flavor_Response1down	1.23455
JET_JER_SINGLE_NP1up	-1.56317
JET_JvtEfficiency1down	-0.262794
JET_JvtEfficiency_1up	0.263482
JET_Pileup_OffsetMu1up	0.169375
JET_Pileup_OffsetMu_1down	-0.000255894
JET_Pileup_OffsetNPV1up	0.0954956
JET_Pileup_OffsetNPV_1down	0.0717925
JET_Pileup_PtTerm1up	-0.00386056
JET_Pileup_PtTerm1down	0.000362053
JET_Pileup_RhoTopology1up	1.63797
JET_Pileup_RhoTopology1down	1.51901
JET_PunchThrough_MC151up	0
JET_PunchThrough_MC151down	0
JET_S ingleParticle_HighPt1up	0
IET SinaleParticle HighPt 1down	0

Table 66: Systematic uncertainties for *VBF* in percent in one lepton region with $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variations
FT_EFF_Eigen_B_01down	-0.0939438
FT_EFF_Eigen_B_01up	0.0939438
FT_EFF_Eigen_B_11down	-0.0364713
FT_EFF_Eigen_B_11up	0.0364715
FT_EFF_Eigen_B_21down	0.0432793
FT_EFF_Eigen_B_21up	-0.0432791
FT_EFF_Eigen_C_01down	-1.46633
FT_EFF_Eigen_C_01up	1.46633
FT_EFF_Eigen_C_11down	-0.736363
FT_EFF_Eigen_C_11up	0.736362
FT_EFF_Eigen_C_21down	-0.242816
FT_EFF_Eigen_C_21up	0.242815
FT_EFF_Eigen_C_31down	0.121098
FT_EFF_Eigen_C_31up	-0.121099
FT_EFF_Eigen_Light_01down	-0.254672
FT_EFF_Eigen_Light_01up	0.255253
FT_EFF_Eigen_Light_11down	0.0278527
FT_EFF_Eigen_Light_11up	-0.0278425
FT_EFF_Eigen_Light_21down	0.0450465
FT_EFF_Eigen_Light_21up	-0.0450268
FT_EFF_Eigen_Light_31down	0.00750237
FT_EFF_Eigen_Light_31up	-0.00751386
FT_EFF_Eigen_Light_41down	0.0476708
FT_EFF_Eigen_Light_41up	-0.0476636
FT_EFF_extrapolation_1down	0.0764353
FT_EFF_extrapolation1up	-0.0764362
$FT_EFF_extrapolation_from_charm_1down$	0
FT_EFF_extrapolation_from_charm1up	0

Table 67: Systematic uncertainties for *VBF* in percent in one lepton region with $p_T(\gamma\gamma)$ cut applied.
Uncertainty Source	Relative Variations
EL_EFF_ID_TOTAL_1NPCOR_PLUS_UNCOR1down	-0.60799
EL_EFF_ID_TOTAL_1NPCOR_PLUS_UNCOR1up	0.60799
EL_EFF_Iso_TOTAL_1NPCOR_PLUS_UNCOR1down	-0.0254989
EL_EFF_Iso_TOTAL_1NPCOR_PLUS_UNCOR1up	0.0254987
EL_EFF_Reco_TOTAL_1NPCOR_PLUS_UNCOR1down	-0.19046
EL_EFF_Reco_TOTAL_1NPCOR_PLUS_UNCOR1up	0.19046
MUON_EFF_STAT1down	-2.85462
MUON_EFF_STAT1up	2.85462
MUON_EFF_SYS1down	-2.85205
MUON_EFF_SYS1up	2.85206
MUON_ID1down	0
MUON_ID1up	0
MUON_IS O_S TAT1 down	-0.278197
MUON_IS O_S TAT1up	0.278198
MUON_IS O_S YS1down	-0.149599
MUON_IS O_S YS1up	0.149595
MUON_MS1down	0
MUON_MS1up	0
MUON_SAGITTA_RESBIAS1down	0
MUON_SAGITTA_RESBIAS1up	0
MUON_SAGITTA_RHO1down	0
MUON_SAGITTA_RHO1up	0
MUON_SCALE1down	0
MUON_SCALE1up	0
MUON_TTVA_STAT1down	-0.376134
MUON_TTVA_STAT1up	0.376133
MUON_TTVA_SYS1down	-0.133891
MUON_TTVA_SYS1up	0.133891
PH_EFF_ID_Uncertainty1down	-1.55657
PH_EFF_ID_Uncertainty1up	1.56905
PH_EFF_TRKISO_Uncertainty1down	-0.784634
PH_EFF_TRKISO_Uncertainty1up	0.787542
PH_Iso_DDonoff	0
PRW_DATAS F1down	-12.7763
PRW_DATAS F1 up	8.89083

Table 68: Systematic uncertainties for *ggh* in percent in one lepton region with $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variation
JET_BJES_Response1up	-0.00222905
JET_BJES_Response_1down	-0.00181181
JET_EffectiveNP_11up	1.07105
JET_EffectiveNP_11down	-2.84773
JET_EffectiveNP_21up	-0.000782694
JET_EffectiveNP_21down	0.0246472
JET_EffectiveNP_31up	0.000475847
JET_EffectiveNP_31down	-0.000758017
JET_EffectiveNP_41up	-0.000616538
JET_EffectiveNP_41down	0.000334241
JET_EffectiveNP_51up	-0.000235931
JET_EffectiveNP_51down	0.0243829
JET_EffectiveNP_61up	0.0243882
JET_EffectiveNP_61down	-0.000241805
JET_EffectiveNP_71up	-5.94215e-05
JET_EffectiveNP_71down	-0.000222222
JET_EffectiveNP_8restTerm_1up	-0.000264645
JET_EffectiveNP_8restTerm_1down	0.000187633
JET_EtaIntercalibration_Modelling1up	0.0355019
JET_EtaIntercalibration_Modelling1down	0.0714537
JET_EtaIntercalibration_NonClosure1up	-0.000260422
JET_EtaIntercalibration_NonClosure1down	0.000498856
JET_EtaIntercalibration_TotalStat1up	0.023908
JET_EtaIntercalibration_TotalStat1down	0.000372491
JET_Flavor_Composition_1up	1.20111
JET_Flavor_Composition_1down	-2.79488
JET_Flavor_Response1up	-0.000121379
JET_Flavor_Response_1down	0.0248079
JET_JER_SINGLE_NP1up	6.19854
JET_JvtEfficiencu_1down	-0.718937
JET_JvtEfficiencu_1up	0.72248
$JET_Pileup_OffsetMu_1up$	0.0240688
JET Pileup OffsetMu 1down	0.000270949
JET Pileup OffsetNPV 1up	0.0247192
JET_Pileup_OffsetNPV_1down	-0.006666664
JET_Pileup_PtTerm1up	0.00984033
JET_Pileup_PtTerm_1down	-0.00288961
JET_Pileup_RhoTopoloau_1up	1.13606
JET_Pileup_RhoTopoloau 1down	-2.8482
JET_PunchThrough MC15 1up	-2.67278e-07
JET_PunchThrough MC15 1down	0
JET_SinaleParticle HighPt 1un	Ő
IET Single Dantiale High Dt. 1 down	Ő

Table 69: Systematic uncertainties for *ggh* in percent in one lepton region with $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variations
FT_EFF_Eigen_B_01down	-0.471003
FT_EFF_Eigen_B_01up	0.490767
FT_EFF_Eigen_B_11down	-0.261286
FT_EFF_Eigen_B_11up	0.261155
FT_EFF_Eigen_B_21down	0.0814872
FT_EFF_Eigen_B_21up	-0.0813549
FT_EFF_Eigen_C_01down	-0.486122
FT_EFF_Eigen_C_01up	0.486121
FT_EFF_Eigen_C_11down	0.00218374
FT_EFF_Eigen_C_11up	-0.00218386
FT_EFF_Eigen_C_21down	-0.00577139
FT_EFF_Eigen_C_21up	0.00577166
FT_EFF_Eigen_C_31down	0.0272647
FT_EFF_Eigen_C_31up	-0.0272647
FT_EFF_Eigen_Light_01down	-0.277821
FT_EFF_Eigen_Light_01up	0.27834
FT_EFF_Eigen_Light_11down	0.0537676
FT_EFF_Eigen_Light_11up	-0.0537494
FT_EFF_Eigen_Light_21down	-0.0300917
FT_EFF_Eigen_Light_21up	0.0301266
FT_EFF_Eigen_Light_31down	0.00539182
FT_EFF_Eigen_Light_31up	-0.00539456
FT_EFF_Eigen_Light_41down	0.0343015
FT_EFF_Eigen_Light_41up	-0.0343045
FT_EFF_extrapolation1down	0
FT_EFF_extrapolation_1up	0
$FT_EFF_extrapolation_from_charm_1down$	0
FT_EFF_extrapolation_from_charm1up	0

Table 70: Systematic uncertainties for *ggh* in percent in one lepton region with $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variations
EL_EFF_ID_TOTAL_1NPCOR_PLUS_UNCOR1down	-0.505355
EL_EFF_ID_TOTAL_1NPCOR_PLUS_UNCOR_1up	0.505355
EL_EFF_Iso_TOTAL_1NPCOR_PLUS_UNCOR1down	-0.0784068
EL_EFF_Iso_TOTAL_1NPCOR_PLUS_UNCOR1up	0.0784067
EL_EFF_Reco_TOTAL_1NPCOR_PLUS_UNCOR1down	-0.138077
EL_EFF_Reco_TOTAL_1NPCOR_PLUS_UNCOR1up	0.138077
MUON_EFF_STAT1down	-0.175946
MUON_EFF_STAT1up	0.175946
MUON_EFF_SYS1down	-0.387872
MUON_EFF_SYS1up	0.388356
MUON_ID1down	-0.0525174
MUON_ID1up	-0.0253658
MUON_ISO_STAT1down	-0.0470025
MUON_ISO_STAT1up	0.0470031
MUON_IS O_S YS1down	-0.0996791
MUON_IS O_S YS1up	0.0996783
MUON_MS1down	-0.0677144
MUON_MS1up	-0.00923697
MUON_SAGITTA_RESBIAS1down	0
MUON_SAGITTA_RESBIAS1up	0
MUON_SAGITTA_RHO1down	0
MUON_SAGITTA_RHO1up	0
MUON_SCALE1down	0.0225287
MUON_SCALE1up	-0.0135795
MUON_TTVA_STAT1down	-0.0999376
MUON_TTVA_STAT1up	0.0999377
MUON_TTVA_SYS1down	-0.0530634
MUON_TTVA_SYS1up	0.0530634
PH_EFF_ID_Uncertainty1down	-1.65656
PH_EFF_ID_Uncertainty1up	1.67052
PH_EFF_TRKISO_Uncertainty1down	-0.763554
PH_EFF_TRKISO_Uncertainty1up	0.766694
PH_Iso_DDonoff	0.0112794
PRW_DATAS F1down	0.256718
PRW_DATAS F1up	0.731755

Table 71: Systematic uncertainties for SM Higgs pair process and non-resonance in percent in one lepton region with $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variations
JET_BJES_Response1up	-0.00759097
JET_BJES_Response_1down	0.0089667
JET_EffectiveNP_11up	1.36089
JET_EffectiveNP_11down	-1.3476
JET_EffectiveNP_21up	-0.387195
JET_EffectiveNP_21down	0.297416
JET_EffectiveNP_31up	0.114596
JET_EffectiveNP_31down	-0.0735244
JET_EffectiveNP_41up	-0.0339443
JET_EffectiveNP_41down	0.0409822
JET_EffectiveNP_51up	-0.0375898
JET_EffectiveNP_51down	0.0454598
JET_EffectiveNP_61up	0.144392
JET_EffectiveNP_61down	-0.0780871
JET_EffectiveNP_71up	-0.0702508
JET_EffectiveNP_71down	0.175436
JET_EffectiveNP_8restTerm1up	0.0463711
JET_EffectiveNP_8restTerm1down	-0.0391791
JET_EtaIntercalibration_Modelling1up	0.652042
$JET_EtaIntercalibration_Modelling__1down$	-0.459222
JET_EtaIntercalibration_NonClosure1up	-0.263326
JET_EtaIntercalibration_NonClosure1down	0.227977
JET_EtaIntercalibration_TotalStat1up	0.231746
JET_EtaIntercalibration_TotalStat1down	-0.331224
JET_Flavor_Composition1up	2.67167
JET_Flavor_Composition1down	-3.14401
JET_Flavor_Response1up	-0.97295
JET_Flavor_Response1down	0.935043
JET_JER_SINGLE_NP1up	-0.145704
JET_JvtEfficiency1down	-0.624419
JET_JvtEfficiency1up	0.627493
JET_Pileup_OffsetMu1up	-0.0988886
JET_Pileup_OffsetMu_1down	0.159764
JET_Pileup_OffsetNPV1up	0.332177
JET_Pileup_OffsetNPV_1down	-0.455123
JET_Pileup_PtTerm1up	0.0815124
JET_Pileup_PtTerm_1down	0.0203146
JET_Pileup_RhoTopology1up	1.83787
JET_Pileup_RhoTopology1down	-2.01654
JET_PunchThrough_MC151up	8.05837e-07
JET_PunchThrough_MC151down	1.91318e-07
JET_S ingleParticle_HighPt1up	0
JET_S ingleParticle_HighPt1down	0

Table 72: Systematic uncertainties for SM Higgs pair process and non-resonance in percent in one lepton region with $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variations
FT_EFF_Eigen_B_01down	-0.0554373
FT_EFF_Eigen_B_01up	0.0560018
FT_EFF_Eigen_B_11down	-0.013626
FT_EFF_Eigen_B_11up	0.0136629
FT_EFF_Eigen_B_21down	0.00867043
FT_EFF_Eigen_B_21up	-0.00871211
FT_EFF_Eigen_C_01down	-1.53481
FT_EFF_Eigen_C_01up	1.54148
FT_EFF_Eigen_C_11down	-0.0764143
FT_EFF_Eigen_C_11up	0.0764301
FT_EFF_Eigen_C_21down	0.0148855
FT_EFF_Eigen_C_21up	-0.0148213
FT_EFF_Eigen_C_31down	0.0461933
FT_EFF_Eigen_C_31up	-0.0461807
FT_EFF_Eigen_Light_01down	-0.285743
FT_EFF_Eigen_Light_01up	0.286368
FT_EFF_Eigen_Light_11down	0.0479819
FT_EFF_Eigen_Light_11up	-0.0479642
FT_EFF_Eigen_Light_21down	-0.00930993
FT_EFF_Eigen_Light_21up	0.00931658
FT_EFF_Eigen_Light_31down	0.00715863
FT_EFF_Eigen_Light_31up	-0.00715802
FT_EFF_Eigen_Light_41down	0.0363934
FT_EFF_Eigen_Light_41up	-0.0363863
FT_EFF_extrapolation1down	0.017995
FT_EFF_extrapolation1up	-0.0180014
$FT_EFF_extrapolation_from_charm_1down$	0.00023352
FT_EFF_extrapolation_from_charm1up	-0.00023352

Table 73: Systematic uncertainties for SM Higgs pair process and non-resonance in percent in one lepton region with $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variations
EL_EFF_ID_TOTAL_1NPCOR_PLUS_UNCOR_1down	-0.521683
EL_EFF_ID_TOTAL_1NPCOR_PLUS_UNCOR_1up	0.521683
EL_EFF_Iso_TOTAL_1NPCOR_PLUS_UNCOR1down	-0.0402073
EL_EFF_Iso_TOTAL_1NPCOR_PLUS_UNCOR1up	0.0402072
EL_EFF_Reco_TOTAL_1NPCOR_PLUS_UNCOR_1down	-0.15132
EL_EFF_Reco_TOTAL_1NPCOR_PLUS_UNCOR1up	0.15132
MUON_EFF_STAT1down	-0.278502
MUON_EFF_STAT1up	0.278502
MUON_EFF_SYS1down	-0.475652
MUON_EFF_SYS1up	0.47601
MUON_ID1down	-0.000213735
MUON_ID1up	0.00474942
MUON_IS O_STAT1down	-0.0564223
MUON_ISO_STAT1up	0.056423
MUON_IS O_S YS1down	-0.105738
MUON_IS O_S YS1up	0.105737
MUON_MS1down	-0.00745333
MUON_MS1up	-0.00058199
MUON_SAGITTA_RESBIAS1down	0
MUON_SAGITTA_RESBIAS1up	0
MUON_SAGITTA_RHO1down	0
MUON_SAGITTA_RHO1up	0
MUON_SCALE1down	0.000129398
MUON_SCALE1up	0.00171644
MUON_TTVA_STAT1down	-0.114587
MUON_TTVA_STAT1up	0.114587
MUON_TTVA_SYS1down	-0.0519702
MUON_TTVA_SYS1up	0.0519702
PH_EFF_ID_Uncertainty1down	-1.45643
PH_EFF_ID_Uncertainty1up	1.46732
PH_EFF_TRKISO_Uncertainty1down	-0.747316
PH_EFF_TRKISO_Uncertainty1up	0.750334
PH_Iso_DDonoff	0.0548131
PRW_DATAS F1down	-0.0417039
PRW_DATAS F1up	-0.0744949

Table 74: Systematic uncertainties for $m_H = 400$ GeV in percent in one lepton region with $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variations
JET_BJES_Response1up	-0.000219829
JET_BJES_Response_1down	0.000882561
JET_EffectiveNP_11up	1.4722
JET_EffectiveNP_11down	-1.28397
JET_EffectiveNP_21up	-0.251985
JET_EffectiveNP_21down	0.424675
JET_EffectiveNP_31up	0.0803816
JET_EffectiveNP_31down	-0.0582128
JET_EffectiveNP_41up	0.00776763
JET_EffectiveNP_41down	0.0292053
JET_EffectiveNP_51up	-0.00674391
JET_EffectiveNP_51down	0.0207327
JET_EffectiveNP_61up	0.167922
JET_EffectiveNP_61down	-0.12551
JET_EffectiveNP_71up	-0.12348
JET_EffectiveNP_71down	0.179898
JET_EffectiveNP_8restTerm1up	0.0405351
JET_EffectiveNP_8restTerm1down	-0.0280038
JET_EtaIntercalibration_Modelling1up	0.591682
JET_EtaIntercalibration_Modelling1down	-0.490423
JET_EtaIntercalibration_NonClosure1up	-0.0968161
JET_EtaIntercalibration_NonClosure1down	-0.000368866
JET_EtaIntercalibration_TotalStat1up	0.356169
JET_EtaIntercalibration_TotalStat1down	-0.308682
JET_Flavor_Composition1up	3.96798
JET_Flavor_Composition1down	-3.14659
JET_Flavor_Response1up	-0.964444
JET_Flavor_Response1down	1.03409
JET_JER_SINGLE_NP1up	1.00883
JET_JvtEf ficiency1down	-0.683579
JET_JvtEf ficiency_1up	0.687055
JET_Pileup_OffsetMu_1up	-0.148814
JET_Pileup_Off setMu_1down	0.185259
JET_Pileup_OffsetNPV1up	0.295736
JET_Pileup_OffsetNPV_1down	-0.0427249
JET_Pileup_PtTerm1up	0.0400338
JET_Pileup_PtTerm1down	-0.0604664
JET_Pileup_RhoTopology1up	2.29413
JET_Pileup_RhoTopology1down	-1.87409
JET_PunchThrough_MC151up	-8.26289e-09
JET_PunchThrough_MC151down	1.45012e-08
JET_S ingleParticle_HighPt1up	0
JET_S ingleParticle_HighPt1down	0

Table 75: Systematic uncertainties for $m_H = 400$ GeV in percent in one lepton region with $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variations
FT_EFF_Eigen_B_01down	-0.0808276
FT_EFF_Eigen_B_01up	0.0811183
FT_EFF_Eigen_B_11down	-0.00933067
FT_EFF_Eigen_B_11up	0.00933639
FT_EFF_Eigen_B_21down	0.00925482
FT_EFF_Eigen_B_21up	-0.0092304
FT_EFF_Eigen_C_01down	-1.35201
FT_EFF_Eigen_C_01up	1.35707
FT_EFF_Eigen_C_11down	0.158004
FT_EFF_Eigen_C_11up	-0.15806
FT_EFF_Eigen_C_21down	0.0577072
FT_EFF_Eigen_C_21up	-0.0577019
FT_EFF_Eigen_C_31down	0.0450326
FT_EFF_Eigen_C_31up	-0.045025
FT_EFF_Eigen_Light_01down	-0.285116
FT_EFF_Eigen_Light_01up	0.285726
FT_EFF_Eigen_Light_11down	0.0532455
FT_EFF_Eigen_Light_11up	-0.0532243
FT_EFF_Eigen_Light_21down	-0.0214047
FT_EFF_Eigen_Light_21up	0.0214102
FT_EFF_Eigen_Light_31down	0.0131465
FT_EFF_Eigen_Light_31up	-0.013144
FT_EFF_Eigen_Light_41down	0.0318171
FT_EFF_Eigen_Light_41up	-0.0318105
FT_EFF_extrapolation1down	0.00365604
FT_EFF_extrapolation1up	-0.00365604
$FT_EFF_extrapolation_from_charm_1down$	0.000401627
FT_EFF_extrapolation_from_charm1up	-0.000401628

Table 76: Systematic uncertainties for $m_H = 400$ GeV in percent in one lepton region with $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variations
EL_EFF_ID_TOTAL_1NPCOR_PLUS_UNCOR1down	-0.459369
EL_EFF_ID_TOTAL_1NPCOR_PLUS_UNCOR1up	0.459368
EL_EFF_Iso_TOTAL_1NPCOR_PLUS_UNCOR1down	-0.0701366
EL_EFF_Iso_TOTAL_1NPCOR_PLUS_UNCOR1up	0.0701365
EL_EFF_Reco_TOTAL_1NPCOR_PLUS_UNCOR1down	-0.129289
EL_EFF_Reco_TOTAL_1NPCOR_PLUS_UNCOR1up	0.129289
MUON_EFF_STAT1down	-0.129765
MUON_EFF_STAT1up	0.129765
MUON_EFF_SYS1down	-0.351924
MUON_EFF_SYS1up	0.352433
MUON_ID1down	0.00969678
MUON_ID1up	0.0231123
MUON_IS O_S TAT1 down	-0.0430322
MUON_ISO_STAT1up	0.0430326
MUON_IS O_S YS1down	-0.100742
MUON_IS O_S YS1up	0.100742
MUON_MS1down	0.0111988
MUON_MS1up	-0.0190261
MUON_SAGITTA_RESBIAS1down	0
MUON_SAGITTA_RESBIAS1up	0
MUON_SAGITTA_RHO1down	0
MUON_SAGITTA_RHO1up	0
MUON_SCALE1down	0.0232481
MUON_SCALE1up	0.000121055
MUON_TTVA_STAT1down	-0.0925775
MUON_TTVA_STAT1up	0.0925776
MUON_TTVA_SYS1down	-0.0487003
MUON_TTVA_SYS1up	0.0487003
PH_EFF_ID_Uncertainty1down	-1.66286
PH_EFF_ID_Uncertainty1up	1.67695
PH_EFF_TRKISO_Uncertainty1down	-0.724454
PH_EFF_TRKISO_Uncertainty1up	0.727347
PH_Iso_DDonoff	0.0559
PRW_DATAS F1down	1.17289
PRW_DATAS F1up	-1.61032

Table 77: Systematic uncertainties for $m_H = 500$ GeV in percent in one lepton region with $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variations
JET_BJES_Response1up	-0.00012239
JET_BJES_Response_1down	-0.00767252
JET_EffectiveNP_11up	1.0447
JET_EffectiveNP_11down	-1.12489
JET_EffectiveNP_21up	-0.244011
JET_EffectiveNP_21down	0.271649
JET_EffectiveNP_31up	0.0225547
JET_EffectiveNP_31down	-0.0318287
JET_EffectiveNP_41up	-0.027783
JET_EffectiveNP_41down	-0.0057468
JET_EffectiveNP_51up	-0.0339831
JET_EffectiveNP_51down	0.0122954
JET_EffectiveNP_61up	0.0292468
JET_EffectiveNP_61down	-0.0331833
JET_EffectiveNP_71up	-0.0277012
JET_EffectiveNP_71down	0.0241323
JET_EffectiveNP_8restTerm1up	0.00986801
JET_EffectiveNP_8restTerm1down	-0.0325313
JET_EtaIntercalibration_Modelling1up	0.309808
JET_EtaIntercalibration_Modelling1down	-0.382837
JET_EtaIntercalibration_NonClosure1up	-0.0950512
JET_EtaIntercalibration_NonClosure_1down	0.119662
JET_EtaIntercalibration_TotalS tat1up	0.227319
JET_EtaIntercalibration_TotalStat1down	-0.213015
JET_Flavor_Composition1up	2.71082
JET_Flavor_Composition1down	-2.57364
JET_Flavor_Response1up	-0.461755
JET_Flavor_Response1down	0.596197
JET_JER_SINGLE_NP1up	-0.197979
JET_JvtEfficiency1down	-0.634938
JET_JvtEfficiency1up	0.63806
JET_Pileup_OffsetMu1up	-0.0668627
JET_Pileup_OffsetMu_1down	0.167656
JET_Pileup_OffsetNPV1up	-0.0152505
JET_Pileup_OffsetNPV_1down	-0.16461
JET_Pileup_PtTerm1up	0.0590095
JET_Pileup_PtTerm1down	-0.0165964
JET_Pileup_RhoTopology1up	1.54238
JET_Pileup_RhoTopology1down	-1.4366
JET_PunchThrough_MC151up	-1.27101e-08
JET_PunchThrough_MC151down	2.84316e-08
JET_S ingleParticle_HighPt1up	0
JET_S ingleParticle_HighPt1down	0

Table 78: Systematic uncertainties for $m_H = 500$ GeV in percent in one lepton region with $p_T(\gamma\gamma)$ cut applied.

Uncertainty Source	Relative Variations
FT_EFF_Eigen_B_01down	-0.0532437
FT_EFF_Eigen_B_01up	0.0532518
FT_EFF_Eigen_B_11down	-0.0171535
FT_EFF_Eigen_B_11up	0.0171592
FT_EFF_Eigen_B_21down	0.00368772
FT_EFF_Eigen_B_21up	-0.00368687
FT_EFF_Eigen_C_01down	-1.51774
FT_EFF_Eigen_C_01up	1.52381
FT_EFF_Eigen_C_11down	-0.0510731
FT_EFF_Eigen_C_11up	0.0511092
FT_EFF_Eigen_C_21down	0.046046
FT_EFF_Eigen_C_21up	-0.0460293
FT_EFF_Eigen_C_31down	0.0365585
FT_EFF_Eigen_C_31up	-0.0365489
FT_EFF_Eigen_Light_01down	-0.28397
FT_EFF_Eigen_Light_01up	0.284597
FT_EFF_Eigen_Light_11down	0.0494979
FT_EFF_Eigen_Light_11up	-0.0494789
FT_EFF_Eigen_Light_21down	-0.0118591
FT_EFF_Eigen_Light_21up	0.0118657
FT_EFF_Eigen_Light_31down	0.00859662
FT_EFF_Eigen_Light_31up	-0.0085951
FT_EFF_Eigen_Light_41down	0.0378742
FT_EFF_Eigen_Light_41up	-0.0378652
FT_EFF_extrapolation1down	0.00999153
FT_EFF_extrapolation1up	-0.00998988
FT_EFF_extrapolation_from_charm1down	0.000223217
FT_EFF_extrapolation_from_charm1up	-0.000223217

Table 79: Systematic uncertainties for $m_H = 500$ GeV in percent in one lepton region with $p_T(\gamma\gamma)$ cut applied.

772 C Selections optimization

The cuts on the photons side are fully followed the HGam group, and the following optimizations are all on the W boson and its decay products sides. The distributions of the variables are shown in Figure 58 and Figure 59. At the left region for Figure 58(a), 58(c), 59(a), 59(c) and the right region for Figure 58(b), 59(b), the signal statistics will be low if there is a cut on these variables. The significance on the right plots is definded as Z in the Eq 1. Applying a cut on these variables doesn't have significant improvement and will decrise the signal statistics excessively. There is no further cut besides the cuts listed in Section 5.

Figure 58: (a) The ΔR between the leading lepton and the di-jet system, (b) transverse missing energy, (c) the invariant mass of di-jet system.

Figure 59: (a) The invatiant mass of lepton and di-jet, (b) transverse mass of the leading lepton and MET, (c) transverse mass of the leading lepton, MET and di-jet.

DRAFT	DRAFT
-------	-------

Parameter	fit
W1	43.0507±11.2414
W2	23.9493±10.2914
fiso	0.475728 ± 0.173654
fid	0.469924 ± 0.166589

Table 80: fit result of one electron channel

fit (real + fake)	FixedCutTight	loose-not-FixedCutTight
tight	35.646 ± 5.35402	3.09965 ± 5.90034
medium-not-tight	3.96067 ± 6.03934	0.344406 ± 6.65559

Table 81: fit result of one electron channel

D Fake lepton estimation

An ABCD method is introduced to estimate fake leptons in electron and muon channel. After the base-

⁷⁸² line lepton selection, the events are split into 4 regions by two indepent variables. Here tight ID and

FixedCutTight[36](current muon isolation variable is not correct) isolation are used. They are supposed

to be independent. The correlation factor of these two variables is 0.11 for electron channel and 9e-3 for muon channel in large statistic $lv\gamma\gamma jj$ sample. The yield in each region can be calculated by Eq 5,

where W1 is real lepton yield and W2 is fake lepton yield,

 ϵ_{ID} and ϵ_{ISO} are the efficiency of tight ID and tight ISO for real lepton obtained from background MC,

 f_{ID} and f_{ISO} are the efficiency of tight ID and tight ISO for fake lepton.

n

The minimization of χ^2 in Eq 6 is performed to get the parameter. Table 80 shows the fit result of electron

⁷⁹⁰ channel and Table 83 shows the fit result of muon channel. Table 86 shows the ID and Isolation efficiency

⁷⁹¹ from various sample and it indicates that it is not worthwhile to apply tight ID and tight Isolation cut.

$$N_{TI,pred} = W1 * \epsilon_{ID} * \epsilon_{ISO} + W2 * f_{ID} * f_{ISO};$$

$$N_{TnI,pred} = W1 * \epsilon_{ID} * (1 - \epsilon_{ISO}) + W2 * f_{ID} * (1 - f_{ISO});$$

$$N_{nTI,pred} = W1 * (1 - \epsilon_{ID}) * \epsilon_{ISO} + W2 * (1 - f_{ID}) * f_{ISO};$$

$$N_{nTnI,pred} = W1 * (1 - \epsilon_{ID}) * (1 - \epsilon_{ISO}) + W2 * (1 - f_{ID}) * (1 - f_{ISO});$$
(5)

$$\chi^{2} = \sum_{i} \frac{(N_{i} - N_{i,pred})^{2}}{N_{i}},$$

$$i = TI(tight - isolated),$$

$$TnI(tight - non - isolated),$$

$$nTI(non - tight - isolated),$$

$$TnI(non - tight - non - isolated)$$

(6)

data	FixedCutTight	loose-not-FixedCutTight
Tight	41	9
medium-not-tight	10	7

Table 82: data sideband in one electron channel

ParameterfitW1 28.1647 ± 14.0766 W2 38.5004 ± 14.6546 f_{ISO} 0.495349 ± 0.172062 f_{ID} 0.8 ± 0.0419173

DRAFT

Table 83: fit result of one muon channel

fit (real + fake)	FixedCutTight	loose-not-FixedCutTight
tight	25.9566+15.2569	1.08152+15.5434
medium-not-tight	1.08152+3.81423	0.0450635+3.88585

Table 84: fit result of one muon channel

data	FixedCutTight	loose-not-FixedCutTight
Tight	41	16
medium-not-tight	5	0

Table 85: data sideband in one muon channel

efficiency/ $eff_S / \sqrt{eff_B}$	data	lvjjyy	WWyy260	WWyy300	WWyy400	WWyy500
electron tight ID	0.75	0.922	0.886/1.023	0.883/1.020	0.906/1.046	0.914/1.055
electron tight ISO	0.76	0.902	0.774/0.888	0.827/0.949	0.847/0.972	0.868/0.996
muon tight ID	0.92	0.960	0.952/0.992	0.949/0.989	0.945/0.985	0.951/0.991
muon tight ISO	0.74	0.960	0.912/1.060	0.924/1.074	0.933/1.085	0.947/1.100

Table 86: This table show the ID and Isolation efficiency for electron and muon channel in different sample. After comparing the s/\sqrt{b} , it is not worthwhile to apply tight ID or tight Isolation cut.

Function	Max(S)	Max(S/DeltaS)	Max(S/RefS)	Result
Poly1	-1.93075	-0.486013	-3.7341	fail
Poly2	-0.93036	-0.208244	-1.79933	fail
Exponential	1.05432	0.242821	2.03908	fail
ExpPoly2	0.845848	0.194842	1.6359	pass

Table 87: Spurious signal test for $m_H = 260 GeV$

Function	Max(S)	Max(S/DeltaS)	Max(S/RefS)	Result
Poly1	-1.92083	-0.480248	-3.37704	fail
Poly2	-0.95828	-0.213363	-1.68476	fail
Exponential	-2.5556	-0.614349	-4.49304	fail
ExpPoly2	0.826406	0.189248	1.45292	pass

Table 88: Spurious signal test for $m_H = 300 GeV$

792 E Discussion on continuum background modeling

Table 8788899091 show the spurious signal test for other function. An additional check is performed to make sure the shape difference between 1-lep region and 0-lep region is acceptable. The function used here is the baseline 2nd-exp function, $exp(a1 \times x + a2 \times x^2)$, $x = (m_{\gamma\gamma} - 100)/100$. Table 92939495 show the shape difference in SR and CR in difference samples. The conclusion is that the statistic uncertainty

⁷⁹⁷ of paramter in SR can cover the difference.

F Parameters extraction for signals and SM backgrounds

In Figures 60, 61, 62, 63, 64, 65, 66 and 67 show the fits to extract the shape parameters which are used to build models of the signals and backgrounds.

Function	Max(S)	Max(S/DeltaS)	Max(S/RefS)	Result
Poly1	0.344039	0.150491	0.44619	pass
Poly2	-0.389102	-0.166955	-0.504633	pass
Exponential	0.411775	0.183332	0.534038	pass
ExpPoly2	-0.398046	-0.169399	-0.516232	pass

Table 89: Spurious signal test for $m_H = 400 GeV$

Function	Max(S)	Max(S/DeltaS)	Max(S/RefS)	Result
Poly1	0.352419	0.157594	0.410594	pass
Poly2	-0.385572	-0.169678	-0.449221	pass
Exponential	0.417334	0.189947	0.486226	pass
ExpPoly2	-0.395486	-0.172747	-0.460771	pass

Table 90: Spurious signal test for $m_H = 500 GeV$

Function	Max(S)	Max(S/DeltaS)	Max(S/RefS)	Result
Poly1	0.349528	0.15498	0.432416	pass
Poly2	-0.391328	-0.170836	-0.484128	pass
Exponential	0.415397	0.187463	0.513905	pass
ExpPoly2	-0.402366	-0.174128	-0.497784	pass

Table 91: Spurious signal test for non-resonant

MC	parameter	value	error
SR	a1	-2.2482e+00	$\pm 2.30e+00$
	a2	3.1279e-01	$\pm 3.64e + 00$
CR	a1	-2.1722e+00	± 1.22e-01
	a2	-7.0086e-01	± 1.98e-01

Table 92: Shape difference in pure $lvqq\gamma\gamma$ and $\gamma\gamma jjj$ MC sample.

revID	parameter	value	error
SR	a1	-3.3355e+00	+/- 2.96e+00
	a2	1.8383e+00	+/- 4.63e+00
CR	a1	-4.2406e+00	+/- 1.40e-01
	a2	1.4973e+00	+/- 2.33e-01

Table 93: Shape difference in reverse ID region

revISO	parameter	value	error
SR	a1	-4.6782e+00	+/- 1.93e+00
	a2	1.4239e+00	+/- 3.24e+00
CR	a1	-3.5777e+00	+/- 9.78e-02
	a2	8.5102e-01	+/- 1.61e-01

Table 94: Shape difference in reverse isolation region

revID-revISO	parameter	value	error
SR	a1	-3.5107e+00	+/- 7.54e-01
	a2	1.5423e+00	+/- 1.22e+00
CR	a1	-3.5709e+00	+/- 3.23e-02
	a2	1.1725e+00	+/- 5.29e-02

Table 95: Shape difference in reverse both ID and isolation region

Figure 60: The fits to obtain the parameters for $m_H = 260 \text{ GeV}$ in (a) zero lepton region, (b) one lepton region.

Figure 61: The fits to obtain the parameters for $m_H = 300$ GeV in (a) zero lepton region, (b) one lepton region.

Figure 62: The fits to obtain the parameters for $m_H = 400$ GeV in (a) zero lepton region, (b) one lepton region.

Figure 63: The fits to obtain the parameters for $m_H = 500 \text{ GeV}$ in (a) zero lepton region, (b) one lepton region.

Figure 64: The fits to obtain the parameters for non-resonance in (a) zero lepton region, (b) one lepton region.

Figure 65: The fits to obtain the parameters for SM Higgs boson pair in (a) zero lepton region, (b) one lepton region, without $p_T(\gamma\gamma)$ cut applied.

Figure 66: The fits to obtain the parameters for SM single Higgs background in (a) zero lepton region, (b) one lepton region, with $p_T(\gamma\gamma)$ cut applied.

Figure 67: The fits to obtain the parameters for SM single Higgs background in (a) zero lepton region, (b) one lepton region, without $p_T(\gamma\gamma)$ cut applied.

G Systematics on photon resolution and scale

In the fits, the shape parameters except the m_0 are fixed as those in nominal fits shown in the Section F for extracting the systematics on photon energy scale (EGS). The shape parameters except σ are fixed

for photon energy resolution (EGR). All the fits are shown in 68, 69, 70, 71, 72, 73, 74 and 75.

(h)

Figure 68: The fits for non-resonance to obtain (a) $\sigma_D own$ in zero lepton region, (b) $\sigma_D own$ in one lepton region, (c) $\sigma_U p$ in zero lepton region, (d) $\sigma_U p$ in one lepton region, (e) $m_0 D own$ in zero lepton region, (f) $m_0 D own$ in one lepton region, (g) $m_0 U p$ in zero lepton region, (h) $m_0 U p$ in one lepton region.

(h)

Figure 69: The fits for $m_H = 260$ GeV to obtain (a) σ_Down in zero lepton region, (b) σ_Down in one lepton region, (c) $\sigma_U p$ in zero lepton region, (d) $\sigma_U p$ in one lepton region, (e) $m_0 Down$ in zero lepton region, (f) $m_0 Down$ in one lepton region, (g) $m_0 Up$ in zero lepton region, (h) $m_0 Up$ in one lepton region.

Figure 70: The fits for $m_H = 300$ GeV to obtain (a) σ_Down in zero lepton region, (b) σ_Down in one lepton region, (c) $\sigma_U p$ in zero lepton region, (d) $\sigma_U p$ in one lepton region, (e) $m_0 Down$ in zero lepton region, (f) $m_0 Down$ in one lepton region, (g) $m_0 Up$ in zero lepton region, (h) $m_0 Up$ in one lepton region.

Figure 71: The fits for $m_H = 400$ GeV to obtain (a) $\sigma_D own$ in zero lepton region, (b) $\sigma_D own$ in one lepton region, (c) $\sigma_U p$ in zero lepton region, (d) $\sigma_U p$ in one lepton region, (e) $m_0 D own$ in zero lepton region, (f) $m_0 D own$ in one lepton region, (g) $m_0 U p$ in zero lepton region, (h) $m_0 U p$ in one lepton region.

Figure 72: The fits for $m_H = 500$ GeV to obtain (a) $\sigma_D own$ in zero lepton region, (b) $\sigma_D own$ in one lepton region, (c) $\sigma_U p$ in zero lepton region, (d) $\sigma_U p$ in one lepton region, (e) $m_0 D own$ in zero lepton region, (f) $m_0 D own$ in one lepton region, (g) $m_0 U p$ in zero lepton region, (h) $m_0 U p$ in one lepton region.

Figure 73: The fits for SM single higgs background to obtain (a) σ_Down in zero lepton region, (b) σ_Down in one lepton region, (c) σ_Up in zero lepton region, (d) σ_Up in one lepton region, (e) m_0Down in zero lepton region, (f) m_0Down in one lepton region, (g) m_0Up in zero lepton region, (h) m_0Up in one lepton region, without $p_T(\gamma\gamma)$ cut applied.

(h)

Figure 74: The fits for SM single higgs background to obtain (a) σ_Down in zero lepton region, (b) σ_Down in one lepton region, (c) σ_Up in zero lepton region, (d) σ_Up in one lepton region, (e) $m_0 Down$ in zero lepton region, (f) $m_0 Down$ in one lepton region, (g) $m_0 Up$ in zero lepton region, (h) $m_0 Up$ in one lepton region, with $p_T(\gamma\gamma)$ cut applied.

Figure 75: The fits for SM Higgs boson pair background to obtain (a) $\sigma_{-}Down$ in zero lepton region, (b) $\sigma_{-}Down$ in one lepton region, (c) $\sigma_{-}Up$ in zero lepton region, (d) $\sigma_{-}Up$ in one lepton region, (e) $m_0_{-}Down$ in zero lepton region, (f) $m_0_{-}Down$ in one lepton region, (g) $m_0_{-}Up$ in zero lepton region, (h) $m_0_{-}Up$ in one lepton region, with $p_T(\gamma\gamma)$ cut applied.